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Abstract. It is shown that a pre-existing electron density ripple in a dense plasma can
excite electron neutrino oscillations. For our purposes, we use the dispersion relation
for neutrino oscillations and derive the Mathieu equation for the propagation of
neutrino oscillations in the presence of a spatially oscillating electron density ripple.
The Mathieu equation predicts instability of neutrino oscillations. The criterion
under which instability occurs is presented. Analytical expressions for the neutrino
oscillation frequency and the growth rate are obtained. The possible relevance of
our investigation to non-thermal neutrino oscillations in dense plasma environments
(e.g. the supernovae, the core of white dwarf stars etc.) is briefly mentioned.

Neutrinos, which are the least massive subatomic ghostly elementary particles in the
set of building blocks of nature, were produced in the Big-Bang, which began the
universe, and are emitted by the Sun and all other stars (e.g. neutron stars, white
dwarf stars, magnetars etc.) These are also produced in violent astrophysical events
in cosmos, e.g. explosions of supernovae, which occur when an old massive star
collapses after running out of nuclear fuel. During the collapse, the star literally
becomes a neutron star as neutrinos totally dominate in numbers of particles for
a few seconds and carry off most of the energy from the implosion, more energy
than radiated during the entire life of the star. For example, the neutrino flash
was actually observed in Supernova 1987A. Neutrinos are also created when cosmic
rays, fast moving particles from space, bombard the Earth’s atmosphere producing
cascades of secondary particles, which rain down on us. There are three different
kinds, or ‘flavors’, as they are called, of neutrinos: electron, muon and tau neutrinos.
There are also three anti-neutrinos of the same flavors. The neutrinos get their
names from their charged lepton brethren, the electron, muon and tau, with masses
of 0.511 MeV, 106 MeV and 1777 Mev, respectively. The three species of neutrinos
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can inter-convert. This flip-flopping phenomena, which is referred to as ‘neutrino
oscillations’, implies that the neutrinos have different masses. It is widely thought that
neutrinos play decisive role in energy transport, since with their short-range, weak
nuclear force they escape easily from all but the most dense plasmas. Furthermore,
because neutrinos have mass, they thus play an important role in the formation of
structures and ultimately in the fate of the universe and dense massive stars. Finally,
in view of non-zero mass of wispy neutrinos, the standard theory of particle physics
describing the fundamental constituents and their interactions in our cosmos should
be re-examined.

It is well known that neutrinos interact with the background dense plasma through
the weak nuclear force [1–6]. The dispersion relation for neutrino oscillations in
plasmas is

(Eν − VB)2 − p2
νc

2 − mµc
2 = 0, (1)

where Eν = �ων is the neutrino energy, � (=1.0546 × 10−27 erg s) is the Planck’s
constant divided by 2π, ων is the neutrino oscillation frequency, VB =

√
2Gne is the

Bethe potential energy associated with the interaction of neutrinos with the plasma
via the weak nuclear force, GF = 9 × 10−38 ev cm3 is the Fermi constant for weak
nuclear interactions, ne is the electron number density, pν = �kν is the neutrino
momentum, kν is the propagation vector, c is the speed of light in vacuum and mµ
is the neutrino mass. The neutrino energy density is Wν = |ψ|2/4π. The evolution of
the neutrino amplitude wave function, ψ, is governed by [5]

(
�2c2∇2 − m2

µc
2 − �2 ∂

2

∂t2

)
ψ ≈ i2

√
2Gne�

∂ψ

∂t
, (2)

which is obtained by letting E = i�∂/∂t and pν = −i�∇ in (1) and operating the
resultant equation on ψ.

In this paper we show that neutrino oscillations can be excited by a pre-existing
electron density ripple in a dense plasma. We take the electron density as

ne = n0 [1 + ε cos(kx)], (3)

where ε is the fractional perturbation ripple density, k is the wave number of the
ripple and n0 is the equilibrium electron number density. The electron density ripple,
which could be created by busts of intense photons [7], is assumed to be stationary
because the timescale of the electron neutrino oscillations is much shorter than that
for the background electron oscillations.

The one-dimensional propagation of neutrino oscillations is governed by the wave
equation (

∂2

∂x2
− m2

νc
2

�2
− ω2

ν

c2

)
ϕ− 2

√
2Gne
�c2

ϕ = 0, (4)

which is deduced from (2) by assuming that ψ = ϕ exp(−iωνt). By using (3) in (4)
we obtain

∂2ϕ

∂x2
+
Ω2

c2

[
1 − K2

Bc
2

Ω2
ε cos(kx)

]
ϕ = 0, (5)

where Ω2 = ω2
ν − (mµc

4/�2) −K2
Bc

2 and K2
B = 2

√
2Gn0/�c2.
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Introducing kx = 2ξ in (5), we can cast it in the form of the standard Mathieu
equation [8, 9],

∂2ϕ

∂ξ2
+

4Ω2

k2c2
[1 − β cos(2ξ)]ϕ = 0, (6)

where β = εK2
Bc

2/Ω2. Equation (6) predicts instability for β� 1 and [8, 9]

2Ω

kc
= p, (7)

where p is an integer. Instability is strongest for p � 1 and in that region the growth
rate is

γ =
Ω

2

[
β2

4
− (p− 1)2

]1/2

. (8)

For larger β one can have strong off-resonant growth rate. For p � 2, 3 etc., the
growth rates are smaller; the maximum growth rate for β� 1 is γ/Ω � β2/8 for
p = 2 and γ/Ω = 81β3/1024 for p = 3 [8].

To summarize, we have shown that a pre-existing electron density ripple can excite
neutrino oscillations in dense plasmas. Physically, the energy stored in an electron
density ripple is coupled to the electron neutrino oscillations by exciting neutrino
oscillation sidebands due to the parametric interaction [8,9]. As a result, the electron
neutrino oscillations with the angular frequency, ων = (ω2

m + K2
Bc

2 + p2k2c2/4)1/2,
would grow, where ωm = mνc

2/�. The neutrino oscillation frequency, ων , is tunable
by varying the electron density ripple wavelength, 2π/k. The growth rate is strongest
for p � 1. The non-thermal neutrino oscillations play a significant role in energy
transport, as well as in the formation of structures and their dynamics in dense
plasmas, such as those in supernovae and white dwarf stars. Furthermore, neutrinos
with non-zero mass may have played a crucial role in the production of an excess
of matter over anti-matter in our cosmos, and are thus intimately linked to our very
existence.
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