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Abstract

The aim of this paper is to obtain a new unique continuation property (UCP) for the Korteweg—de Vries
equation posed on a finite interval. Compared with the previous UCP, we need fewer conditions on the
solution. For this purpose, we have to establish a global Carleman estimate for the Korteweg—de Vries
equation.
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1. Introduction

This paper is concerned with the following Korteweg—de Vries (KdV) equation posed
on a finite interval:

Uy + Uy + Uy + Uy =0 inlx (0, T),
uO,N=ul,t)=u(,)=0 on(0,7), (1.1)
u(x, 0) = up(x) onl,

where T >0, I = (0, /). In applications to physical problems, the independent variable
x is often a coordinate representing position in the medium of propagation, ¢ is
proportional to elapsed time, and u(x, ¢) is a velocity or an amplitude at point x at
time 7. The KdV equation was first derived by Korteweg and de Vries [3] in 1895 (or
by Boussinesq [1] in 1876) as a model for propagation of some surface water waves
along a channel.

The unique continuation property (UCP) is an important issue in the theory of
partial differential equations. Its history may date back to the classical results of
Holmgren and Carleman at the very beginning of the twentieth century. There are
many articles concerned with the UCP for the KdV equation (see [6-8]).

Zhang [8] obtained that if u € L;5 (R, H 3(R)) is a solution of the KdV equation

Uy + Uy + Uy, =0
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and vanishes on an open set of R, X R;, then
u(x,t)=0 forxeR, reR.

Then, in [7], Saut and Scheurer proved that if u € L*(0, T; H; (I)) is the solution
of (1.1) and
u=0 inwx(@0,7),
then u=0in I X (0, T). Here (and elsewhere) w C I is a nonempty open set.
Later, Rosier and Zhang [6] studied the system

{u,+ux+uux+u“x:0 in (0,1) x (0, T), (1.2)

uO,)=ul,)=0 forae. t€(0,7).

They showed that if u € L*(0, T; H'(I)) solves (1.2) and u = 0in w x (0, T), thenu = 0
inlx(,T).

In this paper, we consider a new UCP for the KdV equation which is different from
all the above results.

Tueorem 1.1. Let up € L*(I) and u € C([0, T1; L*(1)) N L*(0, T; Hy(I)) be a solution
of (1.1). Ifu=z0inwx(0,T), thenu=0inIxO,T).

Remark 1.2. Compared with the above results, Theorem 1.1 needs less regularity.
Actually, the UCP by Rosier and Zhang [6] implies Theorem 1.1, when combined

with a smoothing property, but we prove Theorem 1.1 through the Carleman estimate
with internal observation, which is a new result for the KdV equation.

To prove Theorem 1.1, we introduce some functions. Let y € C>(I) be such that
Yy >0in 1, Y(0) =y¢() =0, Wz = 1, Wl >0 in I\ w, ¥(0) > 0 and y,()) < 0. For
any given positive constants A and p, we set
PHWH3) _ o5 PHW(0+3)
st:—9 9 ,t:/la9 $t: )
ate 0= — 7 (Ln=e, gon="mr
for all (x, t) € Q. We write Q and Q% for I X (0, T) and w % (0, T), respectively.
Let L denote the operator Lu = u; + u, + Uy, With its domain
D(L) = {ue L*0,T; H() N H' 0, T; L*(I)):
uO,)=ul,t)=ul,1)=0, Yre (0, T)}.

One of the main results in this paper is the following global Carleman estimate.
TueEOREM 1.3. There exist constants Co > 0 and C| > 0 such that, for any u € D(L) and
all numbers 1> Co(T + T?),

f XPPu* + P00 + 0% pu> ) dx dt

0 (1.3)
<C; (f 0%\ Lu) dx dt + f (/1592<p5u2 + /1392903@ + /192<pu§x) dxdt].
Q ()
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Remark 1.4. The Carleman estimate for the KdV equation was also considered
in [2, 5]. However, to the best of our knowledge, there are few results about the
Carleman estimate with internal observation.

The rest of this paper is organised as follows. Section 2 is devoted to the proof of
Theorem 1.3. Then, combined with a smoothing property, we prove our main result.

2. Proof of Theorem 1.3

This section is motivated by [9]. _
As in [4], it is enough to derive (1.3) for Lu = u; + uyy With u € D(L). In fact,
assume that we have proved (1.3) for Lu. We have

f 6*|Lul* dx dr <2 f 0°|Lul* dx dt + 2 f 6°u> dx dt.
Qo Qo o

By choosing A > 0 large, it is possible to absorb 2 fQ 6%u> dx dt with the left-hand side
of (1.3), concluding that (1.3) also holds for Lu.
It is obvious that

OLu = Oy + Uyyy) =V + Vir — 30 Vi + (3/12 )2( —3Aa,)Vy @1
+ (—/la, - /13(1/3( + 3/12axaxx - /]-axxx)v- '

Define
OLu=1, + I, + I3,

where

I = Vi +Ver + 3/12a§vx,
L, = -3la,v,, — /l3aiv,
I; = -3a, v, + (—Aa, + 320 a5y — Ader)V.

It is easy to see that
20D < (1) + 1)? = (0Lu — I;)* < 26°|Luf* + 2I.

Throughout this paper, C(¥) denotes a constant depending on ¢ whose value can
change from line to line.

Step 1. We have the inequality

f 211 dx dt = f (W + (W2 + (W2, + 6dagv,bLlu) dx dt

e e, 2.2)

+ f (V{0 - V(0,1) dt,
0
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where

(W = BBy + (@) + 158d%ar + 3A(Ba,) )V,
(W2 = (=3ay — 9P a, + 2180 a,, — 3Aa ey
— 9 (axtas)x — 6AAGL)VY,
(Vi = Odag)vy,,
V(l, ) = =3a,v> (1, 1),
V(0, ) = =3a,v* (0, t) = 61a,,v(0, v (0, 1)
+ (Pad - 9Pa + 3da,, + 9P aa )0, 1).
To prove (2.2), we shall calculate each term of 27, 15.
Letl; (i=1,2,3)and I»; (j =1, 2) denote the ith term of /| and the jth term of I,

respectively.
It is not difficult to deduce that

211111 = —64a, Vv,

= (=6Aa,vivy)y + 6Aa,vivye — 3/lax,v)2c + (3/1axv)2()t, 2.3)
21 I = 2233w, = (=2BaV?), + 383d% a0, (2.4)
212la) = 614G,V Vire = 3da v, + (=3Aa,%);, (2.5)

2112122 = —2/136121/\/)(”

32 2 3.3 2 332 33
= Olaia, vy + V(@) + (X av)e + (F2X°aVViee)x

+ (6B dauwvy), — (6ad’, + 3P a g )V?),, (2.6)
230 = —18Pa v, v, = (9@ V), + 2T a2 a2, (2.7)
2131y = —6ﬂ5aivvx = (—3/15a§v2)x + ISASaiaxxvz. 2.8)
Rewrite (2.1) as
OLu =v; + vy — 3da,vy + Av, + By, 2.9)
where
A =32%d% - 3a,,,
B=-1a, - /lSai + 32200, — Ay
According to (2.9),

61, ViV, = 6/laxxvx(ezu — Vixr + 34axVec — Avy — By)
= 6/laxxvx02u + 6/laxxv§x + (3/laxxxvyzc)x - 3/laxxxxV)2c (2.10)
+ (_6/laxxVxVxx)x + (9/1261xaxxv)2c)x - 9/12(axaxx)xvi '

— 6AAdy vy + 3A(Bay) v + (=31Bagv?)y.
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Noting that u(0, 1) = u(l, t) = u,(l, t) = 0 and lim,_,¢+ a(t, -) = lim,_,7- a(t, -) = —oo,
v, =v(LH=v(l,) =v(x,0)=v(x, T) =0, (2.11)
for all x, € (0, ]) X (0, T). Combining (2.3)—(2.11), we can obtain (2.2).

Step 2. We claim that there exists a positive constant C, such that, for all numbers
A1>Co(T +T?),

f (PO WV + Al gl vy, dx di

© (2.12)

<CW) (f 6%\ Lul? dx dt + f(/lsu5<p5v2 + /13u3<p3v)2€ + /l,ugovix) dxdt].
o 9]

We shall estimate each term in the right-hand side of (2.2).
Suppose that ¢ > 1 is a constant which will be chosen later. By the definitions of a,
¢ and i, it is obvious that

lad < COpe,  lawl < COIEPe, lawl < Cue,
lacel < CWIHe,  lal SCTE?,  laul < COUuT$?,

and ¢ < (T?/4)¢?.
If we choose A > uC(W)(T + T?) with C(¥) large enough, then
L <CXEe’ vy + Cpl i’ e’v?, (2.13)
(W = 152100V + F, (2.14)
(W = Fa, (2.15)
(W = 4Pl Vi, + F, (2.16)
where
IFi| < COP ™y,
P2l < COn g™,
|F3 < C)Augpv?,.
Moreover, _ _
6Aa, v 0Lu > —9%a> v — 0|Lul*. (2.17)

We now estimate V(I, 1) — V(0, 7). It is obvious that

V(l, t) = =3a,v> (1, t) = =3upy (v (1, 1) = 0, (2.18)
V(0, 1) = =64a,,vx(0, D)vr(0, 1) — 3/laxV§X(0, )]

+ (2 + 3Aay + 9% aca v (0, 1).
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For any &y > 0, if we choose A > uC(sy, )(T + T?) with C(go, ) large enough,
then, as in (2.13)—(2.16),

[=64a,v(0, )10, D] < CUNALPlV(O, DIIV(0, 1)
< s 1@’ (0, DI + 0 Auplve(0, I,
~32a,v7(0, 1) = =3 2upy (02, (0, 1),
Xa@ + 30,0, + 9VPa,a, V20, D) = =812 >y (020, 1) + Fy,

where
|F4| < 0% 0%V2(0, 1.

If we take gy small enough, there exist positive constants C3 and C4 such that
V(0, 1) < —C3 12 @y (030, 1) — Cadppy (0)v7,(0, 1) < 0. (2.19)
Combining (2.13)—(2.19), we arrive at (2.12).
Step 3. We shall prove that

f PGl B2 dx dt < C(y) f (Pl + A ply Vi) dxdr. (2.20)
0

Using integration by parts and noting that v(0, -) = v(l, -) = 0,
f /13,u4g03|w)(|8v§ dxdt
0

- fQ (SBLU G - 3P PP, — 8PPy Tvv,) dx dr
= Ji+J+ J3.
By the definition of ¢ and noting that u > 1, it is clear that

J1 <CW) f Ut W vl dx dt
<CW) f (PO OV + APl V2 dx dt,
J, <CW) f i@l vvil dx dr 2 T,
9

J3 < C(¥) f Bt @l vl dx dt < C(y) f PP vyl dx dt = Jy.
0 (9]

Now it remains only to estimate Jy, for 1 > uC()(T + T?). With C(y)) large enough,
we can deduce that

J4 < CW) f Pl ly|*V dx dt + C(p) f A elwBv: dx dt
0 9]

1
<Cw) [ Rute? duir+ g [ it dxa
0 0
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We conclude that (2.20) follows immediately from the above estimates.

Step 4. According to (2.12) and (2.20), there exists a positive constant Cs such that for
all numbers A > Cs(T + T?),

f (PO@ WV + Pt @i + P elyn*vy,) dx dr
Qo
<CW) (f 0%\ Lul* dx dt + f(/ls,usnpsvz + 21300 + Aupv? ) dx dt) .
Qo 0
Recall that |i/,| > 0 in I \ w. Then there exists a constant C (¢) such that
f (Dub®V? + /13;14903\})2( + /lu2<pv)2€x) dx dt
O\Q¥
< 5(1#) (f 6*|Lul® dx dt + f(/l5,usg05v2 + /13,u3<p3v§ + /lygovix) dx dt) .
0 0
If we choose u = C (¥) + 1, then

f BV + BV + a2 dx dt
o\Q¥

2.2
<CW) (fQ 6*|Lu)? dx dt + Qw(’ls‘Psvz + ¢V + Apv?) dx dt) . o
Adding wi LV + B’V + Apv2)) dx dt to both sides of (2.21),
fQ(/lSt,osv2 + ¢V + Apv? ) dx dt
<CW) (L 6*|Luf® dx dt + fw LoV + BV + apv?, dx dt) .
Taking v = e*?u, we can obtain (1.3), completing the proof of Theorem 1.3. O

RemMark 2.1. Actually, in dimension 1, only one parameter A is needed in the Carleman
estimate (see [2, 5]). It should be said that y is considered here just to make the
construction of the weights easier.

3. Proof of Theorem 1.1

For any € >0, let 0° = (e, T) X1, Of = (&, T) X w and let L denote the operator
Lou = u; + uy + uyy, with its domain

D(L,) ={uel* e T; HD)NH (e, T; L*(])) :
u0,n)=ul,n)=ul, 1), te(e T)}.
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Set
HYN)+3) _ pSu

(t—e T -1’

PHWD+3)

— Aae —
08(x7 t) =e ’ QOE(X’ t)_ (t—s)(T—t)’

as(x, 1) =

for all (x, 1) € Q.
By the same method as in Section 2, we have the following result.

ProposiTion 3.1. For any u € D(L,) and all numbers A > Co(T + T?),

(PO + X6 pus + A6opas,) dx di
¢ (3.1)

<C (f 02\ L ul* dx dt + f (X0202u* + PO U2 + 62012 dx dt) ,
o° 9

where Cy and C are the same as in Theorem 1.3.

The following proposition, which reveals a strong smoothing property, follows
directly from [6, Corollary 2.10].

ProposiTioN 3.2. For any ug € L*(I), (1.1) has a unique solution u € C([0, T]; L*(I)) N
L*0,T; Hé(])). Moreover, for any &> 0, u belongs to the space C([&, T1; H*(I)) N
L?(g, T; H¥(I)).

We can now prove Theorem 1.1.

Proor or THEOREM 1.1. According to Theorem 3.2, it is easy to see that the solution u
of (1.1) belongs to D(L,). By (3.1),
PP + PO + 121> ) dx dt
e (3.2)
<C (f 02 \uu|* dx dr + f (VPG> + P02 + 162 p2) dx dt] .
e Qg
Note that u =0 in w X (0, T) and u € L*(Q?), so (3.2) is reduced to

(PO202u* + POp2us + 62012 dx dt < C(l|ullz=(o#) f 0 |u,|* dx dt.
QS Q£

For 1 > C¢(T + T?) with Cg sufficiently large,

1
f 02 |u,|* dx dt < o f T6%}|u,* dx dt

o ¢
1

<— P2 |u,? dx dt.
2C(Mlimiry) Joo © T

This implies that
(POp2u* + PO2p3u> + 0% u>,) dx dt = 0.

QS
It follows that u =0 in I X (g, T'). Since € > 0 is arbitrary, we have u =0in I X (0, T).
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The proof of Theorem 1.1 is complete. O
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