CONDOR – A heterodyne receiver at 1.25-1.5 THz

M. C. Wiedner¹, G. Wieching¹, F. Bielau¹, M. Emprechtinger¹, U. U. Graf¹, C. E. Honingh¹, K. Jacobs¹, D. Paulussen¹, K. Rettenbacher¹ and N. H. Volgenau¹

¹I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

The CO N⁺ Deuterium Observations Receiver (CONDOR) is a heterodyne receiver that operates between 1250–1530 GHz. Its primary goal is to observe star-forming regions in CO, N⁺, and H_2D^+ emission.

The instrument follows the standard heterodyne design. It uses a solid state local oscillator (LO), whose signal is overlaid with that of the sky using a Martin-Puplett interferometer. The heart of the receiver is a superconducting NbTiN hot electron bolometer (HEB) (Muñoz *et al.* 2004). The bolometer has an area of $0.25 \times 2.8 \ \mu\text{m}$ and is mounted on a SiN membrane in a waveguide mixer block. To facilitate operation at remote sites, CONDOR is the first receiver that cools the HEB with a closed-cycle system. Since HEBs are particularly sensitive to temperature fluctuations as well as modulations in LO power, we use a Pulse Tube Cooler, which has less vibration than, e.g., a Gifford-McMahon cooler. In order to further minimize vibrations and temperature fluctuations, the mixer and first amplifier are mounted on a separate plate connected via flexible heat straps to the 4 K stage. CONDOR has an intermediate frequency (IF) of about 1.0-1.8 GHz. We consistently obtain receiver noise temperatures below 1800 K and minima in the spectral Allan variances at 25–35 s (see Fig. 1), which is approximately the optimum individual on-source integration time.

In November 2005, CONDOR was successfully commissioned on the 12 m Atacama Pathfinder EXperiment (APEX) telescope. Pointing observations were performed on the Moon and Mars. The first spectral line observations were obtained of CO J=13-12 emission at 1497 GHz from several sources in Orion (Wiedner *et al.* 2006).

Fig. 1 Technical performance of CONDOR. *Upper panel:* DSB receiver noise temperature versus IF frequency. *Lower panel:* spectroscopic Allan variances.

Acknowledgements

This research is supported by the DFG within SFB 494.

References

Muñoz, P.P., Bedorf, S., Brandt, M., et al. 2004, SPIE 5498, 834
Wiedner, M.C., Wieching, G., Bielau, F., et al. 2006, A&A 454, L33