A SUBDIFFERENTIAL CHARACTERISATION OF BANACH SPACES WITH THE RADON–NIKODYM PROPERTY

J.R. GILES

A Banach space has the Radon-Nikodym Property if and only if every continuous weak^{*} lower semi-continuous gauge on the dual space has a point of its domain where its subdifferential is contained in the natural embedding.

Collier [3, Theorem 1, p. 103] proved that a Banach space X has the Radon-Nikodym Property if and only if every continuous weak* lower semi-continuous convex function on an open convex subset A of the dual X^* is Fréchet differentiable at the points of a dense G_{δ} subset of A. Recently, Bachir and Daniilidis [1, Theorem 1, p. 379] extended this result to prove that X has the Radon-Nikodym Property if and only if every continuous weak* lower semi-continuous convex function defined on X^* is Gâteaux differentiable at some point of its domain with derivative in the natural embedding \hat{X} . This result of Bachir and Daniilidis is related to a Gâteaux differentiability characterisation of Asplund spaces, [6, Theorem II.2, p. 9], [4, Theorem 2, p. 268]. However, Asplund spaces can also be characterised by a property of the subdifferential mapping of its continuous gauges, [5, Theorem 2, p. 155]. It is possible, following this approach, to provide a characterisation of Banach spaces with the Radon-Nikodym Property by subdifferentials of continuous weak* lower semicontinuous gauges, a simpler proof of the result of Bachir and Daniilidis and an extension of our characterisation of Asplund spaces.

For our proof we use the following characterisation, [2, Corollary 3.7.6, (1) \iff (3), p. 67].

PROPOSITION. A Banach space X has the Radon-Nikodym Property if and only if every closed bounded convex subset of K of X contains an extreme point of $\overline{\hat{K}}^{w^*}$.

For a continuous gauge p on a Banach space X, the subdifferential of p at $x_0 \in X$ is a nonempty weak^{*} compact convex subset of X^* ,

$$\partial p(x_0) \equiv \left\{ f \in X^* : f(x_0) = p(x_0) \text{ and } f(x) \le p(x) \text{ for all } x \in X \right\}$$

and p is Gâteaux differentiable at x_0 if and only if $\partial p(x_0)$ is singleton, ([7, p. 5]).

Received 2nd April, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

THEOREM 1. For a Banach Space X, the following are equivalent.

- (i) X has the Radon-Nikodym Property.
- (ii) Every continuous weak^{*} lower semicontinuous convex function on an open convex subset of X^* is Fréchet differentiable at the points of a dense G_{δ} subset of its domain.
- (iii) Every continuous weak^{*} lower semicontinuous convex function on an open convex subset of X^* is Gâteaux differentiable at a point of its domain with derivative in \hat{X} .
- (iv) Every continuous weak^{*} lower semicontinuous gauge p on X^* has a point $f \in X^*$ with $\partial p(f) \subseteq \widehat{X}$.

Proof:

That (i) \implies (ii) is Collier's result, [3, Theorem 1, p. 103]. It is obvious that (ii) \implies (iii) \implies (iv).

To prove (iv) \implies (i), consider K a closed bounded convex subset of X. We may assume that $0 \in K$. Consider the continuous positive sublinear functional p on X^* where

$$p(f) = \sup \big\{ f(x) : x \in K \big\}.$$

As p is the gauge of $K^{\circ} \equiv \{f \in X^* : p(f) \leq 1\}$, it is weak^{*} lower semicontinuous on X^* .

From (iv) there exists an $f_0 \in X^*$ such that $\partial p(f_0) \subseteq \widehat{X}$. Now $\partial p(f_0)$ is an extreme subset of $\overline{\widehat{K}}^{w^*}$. Since $\partial p(f_0)$ is weak^{*} compact, by the Krein-Milman Theorem $\partial p(f_0)$ has an extreme point \widehat{x}_0 which is then an extreme point of $\overline{\widehat{K}}^{w^*}$.

Suppose that $x_0 \notin K$. Then x_0 can be strongly separated from K by a weakly closed hyperplane and so \hat{x}_0 can be strongly separated from \hat{K} by a weak^{*} closed hyperplane. But this contradicts $\hat{x}_0 \in \overline{\hat{K}}^{w^*}$. So we conclude that \hat{K} contains an extreme point of $\overline{\hat{K}}^{w^*}$ which, by the Proposition implies that X has the Radon-Nikodym Property.

Bachir and Daniilidis point out that c_0 , which does not have the Radon-Nikodym Property, does have the norm $\|\cdot\|_1$ on its dual ℓ_1 which is generically Gâteaux differentiable with derivatives in $\ell_{\infty} \setminus \hat{c}_0$. But it should also be noticed that there is no point of ℓ_1 where the subdifferential of norm $\|\cdot\|_1$ lies in \hat{c}_0 .

It is worth expressing the equivalence (i) \iff (iv) of Theorem 1 in terms of set properties in the original space X.

Given a nonempty set K in a normed linear space X, a subset S of K is said to

be exposed by $f_0 \in X^*$ if for every $x \in S$,

$$f_0(x) = \sup f_0(K) > f_0(y) \quad ext{ for all } y \in K ackslash S.$$

A slice of K by $f_0 \in X^*$ is a subset of the form

$$S(K, f_0, \delta) \equiv \{x \in K : f_0(x) > \sup f_0(K) - \delta\} \quad \text{ for } \delta > 0.$$

We say that S is weakly exposed by $f_0 \in X^*$ if S is exposed by f_0 and given a weak open neighbourhood W of 0, there exists a $\delta > 0$ such that

$$S(K, f_0, \delta) \subseteq S + W.$$

LEMMA. Given a nonempty closed bounded convex set K, $0 \in K$ in a normed linear space X, a subset S of K is weakly compact and weakly exposed by $f_0 \in X^*$ if and only if $\hat{S} = \partial p(f_0)$ where p is the continuous weak^{*} lower semicontinuous gauge of the polar K^o .

PROOF: Suppose $\widehat{S} = \partial p(f_0)$ but S is not weakly exposed by f_0 . Then there exists a weak neighbourhood W of 0 and for each $n \in \mathbb{N}$, $x_n \in S(K, f_0, (1/n)) \setminus (S+W)$. Now $\{\widehat{x}_n\}$ has a weak^{*} cluster point $F \in \overline{\widehat{K}}^{w^*}$ and $F \in \partial p(f_0)$. But then $F \in \widehat{K}$ and $\{x_n\}$ has a weak cluster point in S which contradicts our supposition.

Conversely, suppose that S is weakly compact and weakly exposed by $f_0 \in X^*$ but that there exists $F_0 \in \partial p(f_0) \setminus \hat{S}$. Since \hat{S} is convex and weak^{*} compact we can strongly separate F_0 from \hat{S} by some $g \in X^*$.

Then there exists a weak^{*} open set $N \equiv \{F \in X^{**} : F(g) > \alpha\}$ such that $\widehat{S} \subseteq N$ and $F_0 \in \{F \in X^{**} : F(g) < \alpha\}$. But also there exists a sequence of weak^{*} open sets

$$M_n \equiv \left\{ F \in X^{\star\star} : F(f_0) > \sup \widehat{f_0}(\overline{\widehat{K}}^{w^\star}) - \frac{1}{n} \right\} \cap \left\{ F \in X^{\star\star} : F(g) < \alpha \right\}.$$

and $F_0 \in \partial p(f) \cap M_n$ for all $n \in \mathbb{N}$. Now the subdifferential mapping $f \mapsto \partial p(f)$ has the property that for any open subset U of X^* and weak* open half-space W in X^{**} where $\partial p(U) \cap W \neq \emptyset$ there exists a nonempty open subset V of U such that $\partial p(V) \subseteq W$. Using this and the extended Bishop-Phelps Theorem [8], we have for each $n \in \mathbb{N}$ there exists $\widehat{x}_n \in S(\overline{\widehat{K}}^{w^*}, f_0, (1/n)) \cap M_n$. But then $\widehat{x}_n \in S(\widehat{K}, \widehat{f}_0, (1/n)) \setminus N$ which contradicts S being weakly exposed by f_0 .

Consequently we have a characterisation which generalises that of [1, Corollary 4 (i) \iff (iii)].

THEOREM 2. A Banach space X has the Radon-Nikodym Property if and only if every nonempty bounded closed convex set K in X has a subset which is weakly compact and weakly exposed.

A Banach space X is an Asplund space if and only if its dual X^* has the Radon-Nikodym Property, [7, p. 82]. So our characterisations of the Radon-Nikodym Property imply extended characterisations of Asplund spaces.

COROLLARY. For a Banach space X, the following are equivalent.

- (i) X is an Asplund space.
- (ii) Every continuous weak^{*} lower semicontinuous gauge p on X^{**} has a point $F \in X^{**}$ with $\partial p(F) \subseteq \widehat{X}^{*}$.
- (iii) Every nonempty weak^{*} compact convex set K in X^* has a subset which is weakly compact and weakly exposed.

References

- [1] M. Bachir and A. Daniilidis, 'A dual characeristation of the Radon-Nikodym Property', Bull. Austral. Math. Soc. 62 (2000), 379-387.
- [2] R. Bourgin, Geometric aspects of convex sets with the Radon-Nikodym Property, Lecture notes in Mathematics, 993 (Springer Verlag, Berlin, Heidelberg, New York, 1983).
- [3] J. Collier, 'The dual of a space with the Radon-Nikodym Property', Pacific J. Math. 64 (1976), 103-106.
- J.R. Giles, 'Comparable differentiability characterisations of two classes of Banach spaces', Bull. Austral. Math. Soc. 56 (1997), 263-272.
- [5] J.R. Giles, 'Comparable characterisations of two classes of Banach spaces by subdifferentials', Bull. Austral. Math. Soc. 58 (1998), 155-158.
- [6] G. Godefroy, 'Metric characterisations of first Baire class linear forms and octahedral norms', Studia Math. 95 (1989), 1-15.
- [7] R.R. Phelps, Convex functions, monotone operators and differentiability (2nd edition), Lecture notes in Mathematics 1364, (Springer Verlag, Berlin, Heidelberg, New York, 1993).
- [8] R.R. Phelps, 'Weak* support points of convex sets in E*', Israel J. Math. 2 (1964), 177-182.

Department of Mathematics The University of Newcastle New South Wales 2308 Australia