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1. I n t r o d u c t i o n a n d s u m m a r y . In her papers (12) and (13) R. Moufang 
discusses projective plane geometries which satisfy the axiom of the uniqueness 
of the fourth harmonic point. Her main result is t h a t in such geometries 
non-homogeneous co-ordinates may be assigned to the points of the plane 
(except for the "line a t infinity") in such a way t h a t s t ra ight lines have 
equations of the forms ax + y + /3 = 0, or x + y — 0. I t is shown t h a t the 
co-ordinates form an al ternat ive field and furthermore, given an a l ternat ive 
field, it is shown t h a t a non-Desarguesian geometry can be constructed for 
which the axiom of the uniqueness of the fourth harmonic point is satisfied. 

In the present paper the au thor a t t acks the same problem from a radically 
different, and which seems to him a more natura l , point of view. T h e theory 
of nets is completely avoided. N o use is made of algebraic a rguments since i t 
tu rns out t h a t all the rules of operation of the algebraic symbols have a 
natura l geometric interpretat ion. 

T h e basic idea of the a rgument used is the following. Projective collineations 
are defined for non-Desarguesian geometries and a projective collineation 
group as well as a unimodular subgroup are obtained. T h e axiom of the fourth 
harmonic point immediately leads to the result t h a t the harmonic relation for 
four points in line is invar iant under projection. This in tu rn leads to the facts 
t h a t in such geometries a "full" unimodular projective collineation group 
exists and t ha t any projective transformation between two lines can be ex­
tended to a unimodular projective collineation of the whole plane. Wi th these 
results as background the construction of co-ordinate systems in a line and 
in the plane are readily carried out and the usual rules of operations on the 
symbols follow qui te smoothly. 

In this development the reason for the failure of the general associative law 
a {be) = (ab)c as contrasted with the val idi ty of the special associative laws 
(aa)b = a(ab) and a~1(ab) = b is immediately apparent . In fact it is known 
t h a t in a classical Desarguesian geometry the l a w a ( k ) = (ab)c follows direct ly 
from the result t h a t in such geometries the s tandard construction of the 
point ab from the points a and b, leads to its unique determinat ion as soon as 
points 0, 1, oo are assigned in the line: i.e., the point ab does not depend on 
the special position of points outside the line which are used in the construct ion. 
In contras t a failure of Desargues ' theorem leads immediately to the fact 
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that in general the position of the point ab in the line depends not only on the 
assignment of 0, 1 and oo but also on the assignment of two other special 
points outside the line. However, the axiom of the fourth harmonic point does 
lead to the fact that the points a~l and a2 are uniquely determined by a once 
0, 1, oo are assigned and hence the laws: a~l(ab) = b, a2b = a{ab). 

It is possible to develop a multiplication in the line in which the product 
a o b is uniquely determined by the "scale" 0, 1 oo in the line. The resulting 
algebra is a Jordan field. Unfortunately when such co-ordinates are extended 
to the whole plane the equations of straight lines do not take on simple linear 
forms which can be handled readily. 

Finally, the collineation theory developed here can be applied to more 
general non-Desarguesian geometries. In the last section some of the results 
obtained are mentioned together with a discussion of possible directions in 
which the theory may be used and extended. 

2. Axioms for plane projective geometries. The general projective 
plane geometry is characterized by the following set of axioms. There are two 
sets of elements called points and lines respectively and one relation called 
' "incidence" such that for any point and any line the relationship of * 'incidence" 
either holds or does not hold. The relationship is subject to the following three 
axioms : 

A(l) . Two distinct points are incident on exactly one line; 
A(2). Two distinct lines are incident on exactly one point; 
A (3). There exist four distinct points no three of which are incident on the 

same line. 
In what follows the usual geometric terminology will be used, i.e. points 

which are incident on the same line will be called collinear, lines which are 
incident on the same point will be called concurrent and if a point and line 
are incident the line will be said to pass through the point and the point will 
be said to be on the line. 

From the axioms of incidence alone very little can be proved. The results 
of importance are: 

(1) If one line contains exactly n + 1 points so does every other line and 
the total number of points is n2 + n + 1. 

(2) If n — pr, where p is a prime and r a positive integer, there exists 
exactly one (apart from isomorphism) Desarguesian geometry with n + 1 
points on each line. 

(3) For n = 2, 3, 4, 5, 7 the only geometries are the classical ones; for 
n = 6 there is no geometry. In (5) Bruck and Ryser establish the non-existence 
of a projective plane for a certain class of n. 

(4) There exist projective geometries for which Desargues' theorem fails; 
in particular finite non-Desarguesian geometries exist for n — 9. 

At the later stage a new axiom will be introduced. Also in what follows some 
of the proofs used will assume that a line has at least five points. This latter 
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assumption will enable us to avoid exceptional cases which in any case can 
easily be examined. 

3. Projective transformations. In this section properties of projective 
transformations are discussed, the purpose being to contrast the properties of 
Desarguesian and non-Desarguesian plane projective geometries and also to 
build up a rudimentary theory of projective collineations in a non-Desarguesian 
plane. This theory will be of fundamental importance in the subsequent 
development. 

Points A, B, C, D, . . . in a line m and points A', B', C', D'', . . . on a line 
m' are said to be in perspective from a point 0 if A A ', BB', CC, . . . all pass 
through 0. If we think of this as a mapping A —>A', B —> Bf, C—> C", etc., 
we will use the notation 

A,B,C,D,...^A',B:CD',... 

to describe the mapping. A transformation A —>A\ B —» B', C—> C , etc., 
from the points of a line m to those of a line mf will be called a projective 
transformation if the points A', B', C, . . . are obtained from A, B, C, . . . 
as a result of a finite sequence of perspectivities. In the classical theory 
projective transformations are studied with reference to three properties, viz., 
Desargues' theorem, Pappus' or Pascal's theorem, and the fundamental 
theorem of projective transformations in a line. Some of the more important 
properties are listed here: 

(a) In any plane projective geometry (Desarguesian or not) there is always 
at least one projective transformation which carries any three collinear points 
into any three other collinear points. 

(b) Desargues' theorem is equivalent to its converse. 
(c) Desargues' theorem is valid if and only if the plane is embeddable in a 

projective three-space. 
(d) In any plane projective geometry, Pappus' theorem implies Desargues' 

theorem. 
(e) In a finite plane projective geometry Pappus' theorem is equivalent to 

Desargues' theorem. 
(f) Pappus' theorem is equivalent to the fundamental theorem which states 

that there is exactly one projective transformation which maps a set of three 
collinear points onto any set of three collinear points. 

Also to be discussed in this section are some of the consequences of the so 
called "little Desargues theorem" a statement which may or may not be 
valid in any specific plane projective geometry. Roughly speaking the "little 
Desargues theorem" states that Desargues' theorem holds for those pairs of 
triangles in which the centre of perspectivity is incident on the axis of 
perspectivity. A formal statement of the "little Desargues theorem" and its 
converse are given below. 
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LITTLE DESARGUES THEOREM. Let ABC (Figure 1) and A'B'C be two 
triangles such that AA', BB', CC pass through 0. Let AB meet A'B' atC", 
BC meet B'C at A" and CA meet C'A' at B". If two of the points A", B", 
C" are collinear with 0 then so is the third. 

F I G . 1 

Converse of the Little Desargues Theorem. Let ABC and A'B'C be two 
triangles such that AB meets A'B' at C", £ C meets B'C at .4" and CA 
meets CM' at B " and let A", B", C" be collinear. If two of the lines AA', 
BB', CC intersect at a point on A", B", C" then the third line also passes 
through this point. 

THEOREM 1. In any plane projective geometry the ulittle Desargues theorem" 
is equivalent to its converse. 

Proof. As both parts of the equivalence are proved by the same means only 
the statement "the little Desargues' theorem implies its converse" is proved 
here. In Figure 1 using the above notation assume that A"', B", C" are 
collinear and that BB' meets CC at 0 on A"B"C". Let OA meet CB" at A*. 
It is sufficient to show that A* = A'. In the triangles A B C, A* B' C the 
lines AA*, BB', CC are concurrent at 0. Furthermore BC meets B'C at A", 
AC meets A*C at B". Since 0, A", B" are collinear the little Desargues' 
theorem implies that A*B' meets AB on the line A"B". Hence A*B' passes 
through C" so that A* is the point of intersection of B'C" and CB". Hence 
A* = A'. 
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THEOREM 2. If Desargues1 theorem fails for a pair of triangles then there 
exists a line and a projective transformation in it, such that three points are fixed 
by the transformation and such that not all points in the line are fixed by the 
transformation. 

0 E B A M M ' U 

F I G . 2 

Proof. The theorem actually follows from remarks (d) and (f) made pre­
viously but a direct proof is given here because the resulting diagram is used 
later in other connections. Furthermore, the proof will be given a second 
interpretation in what follows. 

Since Desargues' theorem fails, its converse also fails. Let PRS and P'R'S' 
be two triangles for which the converse of Desargues' theorem fails (Figure 2). 
Let PR meet P'R! at £ , PS meet P'S' at A and RS meet R'S' at 0. Let A, 
0, E be collinear. Suppose PP' and RR' meet at Q. Since the converse of 
Desargues' theorem fails Q, S and S' are not collinear. Let QS meet OA at M 
and QS' meet OA at M'. Then M ^ M'. Let QP'P meet OA at U and let 
R'S' and RS meet PP' at T' and T respectively. Then 

0, M,A,u4- T> <2> p> U, ~0,ByE,U^- r , Q, P\ U~0, M\ A, U. 
A A A A 

The resultant mapping sends 0 —> 0, A —> A, [/ —> Z7, M —> ikT ^ if. 
Theorem 2 shows that failure of Desargues' theorem increases the number 

of projective transformations possible in a line. It will be seen subsequently 
that the effect of such failure can work in reverse in the case of transformations 
of the whole plane. 

At this point the notions of collineation and projective collineation are 
introduced. A point to point mapping of all the points of a plane is said to 
be a collineation if it is one-one, its inverse exists, if collinear points have as 
images collinear points and if collinear points are the images of collinear 
points. In the classical projective plane, where Desargues' theorem is valid 
a projective collineation is defined as follows. The plane II is embedded in a 
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three dimensional space and a perspectivity from the plane II to a plane 11', 
distinct from II, with centre 0 not on either plane is defined by mapping the 
point A in II onto the point Af in Uf whenever A, A' and 0 are collinear. A 
projective collineation of the plane II is a point-point mapping of the plane II 
which is the result of a finite sequence of perspectivities. A classical result is 
that if the co-ordinate field has automorphisms distinct from the identity 
there exist collineations which are not projective. If one is to distinguish 
between projective and non-projective collineations in a non-Desargeusian 
geometry a different approach is necessary since it is not possible to embed a 
non-Desarguesian geometry in a projective three-space. 

It is possible to define projective collineations in a non-Desarguesian plane 
by means of the notions of homology and elation and the definition now to 
be introduced has the property that when applied to Desarguesian geometries 
it yields the full projective collineation group. Let P be any point and / be 
any line. Let A and A' be any two points collinear with P but which are 
distinct from P and are not on I. In a Desarguesian plane there is always 
exactly one projective collineation which keeps all points on / fixed and all 
lines through P fixed and which maps A —> A'. If P is on / the mapping is 
called an elation and if P is not on I it is called a homology. Furthermore it 
is known that the homologies generate all projective collineations and that 
the dations generate a subgroup of collineations usually referred to as the 
unimodular subgroup. Before defining the projective collineation group for the 
non-Desarguesian case a few properties of homologies and dations valid for 
any projective plane will be developed. 

THEOREM 3. Let P be any point and I be any line. Let A and Ar be two points 
not on I but collinear with P and distinct from P. There exists at most one collinea­
tion which keeps all points on I fixed, all lines through P fixed and which maps 
A into A'. 

Proof. The proof is independent of whether or not P is on I. In Figure 3 
the case P not on / is shown. Let B be any point not on A A1 and not on /. 
It is shown that the image B' of B is uniquely determined. Let AB meet I at 
M. Since all lines through P are fixed B' is on PB. Furthermore since A-+A' 
and B —> B' the line AB has as its image the line A'B'. Also the point M on 
AB is fixed and hence must lie on A'B'. Hence B' is determined as the point 
of intersection of PB and A'M. In the same way the fact that B —> B', deter­
mines a unique image for any point on the line AA'. 

THEOREM 4. Using the notation of Theorem 3, a necessary and sufficient 
condition that the collineation described in Theorem 3 exists is that Desargues' 
theorem is valid for every pair of triangles ABC and A'B'C with centre of 
perspectivity P and axis of perspectivity I. More exactly, the condition is: if 
AA', BB', CC, pass through P and AB meets A'B' at C", AC meets A'C at 
B" and if C" and B" are on I then BC meets B'C at A" which is on I. 
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Proof. Sufficiency; if Desargues' theorem holds for all such triangles then 
the image C of C is the same whether obtained from A —» A' or from B —-> Bf. 
The mapping is thus well defined and is obviously a collineation. 

Necessity; Suppose the mapping is a collineation. Let ABC and A'B'C be 
any two triangles in perspective from P and with B" and C" on /. Then in 
the mapping A -± A' implies B —> B! and C —> C. Let £ C meet / at A". Since 
.SC maps into B'C and 4 " is fixed it follows that B'C passes through A". 

In the collineations just described the line of fixed points is called the axis, 
the point of fixed lines the centre. The notation Elat (P, /; A —> A') will be 
used to denote the elation with centre at P , axis at / and A1 the image of A. 
Similarly the corresponding homology will be described as Horn (P, I; A —» A'). 

In the projective plane if the collineation which maps A into A' and which 
keeps all points on / fixed and all lines through P fixed does not exist we will 
say the collineation is obstructed; otherwise the collineation will be said to be 
unobstructed. We define the projective collineation group as the set of all 
collineations of the plane generated by all the unobstructed homologies and 
elations. The subgroup generated by all unobstructed dations will be called 
the unimodular subgroup and any collineation which is representable as a 
product of elations will be termed a unimodular collineation. If no homology 
is obstructed the geometry will be said to admit a, full projective collineation 
group, and if no elation is obstructed the geometry will be said to admit a 
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full unimodular group. As corollaries to Theorem 4 we have the following two 
theorems. 

THEOREM 5. A necessary and sufficient condition for a full projective collinea-
Hon group to exist is that the geometry be Desarguesian. 

THEOREM 6. A necessary and sufficient condition for a full unimodular 
group to exist is that the little Desargues theorem is valid in the geometry. 

THEOREM 7. If the little Desargues theorem is valid in a projective plane then 
any projective transformation between two lines of the plane can be embedded in 
a unimodular collineation of the plane. 

Proof. It is only necessary to show that any perspectivity between two lines 
can be embedded in an elation, since on representing a projective transforma­
tion as a product of perspectivities the resultant transformation is embedded 
in the collineation which results from multiplying the corresponding elations. 
Let / and m be two lines intersecting at the point A and suppose the points 
of / are mapped onto those of m by a perspectivity with P as centre. Let B 
on I be mapped into B' on m by this perspectivity. Then Elat (P, PA; B —» Bf) 
embeds the given perspectivity. 

I t may be remarked here that Theorem 7 is not true necessarily for non-
Desarguesian geometries for which the small Desargues' theorem is not valid. 
In fact it is possible to exhibit a non-Desarguesian plane and a projective 
transformation in a line which is not embeddable in any collineation of the 
plane.1 

For geometries which satisfy the little Desargues' theorem, it is not generally 
true that there exists a projective collineation which maps any set of four 
points, no three of which are collinear into any other such set of four points. 
In this case the following weaker theorem is valid. 

THEOREM 8. Let U be a projective plane for which the little Desargues1 theorem 
is valid. Let A, B, C, D and A', B', C, D' be two sets of four distinct points such 
that A, B, C are collinear and D is not on ABC and A', B', C are collinear and 
D' is not on A'B'C. There exists a unimodular collineation which maps A —» A', 
B-+B', C-+C and D -> D'. 

Proof. By statement (a) of this section there is at least one projective 
transformation which maps A —> A', B —*B', C —> C. Embed this transfor­
mation in a unimodular collineation U. Let U map D —» D". If D" = D', the 

^ h e geometry described (15, pp. 383-384) by Veblen and Wedderburn has this property. 
Using their notation the points of Figure 2 may be assigned coordinates as follows: P(0, 1, 1), 
5 (2+2 .7 , 1, 0), R(0,j, 1), P ( l , 2, 1), S'(j,J, D, * ' ( 2 , 1, 1) 0(1 +j, 2 +j, 1), JS(0f 0, 1), 
A (J + 1, 0, 1), 0(2 + j , 0, 1), B{1 + 2j, 0, 1), U(2, 0, 1), Mil, 0, 1), M,(2j, 0, 1). The pro­
jective transformation of Theorem 2 keeps the points (2 + 7 , 0, 1), (j + 1, 0, 1), (2, 0, 1) fixed 
and maps (1, 0, 1) into (2j, 0, 1). It can be verified that in this geometry the projective mapping 
in the line cannot be extended to a collineation (projective or otherwise) of the plane. 
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collineation U has the required property. If D" 9^ Df, since D is not on ABC, 
D" is not on A'B'C. Let D'D" meet A', Bf, C at E. Let V be the collineation 
Elat (E, A'B'; D" —» Df). The collineation UV then has the required property. 

4. The axiom of the fourth harmonic point. In the subsequent 
development consideration will be restricted to those geometries which satisfy 
the following axiom which will be termed the axiom of the fourth harmonic 
point. Let A, B, C be any three points in line (Figure 4). Let M be any point 
not on AB. Let CEL be any line through C distinct from AB and not passing 
through M, the point L being on MA and E on MB. Let AE intersect BL at 
R and let MR intersect AB at D. Also, let K be point of intersection of CL 
and MR. 

A D B C 

F I G . 4 

Points A, B, C, D related by such a diagram will be said to satisfy the 
relation H(Â, B, C, D). The axiom of the fourth harmonic point may be 
stated as follows: 

A (4). If H(Â, B; C, D) then D is distinct from C and is uniquely determined 
by A, B and C. 

The axiom A(4) implies that D is independent of the choice of M and the 
choice of the line CEL. It is possible to weaken the axiom to the assumption 
that D is independent of the choice of the line CEL for fixed M, but it can 
readily be shown that the weakened axiom is equivalent to the stronger form. 

Figure 4 will be referred to as the harmonic diagram. The points A, B, C, D 
may be described as follows: A and B are diagonal points of the quadrangle 
MLRE and C and D are the points where the diagonals of MLRE meet the 
line AB. Figure 4 is symmetric with respect to A and B and also with respect 
to C and D. Hence: 

THEOREM 9. H(Â, B; C, D) implies H(B, Â; C, D) and 

H {A, B; C, D) implies H(À, B; D, C). 
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THEOREM 10. If H (A, B; C, D) and A, B, C, D are in perspective with 
L, £ , C, K then H(L, Ë; C, K). 

Proof. If M is the centre of perspectivity, Figure 4 gives a construction of 
D from A, B, C. In Figure 4, MABR is a quadrangle, L and E are its diagonal 
points and K and C are the points where the diagonals meet L and E. Hence, 
Figure 4 represents a construction for X such that H(L, Ë; C, K). 

Because of the symmetry of the harmonic construction between C and D 
a theorem similar to Theorem 10 holds if C is replaced by D. 

THEOREM 11. If A, B, C, D and A', B\ C, D' are perspective and H(Â, B; 
C, D) then H(À', B'; C", D'). 

Proof. Let 0 be the centre of perspectivity and let CD' meet OA at A* and 
OB at B*. By theorem 10 H (A, B; C, D) implies H (A*, 5*; C, D') which in 
turn implies H(Af, B'; C, Dr). As an obvious corollary, it follows that: 

THEOREM 12. If A, B, C, D, are four points in line related to A', Bf', C, Z)' 
&;y a projective transformation and H {A, B; C, D) then H (A', B' ; C, D'). 

THEOREM 13. H (A, B; C, D) implies H(C, D; A, B). 

FIG. 5 
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Proof. The diagram of Figure 4 is extended to Figure 5 as follows: Obtain 
the point S as the intersection of A M and DE and the point U as the inter­
section of BL and DE. 

A, B, C,Dj-A, M, L, S^E, D, U,S--C, D, B, A. 

Hence H(Â, B; C, D) implies H(C, D; B, A) which in turn implies H(C, D; 
A,B). 

Theorem 13 allows us to remove the distinction between the pairs A, B and 
C, D of a harmonic tetrad. Hence it is unnecessary to indicate in the notation 
which points are capped. In what follows, H(Â, B; C, D) will be replaced 
by H(A,B;C, D). 

THEOREM 14. Let A, B, C, D and A, B', C, Dr be two sets of four points on 
distinct lines such that H(A, B; C, D) and H(A, B'; CD'). Then BB', CC, 
DDf are concurrent. 

Proof. Let BB' meet CC at K and let KD meet AB' at D". By Theorem 
11, H {A, B; C, D) implies H (A, B'; CD"). Also H {A, B'; C, D') and 
H(A, B'; CD") implies D' = D" by axiom A(4). 

THEOREM 15. Let P be a point and I be a line not through P. Let A be any 
point. If A is P or A is on I let A' = A. If A is distinct from P and is not on I 
let AP meet I in M and choose A' so that H (A, A'; P , M). Then the mapping 
A —> A' is a collineation. 

A' 

F I G . 6 
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Proof (Figure 6). By definition and A (4) every point A has a unique 
image. Let B be any point not on / and not in line with AP. Let BP meet / 
at N. Since H{P, M; A, Af) and H(P, N; B, B') the lines MN, AB and A'B' 
are concurrent. Let T be point of concurrency. If C is on AB, let PC meet 
MN at Q and A'B' at C*. Since 

P,M,A,A'^P, Q,C,C* 

it follows that H(P, Q; C, C*). Hence C* = C the image of C in the mapping. 
Hence collinear points map into collinear points. 

This mapping is usually called a harmonic homology and is denoted here 
by Harm (P, /). 

THEOREM 16. A projective plane which satisfies the axiom of the fourth 
harmonic point admits a full unimodular group. 

R P Q I 

FIG. 7 

Proof. Let P be any point on a line I (Figure 7). Let A and A' be in line 
with P. It is now shown that Elat (P, /; A —> A'), exists. Choose N so that 
H(P, N; A, A'). Then by Theorem 15, the product of Harm(iVf/) and 
Harm(A f, I) is a collineation. Now Harm(iV, /) Harmed', /) maps A-^ A' 
and keeps all points on / fixed. Let B be any point not on I and not on ^4^4'. 
Let Harm(N, /) map B -> B" and Har i r i ^ ' , /) map B" •-> Bf. Let BB" meet 
/ at Q and B"B' meet / at R. Then H(B, B"; N, Q) and H(B', B"; A', R). 
By Theorem 14, BB'\ A'N, QK are concurrent. Hence BB' passes through P . 
This implies Harm(iV, Î) Harm(4 ' , I) = Elat(P, /; A ->A'). 

In (6, 5.28) Coxeter gives the above construction for the Desarguesian plane. 
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As a corollary to Theorems 6 and 16 the following result is obtained. 

THEOREM 17. The little Desargues1 theorem is valid in any projective plane 
which satisfies the axiom of the fourth harmonic point. 

The converse of Theorem 17 is also true but a proof is not given here. A 
proof can readily be obtained from the observation that an elation with Q 
as centre and which maps A —» B and B —> C has the property that H(Q, B; 
A,C). 

5. The addition of points in a line. In this section it will be shown that 
addition in a line can be defined in such a way that the points of the line, 
except for one point (the pointât "infinity") form an abelian group with the 
further property that to each point a in a line there is a point \a such that 
\a + \a = a. 

FIG. 8 

Let / be any line and let 0 and oo be any two points on this line (Figure 8). 
Let P and Q be any two points in line with œ but not on /. Let a and b be any 
two points on / distinct from 0 and oo. Join OP, aP, bQ and let E be the point 
of intersection of OP and bQ. Join œ E to meet aP at F and join QF to meet 
I at a + b. The point a + b is determined by a, b and the four points 0, oo, 
P , Q. We refer to these latter four points as a scale and denote it by 
{0, » ; P , G } . 

THEOREM 18. The point a + b is independent of the points P , Q used in the 
scale. In other words, addition in the line is completely determined by the points 
0 , oo. 

Proof. In Figure 8, let X be the point of intersection of aP and bQ and T 
the point of intersection of OP and FQ. Let TX meet EF at N and / at V. 
Let oo X meet QF at Z and OP at Y. From the quadrangle QPFE it follows 
t h a t # ( œ , X ; F, Z). From 
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it follows that H( » , V; 0, a + b). From 

it follows that i7(°°, F; b, a). From i7(°°, F; &, a) it follows that a, b, oo 
uniquely determine V and from iJ( oo, V; 0, a + &) it follows that oo, V and 
0 uniquely determine a -\- b. Hence a + b is uniquely determined by 0, oo, 
a and b. 

THEOREM 19. For all a and b distinct from oo and 0, a + b = b + a. 

Proof, a + b is determined by the harmonic relationships H( oo, V; b, a) 
and iJ( oo, F ; 0, a + 6). F is unchanged by the interchange of a and b. Hence 
b + a is the same point as a + 5. 

The construction for a sum collapses when one of the points a or & is 0. 
We will define addition in this case by a + 0 = a and 0 + b = b, for all a, 
b distinct from oo. We leave a + oo undefined. 

THEOREM 20. To each a distinct from oo there is a point —a such that 
a + (-a) = 0. 

FIG. 9 

Proof. If a = 0 choose — a = 0, otherwise choose —a by the relationship 
H (a, —a; 0, oo) (Figure 9). Since 0, oo are diagonal points of the quadrangle 
PQFE it is clear that a + ( — a) — 0 from the construction by means of the 
scale {0, oo;P, Q). 

THEOREM 21. To each a distinct from oo there is a b such that b + b = a. 
We denote b by \a. 

Proof. If a — 0 choose b = 0. Otherwise choose b by the relationship 
iJ(0, a; by oo). If a' is constructed from the relationship b + b — a1 using 
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{0, oo; P , Q\ it is clear that i ï (0 , a!; b, <»). Hence af = a. The proof also 
implies that b is uniquely determined by a. 

THEOREM 22. For all a, b, c distinct from oo, a + (b + c) = (a + 6) + c. 

M = a + b = 6 + a 
T = c + 6 = b + c 
U = a + (b + c) = (a + b) + c 

FIG. 10 

Proof. By definition the theorem is true if one or more of a, b, c are 0. Hence 
we assume all of a, b, c are distinct from 0. In the diagram only the case where 
a, b, c are distinct from each other is shown although the proof is valid in all 
cases. In Figure 10, let P and Q be any points in line with oo but not on 0 oo. 
Let OP meet aQ at X; œ X meet bP at F; QY meet 0, oo at M; OF meet 
PQ at R; CR meet oo X at Z; ZP meet 0 oo at P and ZQ meet 0 oo at U. 
Then ikf = 6 + a = a + & from the scale {0, oo; P , Ç} 

T = c + b = b + c from the scale {0, oo; R, P) 
U = c + (a + b) = (a + 6) + c from the scale {0, oo; R, Q) 
U = 0 + c) + a = a + (b + c) from the scale {0, °o; p , Q} 

Hence (a + b) + c = a + (b + c). 
We note particularly that our proof employs only the fact that addition is 
uniquely defined by the points 0, oo. The breakdown of an analogous property 
for multiplication leads to a weakened associative law. Theroems 18 to 22 
may be summarized as: 

THEOREM 23. Two distinct points 0, oo in a line /, determine an abelian group 
under addition for all the points of I distinct from oo. Furthermore, to each a 
on I distinct from oo there is a \a, uniquely determined, such that \a + \a = a. 
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THEOREM 24. Let I and V be two lines. If there is a projective transformation 
from I to V which maps 0 onto 0' and oo onto oo' and if for each a on I the 
corresponding image on V is denoted by a', then the mapping a —> a' is an 
isomorphism of the corresponding additive groups, where 0', <»' determines the 
addition in /'. 

Proof. By Theorems 7 and 17, the projective transformation between / 
and /' can be embedded in a collineation U. Let {0, co ; P , Q) be a scale for 
addition in / and let U map 0 -» 0', « -> oo', p -> P ' , P -> Ç'. Take {0', « ' ; 
P ' , Q') as a scale for addition in /'. The collineation U will then map the whole 
construction for a sum a + b in / into the corresponding construction for 
a' + V in /'. Hence in the original projective transformation from I to V the 
image of a + & is a' + 6'. Hence the mapping a—± a! is an isomorphism of 
the additive groups. 

THEOREM 25. P/̂ 0 additive group is uniquely determined apart from an 
isomorphism (i.e. is independent of the line used and the two points 0, oo , chosen 
on it). 

Proof. This follows from the fact that there is always a projective trans­
formation which carries two distinct points 0, °° into any other two distinct 
points 0', oo '. 

6. Some restricted Desargues' theorems. The axiom of the fourth 
harmonic point implies various variants of Desargues' theorem. It has already 
been shown that the little Desargues' theorem is valid. In this section some 
other cases in which Desargues' theorems are shown to be true. 

THEOREM 26. Desargues1 theorem and its converse are true whenever the centre 
and axis of perspectivity are so related that the line joining corresponding vertices 
of both triangles meets the axis of perspectivity at the harmonic conjugate of the 
centre of perspectivity. 

Proof. The theorem is an immediate corollary of Theorems 15 and 4. 

THEOREM 27. Desargues1 theorem and its converse is true for any pair of 
triangles TPV and p*p*7* if p * 7 * meets TV at a point on the line PP*. 

Proof. Assume that the triangles TP V and P*P* F* are in perspective from 
Q and suppose that T V meets P*F* at oo (Figure 11), on the line PP*. T*P* 
meets PT at 0. Let Ç, V, V* meet 0oo at R and let P*F* and P V meet 0°o 
at a* and a respectively. From the scale {0, oo ; p , Q] it follows that R = a + b 
and from {0, oo ; P*, Q] it follows that R = a* + b. Hence a* + b = a + b or 
a = a*. Conversely, suppose P P F a n d p*p*j^* are such that T V meets T*V* 
at oo on the line PP*. Suppose also that P*P meets TP at 0 and PV meets 
P*V* at a and that 0, a, oo are collinear. Let TT* and PP* intersect at Q 
and let QV* and QV meet 0oo at R and R* respectively. Let QTT* meet 
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0 a b Rsa+b °° 

FIG. 11 

0°° at b. Then from the scale {0, ° ° ; P , Q}, R = a + b and from the scale 
{0, oo ; P*, Q), R* = a + b. Hence R = R*. 

THEOREM 28. Let ABC and A'B'C be two triangles such that C is on the 
line AB. Desargues' theorem and its converse are both true for such a pair of 
triangles. 

0 

FIG. 12 
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Proof. In Figure 12, let A", B", C" be the points of intersection of BC, 
B'C'i CA, C'A1 and AB, A'B' respectively. Theorem 27 applied to triangles 
AAfB"\ BB'A" is then equivalent to Theorem 28 for triangles ABC and 
A'B'C. 

It may be remarked here that Theorems 27, 28 and 17 are all actually 
equivalent to the axiom of the fourth harmonic point. The same may be said 
for Theorem 26 after a slight reformulation. In what follows these theorems 
could all be avoided by arguments involving collineations similar to those 
used in §5. However, in many cases these theorems lead to more direct proofs 
and will be used in the next section. 

7. Multiplication in the line. There are several equivalent ways of 
defining multiplication in a Desarguesian plane but these may lead to in-
equivalent definitions for the non-Desarguesian case. For our purposes the 
following definition is taken. Let / be a line (Figure 13) and let 0, 1, oo be any 
three distinct points on it. Let P and Q be two distinct points in line with 
oo but not on L The system {0, 1, oo ; Py Q] is said to be a scale for multipli­
cation in the line /, products being defined as follows. If a and b are two points 
on / distinct from 0 and oo let I P meet bQ at R, OR meet aP at 5 and let QS 
meet the line I at a, point c. The point c is called the product db. Products 
a oo or oo a are not defined. The products Oa and aO are both defined to be 0. 
Also for all a ( ^ oo) it follows immediately that la = a\ = a. It is a result of 
Desarguesian geometry that ab is determined by the points 0, 1, oo and is 
independent of the points P and Q. This result is no longer valid in the 
non-Desarguesian case as is shown by the following theorem. 

F I G . 13 

THEOREM 29. If the converse of Desargues' theorem fails for two triangles 
P, Ry S and P ' , R\ S' there is a line I and six distinct points on it viz. 0 , 1 , °o, 
a, 6, My M' such that in the scale {0, 1, oo ; P , Q}, M = ab while in the scale 
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{0, 1, oo ; P'Q], Mf = ab. The point Q is the point of intersection of PP' and 
RE!. 

Proof. We refer to Figure 2 whose construction is given in Theorem 2. If 
the points 0, £ , B, A, M, M', U of Figure 2 be relabelled 0, 1, 6, a, M, M'', 
respectively, the point M is actually constructed as the product ab in the 
scale {0, 1, oo ; P , Q} and M' is the product ab in the scale {0, 1, oo ; P ' , Q}. 

It follows from Theorem 29, and the theorems valid in a Desarguesian 
geometry, that Desargues' theorem is equivalent to the statement that 
multiplication as defined above is uniquely determined by the choice of 
0 ,1 , °° in a line. Hilbert has shown that Desargues' theorem implies associative 
multiplication, and it is also easy to give a direct proof that if 0, 1, oo uniquely 
determine multiplication in a line then multiplication is associative (2, p. 79). 
In the subsequent development it is shown that in special cases the axiom of 
the fourth harmonic point determines a product dependent only on 0, 1, oo 
and that in these cases the associative law is valid. 

THEOREM 30. To each point a distinct from 0 and oo on a line I there is a 
point a~l such that aa~l — a~la — 1. Furthermore the point a~l is uniquely 
determined by the choice of 0, 1, oo on the line I. 

Proof. Let {0, 1, oo ; P , Q) be a scale for multiplication in / (Figure 14). 
Let aP meet 1Q at M, MO meet I P at F, QF meet 0 oo at a"1. By construction, 
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it follows that aar1 = 1 in the scale {0,1, °° ; P , Q ). To show arl is independent 
of P and Q the construction is continued as follows: Let QF meet aP at Z; 
MO meet Çoo at R, Z\ meet ikfE and Q00 at 5 and F, respectively; Let Z2? 
meet 0 oo at E. From the quadrangle E, 1, M, Z it follows that H(P, Q; R, F). 
Also 

P,Q,R,YJ;a,a-\Etl 

so that i l (a , a - 1 ; 1, £ ) . Also 

1,E,0, o o ^ - l , Z, 5, Y^F,M, S,RJ^a-\a, I . E . 

Hence, JHT(1, E ; 0, » ) . From the relation i?( l , E ; 0, » ) it follows that E is 
uniquely determined by 0, 1, oo and from H(arl, a; 1, E) it follows that arl 

is uniquely determined by a, 1, E. Hence a - 1 is determined uniquely by 
0, 1, oo, a. Furthermore since the harmonic relationships which determine 
arl from a are symmetric with respect to a and arl it follows that arla = 1. 

I t may be noted that the point E is identical with the point — 1 and that 
I"1 = l , and ( - I ) " 1 = - 1. 

A simpler proof of Theorem 30 could be given using a restricted Desargues* 
theorem but such a proof would not exhibit the harmonic relationships 
connecting a and a -1 . 

THEOREM 31. For all a distinct from 0 and oo and for all b distinct from oo t 

a~l{ab) = b and (ba)a~l = b. 

FIG. 15 
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Proof. The theorem is obvious if b = 0. Assume M O . Only the relationship 
a"1(ab) = b is proved here as the proof of the other case is along the same 
lines. In Figure 15, let {0, 1, °° ; P , Q] be a scale for multiplication. Let I P 
meet bQ at W, 0W meet aP at V and Ç F meet 0œ at a&. Let aQ meet I P at 
R and OP meet 1<2 at S and P S meet 0 ~ at a~l. Let a ~ W meet PQ at P*. 
Let U be the intersection of bQ and a _ 1P. The theorem will be proved provided 
it can be shown that 0, £/, T are collinear. It is first shown that 1, V, P* are 
collinear. This follows from the equation aa~l = 1, using the scale {0, 1, oo ; 
PP*} and Theorem 30. Consider now the triangles Pa _ 1 l and QWV. PQ, arlW 
and 1 Fall pass through P*. Furthermore Wis on the line P I . By the restricted 
Desargues' theorem 28 it follows that 0, Z7, T are collinear. Hence from the 
scale {0, 1, oo ; P , Q] arl(ab) = b. 

THEOREM 32. For all points a distinct from oo on the line I a2 is determined 
uniquely by the points 0 , 1 , oo . 

Proof. Let {0, 1, » ; P , ÇJ be a scale for multiplication in the line. The 
theorem is proved in three stages: (1), b2 is independent of position of P on 
ooÇ; (2), b2 is independent of position of Q on ooP, and (3), b2 is independent 
of which line through oo is used. 

F I G . 16 

Proof of (1). In Figure 16, let {0, 1, oo ; P , Q) be a scale and let P* be any 
other point on » , P , Q. Let I P meet aQ at P , OP meet aP at W, QW meet 
0 oo at a2. Let IP* meet aQ at P* and Qa2 meet aP* at W*. To show a2 in 
scale {0, 1, oo ; p* f Ç} is the same point as a2 in scale {0, 1, oo ; P , Q) it is 
sufficient to show that 0P*W* are collinear. In triangles PWR\ P*W*R*, 
PP*y WW*, RR* all pass through Q. Furthermore PW meets P*W* at a 
which is on RR*. By Theorem 27, 0, P*, W* are collinear. 

Proof of (2). In Figure 17, let {0, 1, oo ; P , Q) be a scale and let Ç* be any 
other point on ooPQ. Let I P meet aQ at P , OP meet aP at W, QW meet Ooo 
at a2. Let a<2* meet I P at R*, OP* meet a P at W*. From triangles ( W P ; 
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0 l o o 2 

F I G . 17 

Q* w* R*\ QQ*, WW*, and RR* are concurrent at P. Furthermore QR 
meets Q*R* at a on WW*. Hence by Theorem 27, Q*, W*, and a2 are collinear, 
so that a2 is the same for the scales {0, 1, oo ; P , Q} and {0, 1, <*> ; P , Q*}. 

FIG. 18 

Pr00f 0/ (3). In Figure 18, let {0, 1, °° ; P , ()} be a scale and let m be any 
line through oo distinct from 0, 1, °° and from oo, P , Q. Let I P meet m at P* 
and aQ meet m at Q*. Let I P meet aQ dit P , OP meet aP at W and ÇVT meet 
Ooo at a2. Let aP* meet OP at W*. In triangles WPQ; W*P*Q*, WW*, PP*y 

QQ* are concurrent at P . Also PW meets P*W* at a on Q*Q. Hence by 
Theorem 27, Q*, W*, a2 are collinear. Hence a2 is the same for the scales 
{0,1, œ ; P , Q} and {0,1, - ; P*, Ç*}-

It is clear that one can go from scale {0, 1, <» ; P , Q} to scale {0, 1, oo ; A, B ) 
by a series of transformations of types (1), (2), (3). 
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Remarks on Theorem 32. An alternative proof of Theorem 32 which does 
not employ the restricted Desargues ' theorem can be given. This proof is 
dependent on the fact that a2 is determined from a and — a by the relationship 
H (a j —a; I, a2). Furthermore the uniqueness of arl and of a2 are not indepen­
dent facts algebraically. In fact, the equation 

1 __ 1 
a a + 1 

1 - 1 
a 

yields an independent algebraic proof of the uniqueness of a2. In a problem 
in the American Mathematical Monthly (11) the author has shown how to 
express a2b (or aba the case of non-commutative multiplication) in terms of 
a and b using only addition, subtraction and reciprocation. The equivalent 
of this identity was used by Hua in (9) to obtain properties of division rings. 

THEOREM 33. For all a, b distinct from » , a2b = a(ab) and ba2 = (ba)a. 

0 1 b a ab ° a(ab) °° 

FIG. 19 

Proof. In Figure 19, let {0, 1, » ; P , (?} be a scale and let I P meet bQ 
at F, OF meet aP at Z*, QZ* meet 0 » at ab. Let I P meet abQ at L*, 0L* 
meet aP at L, QL meet 0 » at a(ab). Let aL* meet P , Q at N. The point a2 
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is constructed from {0, 1, °° ; P , N} by joining NL to meet 0<» at a2. Let 
a2P meet QL at Z. The equation a26 = a(ab) is valid provided 0, Z*, Z are 
collinear. To show this, consider triangles ZLa2 and Z*L*a. ZL meets Z*L* 
at Q, Za2 meets Z*a at P and La2 meets L*a at iV. Furthermore, P , iV and <2 
are collinear and L is on the line Z*a. By Theorem 28 Z, Z* and 0 are collinear. 

THEOREM 34. For all a, b, c distinct from oo, a(b + c) = ab + ac and 
(b + c)a = ba + ca. 

0 ba a ca t b I c b*c 
Lba+ ca = (b*c)o 

FIG. 20 

Proof. Both statements are proved along the same lines so only the second 
is proved here. The theorem is obvious if any one of a, 6, or c is 0. Hence 
assume a, b, c are all distinct from 0. In Figure 20, let {0, 1, °° ; P , Q} be a scale 
for multiplication in the line 0 , 1 , °° . Let I P meet aQdXA, 0̂ 4 meet 6P at X, 
QX meet 0 oo at ba. Let cP meet 0̂ 4 at F, FÇ meet 0 °° at ca. Let 04 meet 
PQ at C; 6C meet » F at E; 6a, C meet œ F at D; DQ meet 0«> at ba + ca. 
Let EP meet 0œ at 6 + c\ (b + c), P meet 04 at F; FQ meets 0 « at 
(b + c)a. All points on the line 0oo have been properly labelled with respect 
to addition and multiplication. The equation (b + c)a = ba + ca will be valid 
if F is on the line QD. In triangles PQX; EDC, PQ meets ED at oo. P X meets 
EC dit by and QX meets DC at ba. Furthermore °°, b and 6a are collinear and 
C is on PQ. By Theorem 28, P, Q, Z) are collinear. 

The main results of this section and the last may be summarized in the 
statement : 

THEOREM 35. Under addition and multiplication the points on a line which 
are distinct from oo form an alternative division ring, for any fixed scale 
{0,1, » ; P , Q). 

In her paper (12) Moufang has shown that starting with an alternative 
division ring of characteristic distinct from 2 one can set up a non-Desarguesian 
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plane projective geometry which satisfies the axiom of the fourth harmonic 
point. 

In the next few theorems some properties of multiplication are developed 
which are interesting in themselves but which are not needed for the main 
development. 

THEOREM 36. Let {0, 1, °° ; P , Q\ be a scale for both addition and multipli­
cation in a line I (i.e. if {0, 1, oo ; P , Q) is a multiplicative scale the set {0, °°; 
P , Q] is taken for the additive scale). Let m be any other line in the plane, and 
let 0', 1/, oo ' be three arbitrary points of m. There is a scale for addition and 
multiplication in m such that the algebra of points in I is isomorphic to that of 
the points in m. 

Proof. Take any projective transformation which maps 0 —> 0', 1 —» 1', 
oo —> co' and embed this in a unimodular collineation of the plane. Let P' 
and Q' be the images of P and Q in this collineation and take {0', 1', oo ' ; P ' , Qf} 
as a scale for the line m. Let the image of a on / be a' on m. The mapping 
a —» af is the required isomorphism. This follows from the fact that any 
construction for a sum or product using the scale {0, 1, oo ; Py Q\ is mapped 
by the collineation into the corresponding construction using the scale 
{0 ' ,1 ' , c o ' j P ' . Q ' } . 

Since multiplication in the line as developed here is not uniquely determined 
by the scale points in the line, a natural question which one may ask is: can 
multiplication be defined in such a way that products are uniquely determined 
by the scale points 0 , 1 , °° in the line. An affirmative answer is given in the 
next theorem. 

THEOREM 37. The point a o b defined as a o b = \ {ab + ba) is uniquely 
determined by the points 0, 1, oo in the scale, and the points of the line distinct 
from oo form a Jordan field under the operations of + o/nd o. 

Proof. 
. (a + A2 (a - A2 

a °b = V-2-7 - v~H 
and the uniqueness follows from Theorems 18, 20, 21, and 32. The Jordan 
associative law a2 o (b o a) = (a2 o b) o a follows from a direct computation 
using the definition of a o b. 

Geometrically the relationship between ab and a o b is given by the harmonic 
relationship H(ab, ba; a o b, oo). 

In spite of the intrinsic nature of Jordan multiplication, i.e., its independence 
of the position of the points P and Ç, it is not of much use since when co­
ordinates are introduced into the whole plane it does not lead to linear 
expressions for the equations of straight lines. 

THEOREM 38. If ab = ba the point ab is uniquely determined by 0, 1, oo. 
Furthermore if ab = ba for all a and b in any line the same is true for any other 
line and the geometry is Desarguesian. 
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Proof. If ab = ba then ab = a o b, so t ha t by Theorem 37, ab is uniquely 
determined by 0, 1, °°. By Theorem 36, if ab — ba for all ab in any line the 
same relationship holds for any other line. By a previous remark the uniqueness 
of ab for all a and b is equivalent to Desargues' theorem. As an immediate 
corollary the following theorem is t rue. 

T H E O R E M 39. Any alternative division ring of characteristic different from 2 
in which multiplication is commutative is a field. 

Remark. The interest here is t ha t the proof is almost entirely geometric. 
T h e only algebraic relationship used was 

(a + b\2 __ (a - b\2
 = ab + ba 

and even this may be dispensed with. I t is the author ' s belief t ha t a completely 
geometric proof of the fundamental theorem of al ternat ive division rings, 
namely; t h a t every non-associative al ternat ive division ring is a Cayley 
division algebra over its centre is not an unreasonable expectation. 

8. Co-ord ina te s i n t h e p l a n e . At this point we introduce non-homo­
geneous co-ordinates to all the points of the plane except those on one line— 
the line a t infinity. The procedure is straightforward except t ha t some care 
mus t be exercised in order to arrange tha t addition and multiplication in the 
various lines are consistent. The reason for this, of course, is t ha t the points 
0, 1, °° are not sufficient to determine uniquely the multiplication in a line. 
However, Theorem 36 will be used as a basis for connecting the algebras of 
the various lines. 

Let 0, U, V, L (Figure 21) be four points in the plane no three of which 
are collinear. Let UL meet O F a t T, VL meet OU at M, OL meet UV a t W 
and MT meet UV at P. We are not interested in assigning co-ordinates t o 
the points on the line UV al though we will label some of these points. T o 
every other point, a pair of numbers (x, y) will be assigned. First co-ordinates 
are assigned to 0 , M, U, W, V, T, L as follows: 0 ( 0 , 0) ; Mil, 0) ; £/(<», 0 ) ; 
W ( ° ° , °°); V(0, °°); T(0, 1); L ( l , 1). Second, every point on the line 0 , L , 
W will be assigned co-ordinates of the form (a, a) and our rules of addit ion 
and multiplication will apply to the first co-ordinate. On 0 , L, W take t h e 
scale{(0, 0), (1, 1), (°° , oo); £/, V] to determine addition and multiplication 
of the first co-ordinates. Third, every point on the line 0 , M, [/will be assigned 
a co-ordinate (fe, 0) the point (&, 0) being defined as the intersection of t he 
line joing V to (k, k) and the line OU. In the same way points on the line 
OV will be assigned co-ordinates (0, m) where (0, m) is the intersection of 
the lines OV and [/(m, m). Let X be any other point of the plane and let 
UX meet O F a t the point (0, y) and VX meet the line OU st the point (x, 0) . 
Assign to X the co-ordinates (x, y). 
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0 ( 0 , 0 ) M (1,0) (x,0) U 

FIG. 21 

The transformation Elat { F, OV; L —> M) maps the point (b, b) on OW 
into (£, 0) on OC/. Furthermore it is easily seen that this elation maps U —> P 
and 7 - > F. Hence by Theorem 36, using the scale {(0, 0), (1, 0), ( « , 0); 
P , V) addition and multiplication in OU is consistent with addition and 
multiplication in OW where addition and multiplication in OU is applied to 
the first co-ordinate. In the same way Elat { U, OU] L —» T) maps (b, b) on 
OW into (0, b) on OV. Also V'-» P and U-+ U. Hence, using the scale 
{(0, 0), (0, 1), (0, oo); U, P\ addition and multiplication in O F is consistent 
with that in OW. 

THEOREM 40. Every line through (0, 0) has an equation of the form 
x - yp = 0. 

Proof. The lines OV and OU (using the notation of Figure 21) have 
equations x = 0, and y = 0 respectively. The line OIF has equations — y = 0. 

0(0,0) U 

FIG. 22 
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Let O F be any other line through 0 (Figure 22). Let O F meet UL at the point 
(ft, 1) and let (x, y) be any other point on OY. Let U, (x, y) meet OW at 
Cy, y); V, (x, y) meet OW7" at (x, x); 7, (0, 1) meet OW at (0, 0). From the 
scale of multiplication {(0, 0), (1, 1), ( « , » ) ; £/, 7} in the line 0P7 and 
using just the first co-ordinates, Figure 22 shows that the product yfi is the 
point x. Hence x — yp = 0. 

THEOREM 41. Any line which does not pass through (0, 0) and which is 
distinct from UV has an equation of the form x — yfi — a = 0 or y — 7 = 0. 

0(0,0) (y,0) (*,0) (x,0) U(octO) 

FIG. 23 

Proof. In Figure 23, using the same notation as in Figure 21, if the line 
passes through U and meets OV at (0, 7) its equation is y — 7 = 0. If it 
passes through 7 and meets OU at (a, 0) its equation is x — a = 0. Now 
suppose the line passes through (a, 0) and let it meet UV at F. Join OY. 
By Theorem 40, OY has an equation x — y ft = 0. Let (x, y) be any point 
on the given line. Let U, (x, y) meet OY at (y/3, y) and let 7, (3$, y) meet 
Of/ at (3$, 0). In OZ7 addition is defined for the first co-ordinates and using 
the scale {(0, 0), ( » , 0); F, 7} Figure 23 represents a construction of 
x = a + 3$. Hence x — y0 — a = 0. 

It has now been shown that every line in the plane distinct from UV has 
an equation of one of the forms x — yf$ — a = 0, y — 7 = 0. 

9. Concluding observations. It has been the point of view of this paper 
to relate the theorem of Desargues to the notion of a projective collineation, 
the basic theorems being 3, 4, 5, 6, 7, 8 where failure of Desargues' theorem is 
related to non-existence of certain collineations. In the case of geometries 
satisfying the axiom of the fourth harmonic point the success of the method 
is due mainly to the fact that a full unimodular group exists. 
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For more general non-Desarguesian geometries this approach can be used 
to give more or less precise information concerning the way in which Desargues' 
theorem breaks down. This information could be conceivably used to classify 
non-Desarguesian geometries. We illustrate what is intended by an example. 

Let F be a finite "near-field", i.e. a finite set of elements which satisfy all 
the axioms of a field except the right distributive law and the commutative 
law of multiplication. Such near-fields exist and their complete determination 
has been carried out by Zassenhaus in (16). Following Veblen and Wedden-
burn (15) a projective plane geometry can be constructed from F as follows. 
A point is any one of the following three types of triplets; (1, 0, 0), (a, 1, 0) 
or (by c, 1) where a, b, c are in F. Actually any triplet (a, b, c) (except (0, 0, 0)) 
may be regarded as a point provided one identifies (a, b, c) with (pa, pb, pc) 
where p ^ 0. Note however that (a, b, c) is not identified with (ap, bp, cp). 
A line is defined as any set of points satisfying an equation of one of2 

x + ya + zb = 0, y + zc = 0, z = 0. 
Such points and lines do form a plane projective geometry. It is easily 

verified that for such a geometry the following transformations are 
collineations: 

pxf = cj)(x) + cj)(y)a + <t>(z)b. 

py' = <t>(y)c 

pz' = <j>(z)d. 

and 

px' = <f>(x) + <j>(y)a + <j>(z)b. 

py' = <t>(z)c. 

pz' = <f>(y)d. 

where a and b are arbitrary elements in F; p, c, d are any elements of F 
distinct from 0, and the mapping k —> </>(&) is an automorphism of F. 

Among such collineations the transformation 

px' = x + y A + zB. 

py' = y. 

pz' = z. 

2It is important to note that the equation xa + yb + zc = 0 is not in general the equation 
of a line. The footnote on page 383 of the Veblen-Weddenburn paper (14) erroneously assumed 
that the equation 

x(l +j) +y(l + i ) + 2 = 0 

represented a line. The statement to which their footnote referred is nevertheless correct. 
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for varying A and B in F represents all elations with centre (1, 0, 0) and 
arbi t rary axis through (1, 0, 0). In other words no elation with centre (1, 0, 0) 
is obstructed. By Theorem 4 this can be translated into a s ta tement concerning 
Desargues ' theorem as follows: 

T H E O R E M 42. In any Veblen-Weddenburn geometry based on a near-field 
the little Desargues' theorem holds for all pairs of triangles in perspective from 
the point (1, 0, 0). 

T h e author has shown (in some work not yet published) t h a t for all such 
geometries based on near-fields whether finite or infinite the point (1, 0, 0) is 
the only point with this property. Hence for such geometries every collineation 
keeps fixed the point (1, 0, 0). A question of interest is whether there are any 
other non-Desarguesian geometries with a point so specialized. 

Another direction in which the investigation may be carried out is suggested 
by the following consideration. In Desarguesian geometry it is a fundamental 
proper ty t ha t for any two sets of four points no three of which are collinear 
there is a projective collineation which carries the first set into the second. 
I t follows t ha t if two systems of co-ordinates are set up based on these two 
te t rads the co-ordinates of any point in the plane based on the first te t rad can 
be expressed in terms of the co-ordinates based on the second te t rad by making 
use of the equations of the collineation. In the case where the Desarguesian 
proper ty is weakened to the axiom of the fourth harmonic point this si tuation 
is no longer valid. Instead the most we can call on is Theorem 8. Nevertheless, 
given four points no three of which are collinear co-ordinates in the plane can 
be set up. If for two such te t rads it happens t ha t a projective collineation 
exists mapping the first set onto the second it would be possible to relate both 
systems of co-ordinates once the equations of the collineation were determined. 
On the other hand if the two te t rads are not connected by a projective 
collineation the most t ha t can be said is t ha t the co-ordinates come from the 
same al ternative field. There would be no way in which the co-ordinates with 
respect to one te t rad could be related to the co-ordinates of the second. We 
could then define two te t rads as conjugate if they are joined by a projective 
collineation. I t is the author ' s conviction t ha t a s tudy of the manner in which 
the geometry breaks down into conjugate classes of te t rads would lead to a 
geometric proof of the fundamental theorem of al ternat ive division rings. 
A t present the results are too meagre to give any real information. Of course 
this notion of conjugate te t rad could be applied to any non-Desarguesian 
geometry. However, in the general case co-ordinates chosen from two dist inct 
non-conjugate te t rads need not even belong to isomorphic algebraic systems. 

Pickert (14) has published a book containing most of the known results 
concerning non-Desarguesian planes. 
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