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Abstract

The aim of this paper is to obtain a new unique continuation property (UCP) for the Korteweg–de Vries
equation posed on a finite interval. Compared with the previous UCP, we need fewer conditions on the
solution. For this purpose, we have to establish a global Carleman estimate for the Korteweg–de Vries
equation.
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1. Introduction

This paper is concerned with the following Korteweg–de Vries (KdV) equation posed
on a finite interval: 

ut + ux + uux + uxxx = 0 in I × (0, T ),

u(0, t) = u(l, t) = ux(l, t) = 0 on (0, T ),

u(x, 0) = u0(x) on I,

(1.1)

where T > 0, I = (0, l). In applications to physical problems, the independent variable
x is often a coordinate representing position in the medium of propagation, t is
proportional to elapsed time, and u(x, t) is a velocity or an amplitude at point x at
time t. The KdV equation was first derived by Korteweg and de Vries [3] in 1895 (or
by Boussinesq [1] in 1876) as a model for propagation of some surface water waves
along a channel.

The unique continuation property (UCP) is an important issue in the theory of
partial differential equations. Its history may date back to the classical results of
Holmgren and Carleman at the very beginning of the twentieth century. There are
many articles concerned with the UCP for the KdV equation (see [6–8]).

Zhang [8] obtained that if u ∈ L∞loc(R, H3(R)) is a solution of the KdV equation

ut + uux + uxxx = 0
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and vanishes on an open set of Rx × Rt, then

u(x, t) ≡ 0 for x ∈ R, t ∈ R.

Then, in [7], Saut and Scheurer proved that if u ∈ L2(0, T ; H3
loc(I)) is the solution

of (1.1) and
u ≡ 0 in ω × (0, T ),

then u ≡ 0 in I × (0, T ). Here (and elsewhere) ω ⊂ I is a nonempty open set.
Later, Rosier and Zhang [6] studied the systemut + ux + uux + uxxx = 0 in (0, l) × (0, T ),

u(0, t) = u(l, t) = 0 for a.e. t ∈ (0, T ).
(1.2)

They showed that if u ∈ L∞(0, T ; H1(I)) solves (1.2) and u ≡ 0 inω × (0, T ), then u ≡ 0
in I × (0, T ).

In this paper, we consider a new UCP for the KdV equation which is different from
all the above results.

T 1.1. Let u0 ∈ L2(I) and u ∈C([0, T ]; L2(I)) ∩ L2(0, T ; H1
0(I)) be a solution

of (1.1). If u ≡ 0 in ω × (0, T ), then u ≡ 0 in I × (0, T ).

R 1.2. Compared with the above results, Theorem 1.1 needs less regularity.
Actually, the UCP by Rosier and Zhang [6] implies Theorem 1.1, when combined
with a smoothing property, but we prove Theorem 1.1 through the Carleman estimate
with internal observation, which is a new result for the KdV equation.

To prove Theorem 1.1, we introduce some functions. Let ψ ∈C∞(I) be such that
ψ > 0 in I, ψ(0) = ψ(l) = 0, ‖ψ‖C(I) = 1, |ψx| > 0 in I \ ω, ψx(0) > 0 and ψx(l) < 0. For
any given positive constants λ and µ, we set

a(x, t) =
eµ(ψ(x)+3) − e5µ

t(T − t)
, θ(x, t) = eλa, ϕ(x, t) =

eµ(ψ(x)+3)

t(T − t)
,

for all (x, t) ∈ Q. We write Q and Qω for I × (0, T ) and ω × (0, T ), respectively.
Let L denote the operator Lu = ut + ux + uxxx with its domain

D(L) = {u ∈ L2(0, T ; H3(I)) ∩ H1(0, T ; L2(I)) :

u(0, t) = u(l, t) = ux(l, t) = 0, ∀t ∈ (0, T )}.

One of the main results in this paper is the following global Carleman estimate.

T 1.3. There exist constants C0 > 0 and C1 > 0 such that, for any u ∈ D(L) and
all numbers λ ≥C0(T + T 2),∫

Q
(λ5θ2ϕ5u2 + λ3θ2ϕ3u2

x + λθ2ϕu2
xx) dx dt

≤C1

(∫
Q
θ2|Lu|2 dx dt +

∫
Qω

(λ5θ2ϕ5u2 + λ3θ2ϕ3u2
x + λθ2ϕu2

xx) dx dt

)
.

(1.3)
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R 1.4. The Carleman estimate for the KdV equation was also considered
in [2, 5]. However, to the best of our knowledge, there are few results about the
Carleman estimate with internal observation.

The rest of this paper is organised as follows. Section 2 is devoted to the proof of
Theorem 1.3. Then, combined with a smoothing property, we prove our main result.

2. Proof of Theorem 1.3

This section is motivated by [9].
As in [4], it is enough to derive (1.3) for L̃u = ut + uxxx with u ∈ D(L). In fact,

assume that we have proved (1.3) for L̃u. We have∫
Q
θ2|L̃u|2 dx dt ≤ 2

∫
Q
θ2|Lu|2 dx dt + 2

∫
Q
θ2u2

x dx dt.

By choosing λ > 0 large, it is possible to absorb 2
∫

Q
θ2u2

x dx dt with the left-hand side
of (1.3), concluding that (1.3) also holds for Lu.

It is obvious that

θL̃u = θ(ut + uxxx) = vt + vxxx − 3λaxvxx + (3λ2a2
x − 3λaxx)vx

+ (−λat − λ
3a3

x + 3λ2axaxx − λaxxx)v.
(2.1)

Define
θL̃u = I1 + I2 + I3,

where

I1 = vt + vxxx + 3λ2a2
xvx,

I2 = −3λaxvxx − λ
3a3

xv,

I3 = −3λaxxvx + (−λat + 3λ2axaxx − λaxxx)v.

It is easy to see that

2I1I2 ≤ (I1 + I2)2 = (θL̃u − I3)2 ≤ 2θ2|L̃u|2 + 2I3.

Throughout this paper, C(ψ) denotes a constant depending on ψ whose value can
change from line to line.

Step 1. We have the inequality∫
Q

2I1I2 dx dt =

∫
Q

(
(·)v2 + (·)v2

x + (·)v2
xx + 6λaxxvxθLu

)
dx dt

+

∫ T

0
(V(l, t) − V(0, t)) dt,

(2.2)
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where

(·)v2 = (3λ3a2
xaxt + λ3(a3

x)xxx + 15λ5a4
xaxx + 3λ(Baxx)x)v2,

(·)v2
x = (−3λaxt − 9λ3a2

xaxx + 27λ3a2
xaxx − 3λaxxxx

− 9λ2(axaxx)x − 6λAaxx)v2
x,

(·)v2
xx = (9λaxx)v2

xx,

V(l, t) = −3λaxv2
xx(l, t),

V(0, t) = −3λaxv2
xx(0, t) − 6λaxxvx(0, t)vxx(0, t)

+ (λ3a3
x − 9λ3a3

x + 3λaxxx + 9λ2axaxx)v2
x(0, t).

To prove (2.2), we shall calculate each term of 2I1I2.
Let I1i (i = 1, 2, 3) and I2 j ( j = 1, 2) denote the ith term of I1 and the jth term of I2,

respectively.
It is not difficult to deduce that

2I11I21 = −6λaxvtvxx

= (−6λaxvtvx)x + 6λaxxvtvx − 3λaxtv
2
x + (3λaxv2

x)t, (2.3)

2I11I22 = −2λ3a3
xvvt = (−λ3a3

xv2)t + 3λ3a2
xaxtv

2, (2.4)

2I12I21 = −6λaxvxxvxxx = 3λaxxv2
xx + (−3λaxv2

xx)x, (2.5)

2I12I22 = −2λ3a3
xvvxxx

= −9λ3a2
xaxxv2

x + λ3(a3
x)xxxv2 + (λ3a3

xv2
x)x + (−2λ3a3

xvvxxx)x

+ (6λ3a2
xaxxvvx)x − ((6λ3axa2

xx + 3λ3a2
xaxxx)v2)x, (2.6)

2I13I21 = −18λ3a3
xvxvxx = (−9λ3a3

xv2
x)x + 27λ3a2

xaxxv2
x, (2.7)

2I13I22 = −6λ5a5
xvvx = (−3λ5a5

xv2)x + 15λ5a4
xaxxv2. (2.8)

Rewrite (2.1) as
θL̃u = vt + vxxx − 3λaxvxx + Avx + Bv, (2.9)

where

A = 3λ2a2
x − 3λaxx,

B = −λat − λ
3a3

x + 3λ2axaxx − λaxxx.

According to (2.9),

6λaxxvtvx = 6λaxxvx(θL̃u − vxxx + 3λaxvxx − Avx − Bv)

= 6λaxxvxθL̃u + 6λaxxv2
xx + (3λaxxxv2

x)x − 3λaxxxxv2
x

+ (−6λaxxvxvxx)x + (9λ2axaxxv2
x)x − 9λ2(axaxx)xv2

x

− 6λAaxxvx + 3λ(Baxx)xv2 + (−3λBaxxv2)x.

(2.10)
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Noting that u(0, t) = u(l, t) = ux(l, t) = 0 and limt→0+ a(t, ·) = limt→T− a(t, ·) = −∞,

v(0, t) = v(l, t) = vx(l, t) = v(x, 0) = v(x, T ) ≡ 0, (2.11)

for all x, t ∈ (0, l) × (0, T ). Combining (2.3)–(2.11), we can obtain (2.2).

Step 2. We claim that there exists a positive constant C2 such that, for all numbers
λ ≥C2(T + T 2),∫

Q
(λ5µ6ϕ5|ψx|

6v2 + λµ2ϕ|ψx|
2v2

xx) dx dt

≤C(ψ)
(∫

Q
θ2|L̃u|2 dx dt +

∫
Q

(λ5µ5ϕ5v2 + λ3µ3ϕ3v2
x + λµϕv2

xx) dx dt

)
.

(2.12)

We shall estimate each term in the right-hand side of (2.2).
Suppose that µ > 1 is a constant which will be chosen later. By the definitions of a,

ϕ and ψ, it is obvious that

|ax| ≤C(ψ)µϕ, |axx| ≤C(ψ)µ2ϕ, |axxx| ≤C(ψ)µ3ϕ,

|axxxx| ≤C(ψ)µ4ϕ, |at | ≤CTϕ2, |axt | ≤C(ψ)µTϕ2,

and ϕ ≤ (T 2/4)ϕ2.
If we choose λ ≥ µC(ψ)(T + T 2) with C(ψ) large enough, then

I2
3 ≤C(ψ)λ3µ3ϕ3v2

x + C(ψ)λ5µ5ϕ5v2, (2.13)

(·)v2 = 15λ5µ6ϕ5|ψx|
6v2 + F1, (2.14)

(·)v2
x = F2, (2.15)

(·)v2
xx = 9λµ2ϕ|ψx|

2v2
xx + F3, (2.16)

where

|F1| ≤ C(ψ)λ5µ5ϕ5v2,

|F2| ≤ C(ψ)λ3µ3ϕ3v2
x,

|F3| ≤ C(ψ)λµϕv2
xx.

Moreover,
6λaxxvxθL̃u ≥ −9λ2a2

xxv2
x − θ|L̃u|2. (2.17)

We now estimate V(l, t) − V(0, t). It is obvious that

V(l, t) = −3λaxv2
xx(l, t) = −3λµϕψx(l)v2

xx(l, t) ≥ 0, (2.18)

V(0, t) = −6λaxxvx(0, t)vxx(0, t) − 3λaxv2
xx(0, t)

+ (λ3a3
x + 3λaxxx + 9λ2axaxx)v2

x(0, t).
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For any ε0 > 0, if we choose λ ≥ µC(ε0, ψ)(T + T 2) with C(ε0, ψ) large enough,
then, as in (2.13)–(2.16),

|−6λaxxvx(0, t)vxx(0, t)| ≤C(ψ)λµ2ϕ|vx(0, t)||vxx(0, t)|

≤ ε0λ
3µ3ϕ3|vx(0, t)|2 + ε0λµϕ|vxx(0, t)|2,

−3λaxv2
xx(0, t) = −3λµϕψx(0)v2

xx(0, t),

(λ3a3
x + 3λaxxx + 9λ2axaxx)v2

x(0, t) = −8λ3µ3ϕ3ψ3
x(0)v2

x(0, t) + F4,

where
|F4| ≤ ε0λ

3µ3ϕ3v2
x(0, t).

If we take ε0 small enough, there exist positive constants C3 and C4 such that

V(0, t) ≤ −C3λ
3µ3ϕ3ψ3

x(0)v2
x(0, t) −C4λµϕψx(0)v2

xx(0, t) ≤ 0. (2.19)

Combining (2.13)–(2.19), we arrive at (2.12).

Step 3. We shall prove that∫
Q
λ3µ4ϕ3|ψx|

8v2
x dx dt ≤C(ψ)

∫
Q

(λ5µ6ϕ5|ψx|
6v2 + λµ2ϕ|ψx|

2v2
xx) dx dt. (2.20)

Using integration by parts and noting that v(0, ·) = v(l, ·) = 0,∫
Q
λ3µ4ϕ3|ψx|

8v2
x dx dt

=

∫
Q

(−3λ3µ4ϕ3ψ8
xvvxx − 3λ3µ4ϕ2ϕx|ψx|

8vvx − 8λ3µ4ϕ3ψ7
xvvx) dx dt

, J1 + J2 + J3.

By the definition of ϕ and noting that µ ≥ 1, it is clear that

J1 ≤C(ψ)
∫

Q
λ3µ4ϕ3|ψx|

4|vvxx| dx dt

≤C(ψ)
∫

Q
(λ5µ6ϕ5|ψx|

6v2 + λµ2ϕ|ψx|
2v2

xx) dx dt,

J2 ≤C(ψ)
∫

Q
λ3µ5ϕ3|ψx|

7|vvx| dx dt , J4,

J3 ≤C(ψ)
∫

Q
λ3µ4ϕ3|ψx|

7|vvx| dx dt ≤C(ψ)
∫

Q
λ3µ5ϕ3|ψx|

7|vvx| dx dt = J4.

Now it remains only to estimate J4, for λ ≥ µC(ψ)(T + T 2). With C(ψ) large enough,
we can deduce that

J4 ≤C(ψ)
∫

Q
λ5µ6ϕ5|ψx|

6v2 dx dt + C(ψ)
∫

Q
λµ4ϕ|ψx|

8v2
x dx dt

≤C(ψ)
∫

Q
λ5µ6ϕ5|ψx|

6v2 dxdt +
1
4

∫
Q
λ3µ4ϕ3|ψx|

8v2
x dx dt.
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We conclude that (2.20) follows immediately from the above estimates.

Step 4. According to (2.12) and (2.20), there exists a positive constant C5 such that for
all numbers λ ≥C5(T + T 2),∫

Q
(λ5µ6ϕ5|ψx|

6v2 + λ3µ4ϕ3|ψx|
8v2

x + λµ2ϕ|ψx|
2v2

xx) dx dt

≤C(ψ)
(∫

Q
θ2|L̃u|2 dx dt +

∫
Q

(λ5µ5ϕ5v2 + λ3µ3ϕ3v2
x + λµϕv2

xx) dx dt

)
.

Recall that |ψx| > 0 in Ī \ ω. Then there exists a constant C̃(ψ) such that∫
Q\Qω

(λ5µ6ϕ5v2 + λ3µ4ϕ3v2
x + λµ2ϕv2

xx) dx dt

≤ C̃(ψ)
(∫

Q
θ2|L̃u|2 dx dt +

∫
Q

(λ5µ5ϕ5v2 + λ3µ3ϕ3v2
x + λµϕv2

xx) dx dt

)
.

If we choose µ = C̃(ψ) + 1, then∫
Q\Qω

(λ5ϕ5v2 + λ3ϕ3v2
x + λϕv2

xx) dx dt

≤C(ψ)
(∫

Q
θ2|L̃u|2 dx dt +

∫
Qω

(λ5ϕ5v2 + λ3ϕ3v2
x + λϕv2

xx) dx dt

)
.

(2.21)

Adding
∫

Qω(λ5ϕ5v2 + λ3ϕ3v2
x + λϕv2

xx) dx dt to both sides of (2.21),∫
Q

(λ5ϕ5v2 + λ3ϕ3v2
x + λϕv2

xx) dx dt

≤C(ψ)
(∫

Q
θ2|L̃u|2 dx dt +

∫
Qω

λ5ϕ5v2 + λ3ϕ3v2
x + λϕv2

xx dx dt

)
.

Taking v = eλau, we can obtain (1.3), completing the proof of Theorem 1.3. �

R 2.1. Actually, in dimension 1, only one parameter λ is needed in the Carleman
estimate (see [2, 5]). It should be said that µ is considered here just to make the
construction of the weights easier.

3. Proof of Theorem 1.1

For any ε > 0, let Qε = (ε, T ) × I, Qε
0 = (ε, T ) × ω and let Lε denote the operator

Lεu = ut + ux + uxxx with its domain

D(Lε) = {u ∈ L2(ε, T ; H3(I)) ∩ H1(ε, T ; L2(I)) :

u(0, t) = u(l, t) = ux(l, t), t ∈ (ε, T )}.
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Set

aε(x, t) =
eµ(ψ(x)+3) − e5µ

(t − ε)(T − t)
, θε(x, t) = eλaε , ϕε(x, t) =

eµ(ψ(x)+3)

(t − ε)(T − t)
,

for all (x, t) ∈ Q.
By the same method as in Section 2, we have the following result.

P 3.1. For any u ∈ D(Lε) and all numbers λ ≥C0(T + T 2),∫
Qε

(λ5θ2
εϕ

5
εu

2 + λ3θ2
εϕ

3
εu

2
x + λθ2

εϕεu
2
xx) dx dt

≤C1

∫
Qε

θ2
ε |Lεu|

2 dx dt +

∫
Qε

0

(λ5θ2
εϕ

5
εu

2 + λ3θ2
εϕ

3u2
x + λθ2

εϕεu
2
xx) dx dt

 , (3.1)

where C0 and C1 are the same as in Theorem 1.3.

The following proposition, which reveals a strong smoothing property, follows
directly from [6, Corollary 2.10].

P 3.2. For any u0 ∈ L2(I), (1.1) has a unique solution u ∈C([0, T ]; L2(I)) ∩
L2(0, T ; H1

0(I)). Moreover, for any ε > 0, u belongs to the space C([ε, T ]; H3(I)) ∩
L2(ε, T ; H4(I)).

We can now prove Theorem 1.1.

P  T 1.1. According to Theorem 3.2, it is easy to see that the solution u
of (1.1) belongs toD(Lε). By (3.1),∫

Qε

(λ5θ2
εϕ

5
εu

2 + λ3θ2
εϕ

3
εu

2
x + λθ2

εϕεu
2
xx) dx dt

≤C1

∫
Qε

θ2
ε |uux|

2 dx dt +

∫
Qε

0

(λ5θ2
εϕ

5
εu

2 + λ3θ2
εϕ

3u2
x + λθ2

εϕεu
2
xx) dx dt

 . (3.2)

Note that u ≡ 0 in ω × (0, T ) and u ∈ L∞(Qε), so (3.2) is reduced to∫
Qε

(λ5θ2
εϕ

5
εu

2 + λ3θ2
εϕ

3
εu

2
x + λθ2

εϕεu
2
xx) dx dt ≤C(‖u‖L∞(Qε))

∫
Qε

θ2
ε |ux|

2 dx dt.

For λ ≥C6(T + T 2) with C6 sufficiently large,∫
Qε

θ2
ε |ux|

2 dx dt ≤
1
64

∫
Qε

T 6θ2
εϕ

3
ε |ux|

2 dx dt

≤
1

2C(‖u‖L∞(Qε))

∫
Qε

λ3θ2
εϕ

3
ε |ux|

2 dx dt.

This implies that ∫
Qε

(λ5θ2
εϕ

5
εu

2 + λ3θ2
εϕ

3
εu

2
x + λθ2

εϕεu
2
xx) dx dt = 0.

It follows that u ≡ 0 in I × (ε, T ). Since ε > 0 is arbitrary, we have u ≡ 0 in I × (0, T ).
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The proof of Theorem 1.1 is complete. �
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