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The obesity epidemic and its associated morbidity and mortality have led to major research
efforts to identify mechanisms that regulate appetite. Gut hormones have recently been found
to be an important element in appetite regulation as a result of the signals from the periphery to
the brain. Candidate hormones include ghrelin, peptide YY, glucagon-like peptide-1 and gastric
inhibitory polypeptide, all of which are currently being investigated as potential obesity treat-
ments. Bariatric surgery is currently the most effective therapy for substantial and sustained
weight loss. Understanding how levels of gut hormones are modulated by such procedures has
greatly contributed to the comprehension of the underlying mechanisms of appetite and obesity.
The present paper is a review of how appetite and levels of gastrointestinal hormones are
altered after bariatric surgery. Basic principles of common bariatric procedures and potential
mechanisms for appetite regulation by gut hormones are also addressed.

Bariatric surgery: Appetite control model: Gut hormones: Obesity

Obesity is a major health problem that is associated with
increased morbidity and mortality(1). Its personal, social
and economic consequences can be devastating(1–3). Sub-
stantial research efforts are being directed towards the
development of successful weight-loss therapies. Conse-
quently, the understanding of neuroendocrine regulation
of food intake and weight gain, especially in relation to the
role of gut hormones, has substantially increased over
recent years, but new therapies are still awaited(4–6). Cur-
rent anti-obesity drugs are moderately effective at achiev-
ing weight loss, but considerable adverse effects can occur.
Presently, the only effective treatment with a proven mor-
tality benefit is bariatric surgery(7,8). The mechanisms
underlying the effectiveness of these surgical techniques
are not completely understood but alterations in circulating
gut hormone levels have been shown to be an important
factor(9–11). The gut–brain axis refers in part to gut hor-
mones communicating information from the gastro-
intestinal tract to the appetite centres within the central
nervous system. Changes in these hormones following
bariatric surgery may partly explain the mechanism by
which surgery reduces appetite and sustains weight loss.

Bariatric surgery

Bariatric surgery, also known as weight-loss surgery, refers
to the various surgical procedures performed to treat obe-
sity by modification of the gastrointestinal tract in order to
reduce nutrient intake and/or absorption. Procedures for
surgical removal of body fat such as liposuction or abdo-
minoplasty are not considered bariatric surgical proce-
dures. Patients who have a BMI ‡ 35 kg/m2 with an
obesity-related comorbidity or patients with a BMI
‡ 40 kg/m2 who have instituted an adequate exercise and

diet programme (with or without adjunctive drug therapy)
that has failed meet the National Institute of Clinical
Excellence criteria for bariatric surgery(12). Surgical pro-
cedures can be grouped in two main categories: restrictive
procedures, e.g. gastric banding (Fig. 1); bypass proce-
dures, e.g. Roux-en-Y gastric bypass (Fig. 2). Restrictive
surgery works by reducing the volume of the stomach and
physically preventing excessive consumption of food(13).
However, the most common form of bariatric surgery
worldwide is Roux-en-Y gastric bypass surgery(14,15).
Here, a small stomach pouch is created with a stapler
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device and connected to the distal small intestine. The
upper part of the small intestine is then re-attached in a
‘Y’-shaped configuration (Fig. 2). In general, the bypass
procedures lead to more weight loss than the restrictive
procedures(8). Typically, gastric banding results in a weight
loss of approximately 20%, whilst the Roux-en-Y gastric
bypass results in approximately 30% weight loss(16).
Weight loss after bypass-type procedures has been shown
to be a result of energy intake rather than malabsorp-
tion(17). Several recent studies have reported a dramatic
improvement in obesity-related comorbidities and a de-
crease in mortality after bariatric surgery(8,18,19). Adverse
effects after gastric bypass include dumping syndrome in
about 20% of patients, leaks at the surgical anastomosis
(12%), incisional hernia (7%), infections (6%), deep-vein
thrombosis (1–3%)(20), pulmonary embolism (2%)(21) and
pneumonia (4%)(22). To reduce the incidence of complica-
tions, patients should be cared for in high-volume centres
with clinicians experienced in bariatric surgery(23).

Appetite regulation via the gut–brain axis

The hypothalamus contains part of the central melano-
cortin system and plays a critical role in the regulation
of food intake. It has a number of nuclei, including the
arcuate nucleus (ARC), paraventricular nucleus, ven-
tromedial nucleus and the dorsomedial nucleus, all of
which are interconnected by circuits that regulate energy
homeostasis(24). The ARC receives and acts on circulating
appetite signals including the modulated release of several
key amino acid neurotransmitters(25,26). The neurons in the
medial ARC co-express neuropeptide Y and agouti-related
peptide, which stimulate food intake and weight gain by
increasing appetite(26). By contrast, the neurons in the late-
ral ARC co-express pro-opiomelanocortin (also known as
corticotrophin–lipotropin) and cocaine-and-amphetamine-
regulated transcript, which both promote weight loss by
decreasing appetite(25). Both the ARC and the brainstem

are ideally positioned to interact with circulating humoral
factors and to receive signals from the periphery(26). Thus,
gut hormones may act directly in the brain after being re-
leased into the circulation and entering through the circum-
ventricular organs. Neuropeptide Y can suppress appetite
and is a selective ligand for the Y4 receptor subtype, which
is expressed at the area postrema and the other appetite-
regulating areas of the melanocortin pathway(27,28). The
balance between the activities of neuropeptide Y–pro-
opiomelanocortin neuronal circuits is critical for the
maintenance of body weight(25,26,29). After food is ingested
sensory input to the central nervous system is forwarded by
vagal and somatosensory afferent fibres in the gastro-
intestinal tract that all end in the nucleus tractus solitarius
within the brainstem. Reciprocal pathways between the
hypothalamus and brainstem pass on information about
energy stores and recent food intake, influencing the per-
ception of satiety(26). These brain centres can respond
independently to peripheral signals when communication
with higher brain centres is surgically interrupted(30). Peri-
pheral feedback to the hypothalamus is complex. Many
circulating signals, including gut hormones, can have
direct access to the ARC(29). These neuronal interactions
through central melanocortin pathways therefore reveal the
critical role this system has in the regulation of hunger,
satiety and energy expenditure(31). However, the homeo-
static melanocortin system may protect against weight loss
more robustly than it does against weight gain(32). In case
of changes in body adiposity, the brain triggers physio-
logical mechanisms that resist weight change through
compensatory changes in appetite and metabolic rate(33,34).

Gut hormones

Ghrelin

Ghrelin is a twenty-eight-amino acid gut peptide derived
predominantly from the stomach and pituitary gland(35). So
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Fig. 1. Gastric banding, a restrictive procedure performed to treat
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Fig. 2. Roux-en-Y gastric bypass, a bypass procedure performed to

treat obesity.
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far, it is the only gut hormone with an orexigenic action. It
acts via the growth hormone secretagogue receptor to in-
crease food intake in rodents(36) and also stimulate food
intake in human subjects(24). Clinical studies have thus
concentrated on its use as an orexigenic agent in conditions
characterized by anorexia and cachexia(37–39). Circulating
ghrelin levels peak in the fasting state and fall after a
meal(40). Energy intake seems to be the primary regulator
of plasma ghrelin levels(41). Ghrelin stimulates appetite and
food intake also in obese individuals(42). Ghrelin levels are
lower in weight-stable obese individuals and rise after diet-
induced weight loss(43). The postprandial decrease in
plasma ghrelin is absent or attenuated in the obese, which
suggests that ghrelin might be involved in the patho-
physiology of obesity(44,45).

Glucagon-like peptide-1

Glucagon-like peptide-1 (GLP-1) is a neuropeptide hor-
mone produced by post-translational processing of the pre-
proglucagon gene in the central nervous system and the
gastrointestinal tract(46). Preproglucagon is secreted in the
gastrointestinal tract by the endocrine L-cells that also
secrete peptide YY (PYY)(46). The GLP-1 receptor belongs
to the G-protein-coupled receptors(47). These receptors
have been identified in neurons of the nucleus tractus soli-
tarius, extending to regions of the hypothalamus that are
important for the regulation of food intake(48). Peripheral
as well as central GLP-1 administration activates neurons
in the ARC, the hypothalamic paraventricular nucleus,
the nucleus tractus solitarius and the area postrema, induc-
ing increased satiety and decreased hunger(47,49). Usually,
GLP-1 is released after energy intake, but differences have
been observed between normal-weight and obese indi-
viduals(50–52). GLP-1 is a potent incretin. It also suppresses
gastric acid secretion and delays gastric emptying(53,54).
These effects can be resolved by vagotomy, indicating an
important role of the vagus nerve in mediating the ano-
rectic effects of GLP-1(49). Peripheral GLP-1 infusions
have been found to cause a dose-dependent reduction in
food intake, while administration of exenatide (an agonist
of the GLP-1 receptor) markedly reduces food
intake(55,56). Central actions of GLP-1 might also lead to
increased energy expenditure by raising body tempera-
ture(57,58). GLP-1 has been shown to promote lipo-
lysis(59,60), although some studies have suggested a role in
lipogenesis(60). Glycaemic control in patients with type 2
diabetes mellitus improves after 3 weeks of treatment with
subcutaneous GLP-1(61), while the agonist exenatide im-
proves HbA1c in the long term(62). Furthermore, GLP-1
has been shown to up regulate the expression of pancreatic
b-cell genes, promoting b-cell proliferation and inhibiting
apoptosis(63). Exenatide enhances insulin secretion and sup-
presses glucagon release(64). In phase III clinical trials ex-
enatide has been found to reduce body weight by 3–4 kg,
although not all patients respond equally(64,65). Exenatide
is not currently approved as an obesity treatment but has
been approved for the treatment of type 2 diabetes melli-
tus. However, nausea is a common adverse effect of this
treatment and this effect may relate to reduced gastric
emptying or direct effects of the central nervous system(65).

Peptide YY

As a thirty-six-amino acid peptide PYY is a member of the
pancreatic polypeptide family(66). It is found throughout
the human small intestine, with highest levels in the colon
and rectum(67). PYY is released after a meal from the endo-
crine L-cells of the gastrointestinal tract, where it is co-
stored with GLP-1(67,68). PYY is secreted in proportion to
the amount of energy ingested and is independent of gastric
distension(67). PYY inhibits gastric, pancreatic and intes-
tinal secretion as well as gastrointestinal motility(69,70). The
major form of circulating PYY is the N-terminally truncated
PYY3–36, which has high affinity for the Y2 receptor and a
lesser affinity for Y1 and Y5 receptors(71). Although initi-
ally controversial, peripheral administration of PYY3–36 at
physiological doses has now been accepted to reduce food
intake in rodents, primates and human subjects in the short
term(72–75). PYY-knock-out mice are characterized by dys-
regulation of energy homeostasis(76). PYY3–36 activates
anorectic pro-opiomelanocortin-expressing neurons in the
ARC and direct intra-ARC administration of PYY3–36
reduces food intake in rats(77). Furthermore, it inhibits neuro-
peptide Y neurons, which might also contribute to its ano-
rectic effects(78). These effects of PYY3–36 can be blocked
by the administration of a specific Y2 antagonist. In addi-
tion, PYY3–36 does not reduce appetite in Y2-knock-out
mice(77,79). Similar to GLP-1, ablation of the vagus–brain-
stem–hypothalamus pathway leads to a moderation of the
anorectic effects, indicating a role of the vagus nerve in the
neuronal messaging of PYY(49). Obese individuals are sen-
sitive to the effects of PYY, as peripheral PYY administra-
tion in the obese reduces food intake to the same extent as in
normal-weight individuals(80), but circulating postprandial
PYY levels are lower in the obese(80). Exogenous adminis-
tration of PYY3–36 has attracted considerable interest as a
possible therapeutic strategy(81). Long-term augmentation
of dietary protein induces an increase in plasma PYY levels
in mice, leading to less food intake and reduced adipo-
sity(82). PYY3–36 administration in human subjects to
levels within the physiological range reduces food intake
without causing nausea(77,80), whereas higher pharmaco-
logical doses can result in nausea(73). Sensations of hunger,
satiety and nausea might all be points along the same
physiological spectrum(83), and nausea is associated with
all high-dose satiety-inducing gastrointestinal hormones,
including cholecystokinin(83), oxyntomodulin(63) and
GLP-1(84). Elevated fasting levels of PYY have also been
observed in several gastrointestinal diseases associated with
appetite loss, including inflammatory bowel disease, stea-
torrhoea as a result of small intestinal mucosal atrophy and
chronic destructive pancreatitis(85). Furthermore, in healthy
elderly individuals high cholecystokinin and PYY levels are
associated with delayed gastric emptying and reduced gall-
bladder contractility(86). These high cholecystokinin and
PYY levels facilitate long-lasting satiety and hunger sup-
pression after meals and can lead to restriction of energy
intake and malnutrition in the elderly(86).

Gastric inhibitory polypeptide

Gastric inhibitory polypeptide (GIP) is a forty-two-amino
acid incretin peptide, which is released from endocrine
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K-cells in the duodenum and proximal jejunum within
minutes after food ingestion(87). The main stimulus for GIP
secretion is the presence of glucose and fat(88). GIP pro-
motes energy storage by direct actions on adipose tissue.
The peptides exert several anabolic adipocyte actions(88,89)

as well as lipolytic effects. GIP-receptor-knock-out mice
have lower adipocyte mass and display a resistance to diet-
induced obesity(90). GIP on its own has no acute impact on
food intake(87), but acts in concert with GLP-1 to control
food intake and energy absorption. Similar to GLP-1, GIP
increases glucose-dependent insulin secretion, b-cell proli-
feration and resistance to apoptosis(91). GIP levels have
been found to be elevated in obese individuals(87).

Gut hormones and appetite after bariatric surgery

Changes in appetite are evident within days of bariatric sur-
gery(10). Postprandial levels of gastrointestinal hormones
that induce satiety, such as GLP-1 and PYY, are elevated
after gastric bypass surgery(92), but not after gastric band-
ing(93). It has been shown that hunger is reduced and sati-
ety is elevated if gastric bands are optimally inflated(13).
These changes in appetite appear independent of any gut
hormone alterations(93). Administration of octreotide,
which would inhibit gut hormone responses, does not
affect food intake after gastric banding(93). Thus, non-
hormonal mechanisms have been suggested(93). In contrast,
studies have demonstrated that postprandial PYY and
GLP-1 levels start rising as early as 2 d after gastric bypass
and can remain elevated for many months after sur-
gery(10,11). In patients with only 20% weight loss after
gastric-bypass operations the postprandial PYY and GLP-1
responses are attenuated compared with patients with 40%
post-operative weight loss(10). Moreover, inhibition of the
satiety gastrointestinal hormone response with octreotide
after gastric bypass increases appetite and food intake(10).
The proposed mechanism behind these findings is that
bariatric surgery gives a secretory stimulus to the distal
L-cells, resulting in an increased level of gastrointestinal
hormones such as PYY and the enteroglucagon family of
peptides(93). As a result, patients have long-term decreased
appetite after gastric bypass. The combined effect of exo-
genous elevation of PYY and GLP-1 reduces food intake
more than predicted by individual hormone infusions
alone(94). This combination of gastrointestinal hormone
responses might, therefore, contribute to the successful
weight loss and its maintenance after bariatric surgery.

On the other hand, changes in ghrelin levels after bari-
atric surgery are controversial. Ghrelin levels have been
reported to be markedly suppressed after gastric bypass,
while diet-induced weight loss is associated with increased
levels of plasma ghrelin(43). It was suggested that reduced
ghrelin contributes to the weight loss after gastric by-
pass(43). Other authors have published conflicting re-
sults(95–99). Thus, the role of ghrelin after gastric bypass
remains unclear. Ghrelin secretion might in fact be modi-
fied by other gastrointestinal hormones, the levels of which
change in response to the altered gastrointestinal anatomy.
However, since obesity is associated with lower levels of

ghrelin, it seems unlikely that reducing the level of ghrelin
would, by itself, induce weight loss(100).

Long-term follow-up data on the changes in gastro-
intestinal hormones after bariatric surgery are still awaited.
Surgery modulates a number of the gut hormones and
probably allows them to act in concert in such a way as to
affect appetite optimally. Understanding the contribution
each hormone makes to appetite control within the setting
of gastric-bypass surgery may be the stepping stone to
future anti-obesity treatments.

Conclusions

Gastrointestinal hormones have attracted a remarkable
amount of research interest in recent years because of their
physiological effects on energy balance and appetite
effects. Gastric bypass surgery is associated with elevated
satiety and satiety-inducing gut hormones. Blocking these
hormones reverses the satiety effects. Although surgery has
been shown to be beneficial for the time being, it carries a
risk for complications for patients. Bariatric surgery may
thus be used as a model to understand physiological weight
loss. This knowledge may help to guide future surgical and
non-surgical weight-loss treatments.
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