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This note is concerned with the following question: What is the structure of
those groups which possess two antiautomorphisms different from identity such
that every element of the group is fixed by (at least) one of them?

C. Ayoub [1] stated this problem after having proved a statement equivalent
to the following: The group G is a non-abelian extension of an abelian group by
a group of order two, if, and only if, there is an automorphism a # 1 and an
antiautomorphism p # 1 such that every element of G is fixed by a or by p. The
Theorem at the end of the paper will show that the class of groups considered by
C. Ayoub coincides with the class considered here.

The arguments used here are of a combinatorical nature like those used
in the papers by Ayoub [1] and by Haber and Rosenfeld [2].

In the following we consider a group G possessing two antiautomorphisms
a, ji (both different from the identity) such that each element g in G is fixed by
at least one of the antiautomorphisms a, p. We define three subsets A, B, C of G
in the following manner:

C = {x e G\x = x" = x"}

B = {x e G\x = x" ^ x*}

A = {xeG\x = x" ¥= *"}.

Neither A nor B is empty because the two antiautomorphisms are different from
the identity. Every element belongs to the same set as its inverse. The sets A and B
may be interchanged in any statement; if we interchange A and B in the statement
(n), we will denote the new statement by («').

(1) Ifx andy are in A\j C, then xy is in A u C if and only if xy = yx.

This follows from (xy)x = ytxx" = yx for x and y in A u C.

(2) C is a commutative subgroup of G.

Let x and y be in C. Then xy is in A u C or B u C. According to (1) (or (1'))
we obtain xy = yx in both cases, and (1') (or (1)) yields that xy is contained in
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A\J C and in B u C. So xy = yx is contained in C, which shows that C is a
commutative subgroup.

(3) If x e A and y e B, xy # yx.

Assume xy = yx, and furthermore, without loss of generality, xy e A u C. Now
y = x-1(xy) = (xy)x~l e A u C by (1), contrary to hypothesis. This shows (3).

(4) For x, y e A and z e ^ u C the following three statements cannot hold simulta-
neously:
xy = yx; zx = xz; yz # zy.

If the three statements would hold, yz would be contained in B by (1) and would
commute with x e A, contrary to (3).

(5) If z e C, either z e Z(G) or z does not commute with any element not con-
tained in C.

Assume the existence of two elements x, y which are not contained in C such
that xz = xz but yz # zy. Without loss of generality we may assume that x and
y are both elements of A (if x and y do not belong to the same set, x and yz do
so according to (1) or (1'), and we takeyz instead of y). By (4) we know that xy ^
yx; furthermore {xy)z # z(xy). Now xy e B by (1) and z(xy) e A by (1'). It fol-
lows from (1) and (2) that zx = xz belongs to A and that zx commutes with y,
because zx, y and (zx)y are contained in A. Now zx commutes with x and y while
x does not commute with y. This contradiction to (4) proves (5).

(6) C = Z(G), or Z(G) is a subgroup of index two in C.

By (3) we obtain Z{G) S C. Assume now that Z(G) ^ C and choose two
elements u, v of C which do not belong to Z(Gi). If a is any element in A, aue B
by (5) and (1), further (au)veA by (5) and (1'). So, by (1), a(uv) = (uv)a, and
uv e Z(G) by (5). This proves that Z(G) is of index two in G.

(7) Ifx andy belong to G but not to Z{G), then C(x) = C(y) or C(x) n C{y) =
Z(G), where C(u) is the centralizer ofu in G.

If x or y is contained in C, (7) is true by (5). If both x and y are not contained
in C and if they do not belong to the same set A, B, then C(x) n C(y) ^ C by (3),
so C(x) n C(y) = Z(G) by (5). If both the elements x, y belong to A (or to B) and
C(x) ^ C(y), the intersection is contained in C by (4), so C(x) n C(y) = Z(G)
by (5).

(8) Ifx, ye A and x2y =£ yx2, then y2 e Z(G).

By (1), xy and x2y are contained in B. As x does not commute with y and xy,
likewise xy does not commute with x2y. So y~1xy — (xy)~1(x2y) belongs to A
by (1'). Now
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y~lxy = (y'^yf = yxxx(y'if = yxy'1;

xy2 = y2x.

Hence y2 e C(x) n C(y) = Z(G) because x $ C(y), using (7).

(9) G/Z(G) possesses elements of order two.

Easy consequence of (8).

According to (7), the quotient group G/Z(G) possesses a partition formed by
the subgroups C(x)/Z(G), x $ Z(G). We consider first of all groups possessing not
more than four different centralizers.

(10) If G does not possess more than four different centralizers of elements which
are proper subgroups, then either
(a) G/Z(G) is isomorphic to the elementary abelian group of order four, or
(b) G/Z(G) is isomorphic to the symmetric group on three objects.

Groups covered by three subgroups possess a normal subgroup such that the
corresponding quotient group is elementary abelian of order four, see Haber and
Rosenfeld [2; Theorem 2, p. 492]. It follows that groups partitioned by three
subgroups must be elementary abelian and of order four. Similarly we obtain that
groups partitioned by four subgroups are either elementary abelian and of order
9, or isomorphic to S3 (see [2; Theorem4, p. 494]). The case that GjZ(G) is an ele-
mentary abelian group of order 9 is excluded by (9), so (10) is a complete char-
acterization.

If GjZ(G) is partitioned by five or more centralizers, we may assume (without
loss of generality) that there are three or more different centralizers which are
contained in A u C. It is our aim to show that B u Z(G) is an abelian subgroup of
index two in G. We collect all the necessary steps in

(11) Assume that there are three elements x, y, z in AKJ C which do not commute
with each other. Then
(a) C(xy) = C{xy~') = C{x^y) = C(yx) = C(yz),
(b) Ifcd = dc, where c and d belong to A\j C but not to Z(G), then cd e Z(G).
(c) Ift, u, v, w e A u C and tu, vw e B, then (tu)(vw) = (vw)(tu).
(d) Ifu, v, w are contained in A\J C but not in Z(G), the same holds for uvw.
(e) Ifs, t e B then st = ts.
(f) B u Z(G) is an abelian subgroup of index 2 in G.

By (1), yx, x~lz andyz = (yx)(x~1z) are contained in B.

Using (1') and (7) we find

and, by similar procedure,
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C(yz) = C(yx'1) = C(xz),

Now (a) is a consequence of these equations.
To prove (b), assume that c and d do not commute with y and z. We obtain

from (a) for c, y, z

and for d, y, z
ydeC(yd) =

Now cd = {cy~l(yd) e C(yz) n (A u C) = Z(G), since
By assumption in (c), t does not commute with u and v does not commute

with w. Assume, for instance, that t commutes with v. Then v~1t belongs to Z(G)
by (b), and t = va with aeZ(G). So C(tu) = C(vau) = C(i>w). Using this process
of reduction, we prove (c) by (a), looking at each possibility of commuting pairs
of elements.

C(vw) = C(tu) if tv = vt and uw = wu

C(vw) = C(ut) = C(tu) if tw = w? and wu = vu

C(vw) = C(ww) = C(tu) if «y = vu and fw ^ w?

C(vw) = C(vu) = C(tu) if uw = wu and tv =£ vt

C(vw) = C(tw) = C(tu) if t>? = tv and «w ^ wu

C(vw) = C(r?) = C(tu) if w? = ?)v and uv # f w

C(iw) = C(wt) = C(tu) if no pairs commute.

If in (d) any two elements of the triplet u, v, w commute, we find uvw = wvu eA<uC
by (b), and it is easy to show with (b) that uvw is not contained in Z(G). If u, v, w
do not commute with each other, we obtain from (c)

(vu)(vw) = (vw)(vu), so uvw = wvu,

and uvw e A u C. If uvw is contained in Z(G), then

uv = (uvw)w~l e Au C,

but uv e B because u and v do not commute. This shows (d).
Assume now that there are elements in B which do not commute with each

other. Then, by (7), there is an element b in B which does not commute with xy,
where x and y are the elements mentioned at the beginning of (11). Then bxy e A,
and there exists an element w in A u C which does not commute with bxy. Hence
(bxy)w belongs to B, and xyw belongs to A u C but not to Z(G) according
to (d). Using (d) again we find that (bxy)w(xywy1 is contained in A u C. But
(bxy)w(xyw)~1 = b e B; a contradiction establishing (e).

If b is any element in B, C(b) is a commutative subgroup of G by (4), C(b) u A
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is empty by (3), B <= C{b) by ( l ie) and C n C{b) = Z(G) by (5). So C(b) =
B u Z(G) is an abelian subgroup of G. Assume that c and d are two elements of
G which are not contained in B u Z(G). Then they are contained in A u C but
not in Z(G), and their product erf is contained in B if they do not commute (by 1));
if they commute the product is contained in Z(G) by (1 lb). So the product of any
two elements outside B u Z(G) belongs to B u Z(G), hence B u Z(G) is of index
two in G; the proof of (11) is complete.

Taking the statements (10) and (11) together we have obtained that G pos-
sesses an abelian subgroup N of index two in G, also G is non-abelian (see (6)).
We will now construct the two antiautomorphisms to show that all these groups
occur.

Let N be an abelian normal subgroup of the non-abelian group G such that
G = {x, N} and x2 e N. We take a such that {xnf = xn for all n e N. If a is an
antiautomorphism, we find

xn = (xnf = n^x* = n*x,
consequently

n* = xnx~1,

and the mapping defined in this way is indeed an antiautomorphism, as can be
checked by the reader. On the second mapping /? we impose np = n for all n e N.
Furthermore we put x^ — xufor some us N.

For P to be an antiautomorphism it is necessary, that

X2 = (jc2y = (xu)2,
which is equivalent to

x~lux = u~l. (*)

The reader will be able to check that /? is an antiautomorphism if it is defined
by

nff = n for all n e N
and

(xnf = xu(x^1nx) for all n e N,

provided (*) is satisfied by u.
We summarize:

THEOREM: The following properties of the group G are equivalent:
(i) G is non-abelian and possesses an abelian normal subgroup of index two.

(ii) G possesses an automorphism a ^ 1 and an antiautomorphism p ^ 1 such
that for all x eG either x" = x or x" — x" is true.

(iii) G possesses a proper subgroup U and an antiautomorphism y # 1 such
that all elements of G which are not contained in U are fixed by y.

(iv) G possesses an antiautomorphism (I / 1 and an automorphism a ^ 1 such
that for all x e G either x* = x or x^ = x.
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(v) G possesses two antiautomorphisms different from identity such that all
x e G are fixed by at least one of them.

PROOF. The equivalence of (i) and (v) is the contents of the preceding ar-
gument. The statements (i) and (ii) are equivalent by Theorem 1 and Theorem
2 of Ayoub [1]. To see that (iv) follows from (ii), take a = a and pa~l = /?; for
the converse take a. — a and j8a = p. If we remember that the set of elements fixed
by an automorphism is a subgroup it is easy to obtain (iii) from (iv). Assume
now that (iii) is true, and assume that x e G is not contained in U. By (iii) xu =
(xu)y for all ueU, and we obtain

xu = uyxy = uyx;

uy = xux~l,

x(ulu2)x~i = (u1u2)
y = u\u\ = (xu2x~1)(xu1x~i) = x(u2u1)x~l

for all « j , «2 e U.
We conclude that U is abelian. The group G cannot be abelian, for otherwise G

would be the set-theoretical union of the subgroup U and the subgroup consisting
of all elements fixed under y, which is impossible. Every subgroup of G containing
U is fixed as a subgroup under y, so by the preceding argument Uis maximal with
respect to being abelian. Assume now the existence of an element y e G such
that U ^ yU ¥= xU. Then

(yu)y = yu yields uy = yuy~l.
But

uy = xux'1,
so

y-1xeC(U)= U,

contrary to xU ^ yU.
This shows that C/is of index two in G, so all the statements of (i) are obtained

from (iii) The proof is complete.

I am indebted to Dr. E. Wittmann for his many helpful remarks concerning
this problem.
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