
Star clusters and black holes in galaxies across cosmic time
Proceedings IAU Symposium No. 312, 2014
Y. Meiron, S. Li, F.-K. Liu & R. Spurzem, eds.

c© International Astronomical Union 2016
doi:10.1017/S1743921315007851

Expansion techniques for collisionless stellar
dynamical simulations

Yohai Meiron
Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing 100871, China

email: ymeiron@pku.edu.cn

Abstract. We present ETICS, a collisionless N -body code based on two kinds of series expan-
sions of the Poisson equation, implemented for graphics processing units (GPUs). The code is
publicly available and can be used as a standalone program or as a library (an AMUSE plu-
gin is included). One of the two expansion methods available is the self-consistent field (SCF)
method, which is a Fourier-like expansion of the density field in some basis set; the other is the
multipole expansion (MEX) method, which is a Taylor-like expansion of the Green’s function.
MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both
are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is
a “pure” expansion, MEX is an expansion in just the angular part; thus, MEX is capable of
capturing radial structure easily, while SCF needs a large number of radial terms.

Keywords. methods: numerical – stars: kinematics and dynamics

1. Introduction
A stellar system could naively be described as a set of 3N� coupled, second-order, non-

linear ordinary differential equations, where N� is the number of stars. Solving such an
equation set numerically is practically only possible at the very low end of the realistic
N� -range, and even so could be very challenging with current computer hardware. Thus,
various techniques are used to simplify the mathematical description of the system; these
are often designed to fit a particular problem in stellar dynamics and yield unphysical
results when applied to another problem.

Direct N -body simulation is one of the main techniques used to study gravitational
systems in general and galaxies in particular. In this technique, the distribution function
is sampled at N � N� points in a Monte-Carlo fashion. This N depends on the computa-
tional capabilities an may be orders of magnitudes smaller. This simplification can cause
problems, as some dynamical processes depend on the number density rather than just
the mass density. The most well-known of these processes is two-body relaxation. The
relaxation time (the characteristic time for a particle’s velocity to change by an order
of itself due to encounters with other particles) scales with the crossing time roughly as
N/ ln N . Thus, the ratio between the relaxation times in a real and a simulated system
is of a similar order of magnitude as the undersampling factor.

Galaxies are often described as collisionless stellar systems, which means that the
relaxation time is much longer than the timescale of interest (except perhaps at the
very center). This property could be very useful. Since a particle’s orbit is basically
what it would be if it were moving in a smooth gravitational field, we could evaluate
the field instead of calculating all of the stellar interactions, which is computationally
cheaper. Another useful property is that galaxies are often spheroidal in shape. Even
highly flattened galaxies will have a spherical dark halo component. Thus, a spherical

227

https://doi.org/10.1017/S1743921315007851 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921315007851

228 Y. Meiron

shape could be used as a zeroth-order approximation for the gravitational field, and
higher-order terms could be written using spherical harmonics.

These two facts are utilized by series expansion techniques such as the multipole ex-
pansion (MEX) and the self-consistent field (SCF) methods. They historically come from
different ideas and are mathematically distinct. In the context of numerical simulations,
however, they serve a similar function: to evaluate the gravitational force on all N par-
ticles generated by this same collection of particles in a way that discards spurious
small-scale structure (in other words, smooths the field). In Meiron et al. (2014) we
first presented the ETICS† code which encapsulates these techniques, fully describing
the mathematics behind it, implementation and accuracy. In this proceeding we briefly
summarize this and show basic performance benchmarks.

2. Formalism
Both the MEX and SCF methods are ways of solving the Poisson equation

∇2Φ(r) = 4πρ(r), (2.1)

the formal solution of which is given by the following integral:

Φ(r) = −
∫

ρ(r′)d3r′

|r − r′| . (2.2)

The expression |r − r′|−1 is the Green’s function of the Laplace operator in three di-
mensions and in free space (no boundary conditions), and the integral is over the whole
domain of definition of ρ(r).

In both MEX and SCF, the integrand above is expanded as a series of terms, each of
which is more easily numerically integrable; this is done in two different ways, lending
the two methods quite different properties. In brief, MEX is a Taylor-like expansion of
the Green’s function, while SCF is a Fourier-like expansion of the density. Another way
to look at it is that in both methods the integrand is written as a series of functions
(of r) with coefficients: in MEX, one uses the given density to evaluate the functions,
while their coefficients are known in advance; in SCF, one evaluates coefficients, while
the functions are known in advance. The standard form of MEX in three dimensions is

Φ(r) = −
∞∑

l=0

4π

2l + 1

l∑
m=−l

[
qlm (r)r−(l+1) + plm (r)rl

]
Ylm (θ, φ) (2.3)

qlm (r) =
∫

r ′<r

r′lρ(r′)Y ∗
lm (θ′, φ′)d3r′ (2.4)

plm (r) =
∫

r<r ′
r′−(l+1)ρ(r′)Y ∗

lm (θ′, φ′)d3r′. (2.5)

Since in practice the density field is made of N discrete points, they must be sorted by
r in order for the above integrals to be evaluated in one pass.

The standard form of SCF in three dimensions is

Φ(r) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

Anlm Φnl(r)Ylm (θ, φ) (2.6)

Anlm =
∫

ρ(r′)Φnl(r′)Y ∗
lm (θ′, φ′)d3r′. (2.7)

† https://github.com/sahmes/etics

https://doi.org/10.1017/S1743921315007851 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921315007851

Expansion techniques 229

Φnl(r) are functions forming an orthogonal set, the radial basis, which is a key difference
between MEX and SCF. The choice of basis is not unique, and the basis functions them-
selves need not represent physical potentials, but it is convenient to take the zeroth term
(n = l = 0) to represent some physical system, and to construct the rest of the set by
some orthogonalization method. Hernquist & Ostriker (1992) constructed a radial basis
using Gegenbauer polynomials that at zeroth order was a Hernquist (1990) model, which
they argued was well suited to study galaxies; this is the basis we adopt in ETICS.

3. Implementation
GPUs are powerful and cost-effective devices for high-performance parallel computing.

They are used to accelerate many scientific calculations, especially in astrophysics, such
as the dynamics of dense star clusters and galaxy centers (see review by Spurzem et al.
2012). The main issue when implementing a mathematical technique for GPUs is to
make the algorithm parallel. In many cases there is already a parallel implementation
of the method, but a GPU is different from a multi-CPU parallel environment, and the
parallelization scheme is not always transferable. A full description of the implementation
would be very long and technical, thus we only briefly overview it here; the full details
are found in Meiron et al. (2014).

Both the MEX and SCF algorithms have two distinct steps: calculating the expansion
from the particles, and using the expansion to calculate the forces on the particles.
These two parts are done consecutively in ETICS, while each part is done in parallel on
the GPU. While in SCF the full coefficient list is calculated before it is used for force
calculation, in MEX, due to use of very large arrays in the global memory, the force is
calculated in parts, i.e., first the zeroth (monopole) order force is calculated, then the
l = 2 correction is added to it, and so forth.

The current implementation of the MEX method relies on Thrust (Bell & Hoberock
2011), a C++ template library of parallel algorithms which is part of the CUDA frame-
work. The particles are first sorted by radius using a Thrust subroutine; this is followed
by a loop over l, inside of which the spherical harmonics are calculated; these are used
to calculate the contributions of the particle to qlm and plm , which are saved in global
memory. Finally, Thrust subroutines are dispatched to perform forward and backward
cumulative sums.

For SCF, no sorting or cumulative summation are done. In principle, a similar algo-
rithm could be used, i.e., the contribution of each particle to each coefficient is stored
in global memory, and later the contributions are summed. The problem is that there
are 1

2 (nmax + 1) more SCF coefficients than there are MEX functions. There is a better
scheme that does not require such heavy use of the global GPU memory. Since a nor-
mal (rather than cumulative) summation is needed, it is fairly easy to use the very fast
“shared memory” (another memory type in the GPU, available to all threads in a single
block) to accumulate the particles’ contributions, and then perform parallel reductions
within the block (later the CPU finalizes by summing the contribution from each block).
The parallel SCF algorithm of Hernquist et al. (1995) could not be used here due to the
difference between how the GPU and CPU access and cache memory (it could however
be used for the inter-node level parallelization).

The calculation of the forces (or potentials) at the last step is very similar between MEX
and SCF (except, as mentioned before, the MEX force is calculated for each multipole
level separately), as each particle only needs to know its own coordinates and the series
expansion and there is no dependency between the threads.

https://doi.org/10.1017/S1743921315007851 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921315007851

230 Y. Meiron

103 104 105 106 107

N

10−3

10−2

10−1

100

101

102

t
[s

ec
]

ETICS-MEX
ETICS-SCF
Hernquist-SCF

single precision

2

4

6

8

10

12

0 2 4 6 8 10 12

lmax

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

N = 1M
nmax = 10 for SCF

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 2 4 6 8 10 12
nmax

0.00

0.05

0.10

0.15

N = 1M
lmax = 6

Figure 1. Scaling of one full force calculation time. Hernquist’s SCF code (in green) is a
CPU and ETICS is a GPU code with both MEX (red) and SCF (blue) methods; for the GPU
codes, dotted lines show the performance in single-precision mode. The parameter which is held
constant is indicated on each panel. The CPU code shows some erratic behavior due to compiler
optimization. Note that the CPU and GPU tests use different hardware.

4. Performance
We tested the performance of ETICS (both MEX and SCF) on a single Nvidia Tesla

K20 GPU on the Laohu supercomputer at the NAOC in Beijing. For comparison, we
also tested the Fortran CPU SCF code by Lars Hernquist on the ACCRE cluster at
Vanderbilt University in Nashville, Tennessee (we used a node with an Intel Xeon E5520
CPU). Figure 1 shows the time it takes to do one full force calculation as a function of
N , lmax , and nmax . Note that the timing only depends on the number of particles (and
expansion cutoffs) and not on their spatial distribution.

The CPU and GPU SCF codes are both theoretically O(l2maxnmaxN). At low N , the
GPU is not fully loaded and ETICS performance seems superlinear with N . ETICS -
MEX is theoretically O(l2maxN logN), but this again is an asymptotic behavior which is
not observed. The lack of good GPU load for N � 106 is much more evident than the
NlogN nature of the algorithm. The GPU global memory was the limiting factor in how
many particles could be used with both methods. All codes should scale quadratically
with lmax , but as the middle panel of Figure 1 shows, this behavior is not as clear for
ETICS -MEX. This is due to the extensive memory access this code requires, which rivals
the calculation time. Memory latency on GPUs is not easy to predict; due to caching and
the way memory is copied in blocks, and the latency depends not only on the amount of
memory accessed but also on the memory access pattern.

References
Bell, N. & Hoberock, J. 2011, in GPU Computing Gems Jade Edition, ed. W.-M W. Hwu

(Waltham, MA: Morgan Kaufmann), 359
Hernquist, L. 1990, ApJ, 356, 359
Hernquist, L. & Ostriker, J. P. 1992, ApJ, 386, 375
Hernquist, L., Sigurðsson, S., & Bryan, G. L. 1995, ApJ, 446, 717
Meiron, Y., Li, B., Holley-Bockelmann, K., & Spurzem, R. 2014, ApJ, 792, 98
Spurzem, R., Berczik, P., Berentzen, I., et al. 2012, in Large-Scale Computing Techniques for

Complex System Simulations, ed. W. Dubitzky, K. Kurowski, & B. Schott (Hoboken, NJ:
John Wiley & Sons), 35

https://doi.org/10.1017/S1743921315007851 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921315007851

