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Abstract

Seed quality is of great importance in optimizing the
cost of crop establishment. Rapid and non-destructive
seed quality detection methods must therefore be
developed for agriculture and the seed production
industry. This review focuses primarily on non-destruc-
tive techniques, namely machine vision, spectroscopy,
hyperspectral imaging, soft X-ray imaging, thermal
imaging and electronic nose techniques, for assessing
the quality of agricultural seeds. The fundamentals of
these techniques are introduced. Seed quality, includ-
ing chemical composition, variety identification and
classification, insect damage and disease assessment
as well as seed viability and germinability of various
seeds are discussed.We conclude that non-destructive
techniques are accurate detection methods with great
potential for seed quality assessment.
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Nomenclature

ADF acid detergent fiber
ANNR artificial neural network regression
ANN artificial neural network
BPNN back-propagation neural network
DA discriminant analysis
DM dry matter
ECVA extended canonical variates analysis
FDA factorial discriminant analysis
ICA independent component analysis
iECVA interval extended canonical variates analysis
iPLS-DA interval partial least-squares discriminant

analysis
iPLSR interval partial least-squares regression
KNN k-nearest neighbor

KPCA kernel principal component analysis
KS Kennard and Stone
LDA linear discriminant analysis
LOD limit of detection
LSD least significance difference
LS-SVM least-squares support vector machine
LS-SVMR least-squares support vector machine regression
LW-PCA locally weighted principal component analysis
MD Mahalanobis distance
MDC Mahalanobis distance classifier
MLMR maximum likelihood multinomial regression
MLP multilayer perceptron
MLR multiple linear regression
MPLS modified partial least-squares
MPLSR modified partial least-squares regression
MSE mean squared error
NDA non-linear discriminant analysis
NNN non-linear neural networks
OMD organic matter digestibility
PCA principal component analysis
PCR principal component regression
PLS partial least-squares
PLS-DA partial least-squares discriminant analysis
PLSR partial least-squares regression
QDA quadratic discriminant analysis
RF random forest
SAM spectral angle mapper
SIMCA soft independent modeling class analogy
SSC soluble sugar content
SWI single waveband image
SVDD support vector machine description
RMSEP root mean square error of prediction
Rp correlation coefficient of prediction
R coefficient of correlation
R2 coefficient of determination
Rp
2 determination coefficient of prediction

Rc
2 determination coefficient of calibration

SEP standard error of prediction
RPD ratio prediction to deviation

Introduction

Seed is a living product and must be grown, harvested
andprocessed correctly tomaximize its viability and sub-
sequent crop productivity. Seed quality has a profound
effect on the development and yield of a crop
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(Bradbeer, 1988). Good seed quality can increase yield
significantly. Seed quality depends on the health, physi-
ology, germinability and physical attributes of seeds,
including the presence or absence of disease, chemical
composition, insect infestation, and the presence or
absence of weed seeds or other plant varieties. Quality
of seeds and their products is directly or indirectly related
to human health; nevertheless, the evaluation of seed
quality parameters is a time-consuming process. For
example, calculation of the germination percentage com-
monly requiresmanual counting and grading of germin-
ating seedlings by experienced technicians. Therefore
rapid, simple and accurate detection techniques must
be developed for farmers and the agro-industry to ensure
quality seed during seeding, growth, harvesting, storage
and transport to consumers (Huang et al., 2015).

The sowing quality of seed is associated with the ger-
mination and growth conditions after sowing and
depends on seed composition, kernel maturity, insect
infestation, diseases, cleanliness and germination ability
(Copeland and McDonald, 1999). The genetic purity of
seeds may be detected by molecular identification,
DNA analysis, isotope fingerprinting and mineral elem-
ent analysis (Bradbeer, 1988). Protein electrophoresis, gas
chromatography, high-performance liquid chromatog-
raphy, tetrazolium tests, accelerated ageing and conduct-
ivity tests have been employed to evaluate the vigourand
germination quality of seeds (Huang et al., 2015). Most of
these chemical and physical techniques exhibit high
accuracyandgood reliability but have certain limitations,
such as their high cost, long time requirements and high
operator requirements. With the increasing demand for
rapid, non-destructive and reliable techniques for evalu-
ation of seed quality in the modern agro-industry, high-
performance techniques must be developed for the
evaluation of seed quality. A number of non-destructive
testing technologies have been developed for evaluation
of seedquality (Huang et al., 2015). These non-destructive
testing technologies are rapid, accurate, reliable and sim-
ple methods for assessing the quality of seeds. This
review focuses primarily on non-destructive techniques,
namely, machine vision, spectroscopy, hyperspectral
imaging, electronic nose, soft X-ray imaging and thermal
imaging techniques, which have been used to assess seed
quality parameters such as chemical composition,

genetic purityand classification, disease and insect infest-
ation, as well as vigour and germinability. The emphasis
in this review is also placed on insights into the methods
and techniques that have been investigated for evaluat-
ing seed qualities.

Non-destructive techniques for seed quality
assessment

Machine vision

Machine vision, also knownas ‘computer vision’ or ‘com-
puter image processing’, is an artificial intelligence tech-
nique that simulates human vision (Huang et al., 2015).
This technique is non-destructive, reliable and rapid
and has beenproven to be an effective andpowerful tech-
nique for quality evaluation of food and agricultural pro-
ducts, particularly seeds (Hornberg, 2007). A typical
machine vision system consists of four basic components:
an illumination system, a sensor or camera, a lens and a
computer with frame grabber/digitizer (Fig. 1). Most
applications of machine vision address the visible spec-
trum (380–780 nm) (Gunasekaran et al., 1985). Amachine
vision system should be capable of identifying and grad-
ing seeds based on image external features, such as size,
shape, colour and texture. The superiority, disadvantages
and feasibility of different image external features should
be simultaneously considered to select the most suitable
feature for specific applications. Machine vision has
already been used, with varying success, to assess seeds
of a range of crop and non-crop species. This review
focuses mainly on machine vision techniques that can
be used to classify seed varieties, disease detection, iden-
tification of seed varieties, etc.

Spectroscopy

Spectroscopy is used to investigate andmeasure the spec-
tra produced when matter interacts with, or emits, elec-
tromagnetic radiation (Huang et al., 2015). A range of
spectroscopic techniques, such as near-infrared- (NIR),
mid-infrared- (MIR), fluorescence-, Fourier transform-
infrared- (FT-IR) and Raman spectroscopy have been

Figure 1. A typical machine vision system
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widely and successfully used as sensitive and fast analyt-
ical techniques forauthenticationandqualityanalysis of a
variety of agricultural seeds (Fig. 2). NIR and MIR spec-
troscopyare basedonmolecularovertones andcombined
vibrations. FT-IR spectroscopy is a technique used to
record infrared spectra and detect radiation in the MIR
region. FT-IR spectroscopy is an information-rich analyt-
ical technique, as it provides a greater amount of chemical
information regarding the scanned sample than NIR
spectroscopy (Lohumi et al., 2015). Raman spectroscopy
is another form of analytical spectroscopy that is suitable
for quality and authenticity analysis of agro-food pro-
ducts. This technique can provide specific information
needed for identification of sample matrices based on
model compounds, such as lipids, proteins and carbohy-
drates, and is sensitive to minor components (Seo et al.,
2016). This review focuses mainly on spectroscopic tech-
niques that can be used to detect seed quality attributes,
such as chemical composition, viability and damage by
insects and other causes.

Hyperspectral imaging

Hyperspectral imaging has recently emerged as a
powerful analytical technique for food quality and

authenticity analysis. This technique is used to acquire
both spectral and spatial information from an object
(Wu and Sun, 2013). A hyperspectral imaging system
includes light sources, wavelength dispersion devices
and detectors. As the centre of a hyperspectral imaging
system, wavelength dispersion devices are used to dis-
perse broadband light into different wavelengths
(Fig. 3). The detector collects light, which carries useful
information from the wavelength dispersion device
and measures the intensity of the light by converting
radiation energy into electrical signals (Huang et al.,
2015). Using hyperspectral imaging, sample analysis
is convenient and comparatively fast because a large
number of samples are analysed at the same time,
whereas spectroscopic methods analyse only one sam-
ple at a time (Lohumi et al., 2015). Machine vision and
spectroscopy can only provide spatial or spectral infor-
mation, whereas hyperspectral imaging, which inte-
grates machine vision and spectroscopy advantages,
can simultaneously obtain spatial and spectral infor-
mation by using only one system. In this regard, hyper-
spectral imaging has been widely used by researchers
to evaluate the exterior quality of seeds and predict
their internal composition (Mahesh et al., 2011a; Zhu
et al., 2011; Huang et al., 2014).

Figure 2. NIR, MIR or FT-IR spectroscopy (left panel) and Raman spectroscopy (right panel). From Seo et al. (2016).

Figure 3. A typical hyperspectral reflectance/fluorescence imaging system. From Qin et al. (2013).

Non-destructive seed quality measurement 287

https://doi.org/10.1017/S0960258516000234 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258516000234


Thermal imaging

Thermal imaging is a technique for converting the invis-
ible radiation pattern of an object into visible images for
feature extraction and analysis without establishing con-
tact with the object. Using this method, the surface tem-
perature of any object can be mapped at a high
resolution in two dimensions. The thermal data pro-
duced may be used directly or indirectly in many
ways (Manickavasagan et al., 2008). The application of
thermal imaging has gained popularity in the agro-food
industry in recent years (Vadivambal and Jayas, 2011).
The major advantage of thermal imaging is that it is a
non-contact, non-invasive and rapid technique that
can be used in online applications (Fig. 4). Thermal cam-
eras are easy to handle and highly accurate temperature
measurements are possible (Vadivambal and Jayas,
2011). Using thermal imaging, it is possible to obtain
temperature mapping of any particular region of inter-
est with fast response times, which is not possible
with thermocouples or other temperature sensors that
can only measure spot data. The repeatability of tem-
perature measurements in thermal imaging is high
(Ishimwe et al., 2014). In addition, thermal imaging
does not require an illumination source, unlike other
imaging systems. Nowadays, thermal imaging has a
potential application in many operations involved in
agriculture, starting from assessing seed quality, espe-
cially in detection of diseases, insects and seedling via-
bility, estimating soil water status, estimating crop
water stress, scheduling irrigation, determining disease
and pathogen affected plants, estimating fruit yield
and evaluating maturity of fruits and vegetables
(Chelladurai et al., 2010; Manickavasagan et al., 2010;

Vadivambal and Jayas, 2011). In spite of the fact that
it could be used as a non-contact, non-destructive tech-
nique, it has some drawbacks in comparison with other
imaging techniques because high resolution thermal
imaging is costly and accurate thermal measurements
depend on environmental and weather conditions.
Thus it may not be possible to develop a universal
methodology for its application in seed quality
assessment.

Soft X-ray imaging

Electromagnetic waves with wavelengths ranging from
1 to 100 nm (and energies of approximately 0.12 to 12
keV) are called soft X-rays. The low penetration
power of these waves and their ability to reveal internal
density changes make soft X-rays suitable for use in
evaluating agricultural products (Neethirajan et al.,
2007). Soft X-ray imaging is a well-known technique
that takes a few seconds (3–5 s) to produce an X-ray
image. Soft X-ray imaging has begun to be used in
the seed industry to detect internal voids, defects, insect
infestation and insect damage (Karunakaran et al., 2004;
Neethirajan et al., 2006; Mathanker et al., 2013).

Electronic nose

An electronic nose is an instrument consisting of an
array of electronic and chemical sensors with partial
specificity and a pattern recognition system that is cap-
able of recognizing simple or complex odours (Wilson
and Baietto, 2009). These devices typically have arrays

Figure 4. A typical thermal imaging system. From Manickavasagan et al. (2010).
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of sensors used to detect and distinguish odours pre-
cisely in complex samples and at low cost (Zhou
et al., 2012). Electronic nose devices have been
employed in a wide variety of applications, including
classification of kernels and microbial pathogen
detection.

Quality detection of seeds using non-destructive
techniques

Quality assessment of seeds: chemical composition

In recent years, non-destructive sensing techniques,
mainly spectroscopy and hyperspectral imaging, have
been widely used to determine the internal compos-
ition of seeds (Table 1). Previous studies have shown
that spectroscopy systems can be applied successfully
to determine the protein contents of corn (Armstrong
et al., 2011), maize (Baye et al., 2006), common beans
(Hacisalihoglu et al., 2010), rice (Wu and Shi 2004), soy-
bean (Ferreira et al., 2014), peanuts (Wang et al., 2012),
jatropha (Vaknin et al., 2011), rapeseed (Velasco and
Möllers, 2002), sunflower (Fassio and Cozzolino,
2004), canola (Daun et al., 1994), cotton (Huang et al.,
2013), foxtail millet (Yang et al., 2013), flax, safflower,
sesame and palm (Pandord et al., 1988). Previous stud-
ies have shown that spectroscopy is highly accurate in
protein prediction. The coefficients of determination
for prediction (Rp

2) of a partial least-squares regression
(PLSR) model have been found to be 0.98 for corn
(Chen et al., 2014), 0.99 for rapeseed (Pandord et al.,
1988), 0.96 for cottonseed (Huang et al., 2013), 0.98
for peanut (Pandord et al., 1988) and 0.91 for soybeans
(Ferreira et al., 2014). Spectroscopy has also been used
to estimate the fibre content of soybean, corn
(Armstrong et al., 2011) and rapeseed (Wittkop et al.,
2012; Bala and Singh, 2013;), and the sucrose content
of soybean (Choung, 2010). However, unsatisfactory
results have been reported for carbohydrate determin-
ation in maize (Baye and Becker 2004; Tallada et al.,
2009), rice (Wu and Shi 2004), foxtail millet (Chen
et al., 2013) and soybean (Choung 2010; Ferreira et al.,
2013) and made the same conclusions in their study
that any changes in the compositional amount among
the sample are not translated into differences within
the spectra. In recent research, hyperspectral imaging
has been used to predict crude protein and crude fat
fractions in soybean (Zhu et al., 2011), protein in
wheat (Mahesh et al., 2011a) and alpha-amylase activ-
ity in wheat (Xing et al., 2009, 2011). Unsatisfactory pre-
diction results have been obtained in some cases using
hyperspectral imaging because of the difficulty of
extracting the most important object features for asses-
sing the physical structure and chemical composition
of samples. The oil content is an important parameter
in the internal quality evaluation of most oilseed

crops. Spectroscopy within the range of 400–2500 nm
has been widely used to determine oil content in pea-
nuts (Sundaram et al., 2010), maize (Tallada et al.,
2009), safflower (Rudolphi et al., 2012), rapeseed
(Velasco and Becker, 1998; Velasco et al., 1999; Petisco
et al., 2010), sunflower (Pandord et al., 1988;
Pérez-Vich et al., 1998; Fassio and Cozzolino, 2004),
jatropha (Vaknin et al., 2011), canola (Daun et al.,
1994), cotton (Huang et al., 2013), corn and soybean
(Armstrong et al., 2011). The coefficients of determin-
ation of the oil prediction model were 0.99, 0.91, 0.98,
0.92, 0.95, 0.98, 0.95, 0.87 and 0.84 for peanut, saf-
flower, rapeseed, sunflower, jatropha, canola, cotton,
corn and soybean, respectively. Hyperspectral imaging
has also been used to predict the oil and oleic acid con-
centrations in corn (Weinstock et al., 2006). An NIR
hyperspectral imaging system (750–1090 nm) was
used to predict the oil content in maize and the deter-
mination coefficient of the PLSR model for the deter-
mination of oil content was found to be 0.75 (Cogdill
et al., 2004). The results indicated outstanding perform-
ance of the non-destructive technique in the prediction
of the internal composition of the seed. Spectroscopy
has also been used to determine the fatty acid content
of peanuts (Sundaram et al., 2010), soybean (Patil et al.,
2010), safflower (Rudolphi et al., 2012), rapeseed (Kim
et al., 2007), sunflower (Cantarelli et al., 2009), jatropha
(Vaknin et al., 2011), canola and flax (Siemens and
Daun, 2005) with high accuracy. The amino acid com-
position of seeds is also a concern in their quality
assessment since high protein content and a rational
amino acid composition of seed are a major concern
to the plant breeder (Chen et al., 2011). Studies have
shown that near-infrared spectroscopy (NIRS) and
FT-NIRS can be used successfully in the assessment
of amino acid composition in rapeseed (Pandord
et al., 1988; Chen et al., 2011), peanuts (Wang et al.,
2012), rice (Zhang et al., 2011) and foxtail millet
(Yang et al., 2013). An experiment in high-resolution
hyperspectral reflectance imagery in the near-infrared
region (960–1700 nm) was conducted to predict the
amino acid content of fresh soybeans and showed
that the best predictions (MSE = 0.305, R = 0.611) were
obtained using a non-linear artificial neural network
(ANN)-based regression model based on the second-
derivative spectra data produced for the nitrogen con-
centration (Monteiro et al., 2007). Spectroscopy has also
been used to determine the moisture content of soy-
bean (Pandord et al., 1988; Ferreira et al., 2013;
Ferreira et al., 2014), sunflower (Pandord et al., 1988;
Fassio and Cozzolino, 2004), peanuts (Sundaram
et al., 2010), flax, safflower and cotton (Pandord et al.,
1988), as well as the pH of cocoa beans (Sunoj et al.,
2016), the mineral contents (K, Mg, Ca and P) of pea-
nuts (Phan-Thien et al., 2011), the seed weight of rape-
seed (Velasco et al., 1999), the grain weight of rice and
brown rice (Wu and Shi, 2004), the ethanol content of
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Table 1. Assessment of chemical composition in seeds using different non-destructive techniques

Chemical composition Seed Method
Spectra region
(nm)

Analysis method
(s) Result References

Protein, starch Bean Spectroscopy 907–1689 PLSR Rp
2 = 0.80–0.88 Hacisalihoglu et al., 2010

Protein, starch, amylose Bean Spectroscopy 1000–2500 PCA, PLSR RPD = 2.6–3.7 Plans et al., 2013
Fatty acid Canola seed Spectroscopy 400–2500 MPLSR SEP = 0.42–0.77% Siemens and Daun, 2005
Oil, protein Canola seed Spectroscopy 850–1050 PLSR, MLR SEP = 0.43–0.55%,

0.35–0.42%
Daun et al., 1994

pH, polyphenol Cocoa bean FT-NIR
spectroscopy

3600–12500 cm–1 PLSR Rp
2 = 0.80, 0.85 Sunoj et al., 2016

Oil, oleic acid Corn Hyperspectral
imaging

950–1700 PLSR RMSEP = 0.74%, 14% Weinsto1ck et al., 2006

Protein, fat Corn Spectroscopy 1000–2500 PLSR Rp
2 = 0.98, 0.94 Chen et al. 2014

Protein, oil, starch, density Corn Spectroscopy 904–1685 PLSR Rp
2 = 0.68–0.91 Armstrong et al., 2011

DM, protein, ADF, OMD Corn Spectroscopy 400–2500 PCA, PLSR Rp = 0.42–0.92 Fassio et al., 2009
Moisture, oil, protein, crude fibre Cotton Spectroscopy 1100–2500 MLR R = 0.98, 0.99, 0.98,

0.95
Pandord et al., 1988

Protein, oil Cotton Spectroscopy 1100–2498 PLSR, LS-SVMR Rp
2 = 0.96, 0.95 Huang et al. 2013

Fatty acid Flax seed Spectroscopy 400–2500 MPLSR SEP = 0.62–1.2% Siemens and Daun, 2005
Moisture, oil, protein, crude fibre Flax seed Spectroscopy 1100–2500 MLR R = 0.96, 0.99, 0.99,

0.98
Pandord et al., 1988

Protein, carbohydrates, fat Foxtail
millet

Spectroscopy 950–1650 MLR Rp
2 = 0.70–0.94 Chen et al., 2013

Protein, fat, starch, amino acids Foxtail
millet

Spectroscopy 800–2500 PLSR Rp
2 = 0.71–0.93 Yang et al., 2013

Protein, oil content, composition Jatropha Spectroscopy 1100–2498 MPLSR Rp
2 = 0.86, 0.91–0.95,
0.10–0.73

Vaknin et al., 2011

Moisture, oil content Maize Hyperspectral
imaging

750–1090 PLSR Rp
2 = 0.87, 0.75 Cogdill et al., 2004

Ethanol yield Maize Spectroscopy 400–2498 PLSR RMSEP = 0.56% Hao et al., 2012
Protein Maize Spectroscopy 400–2500 MLR Rp

2 = 0.94 Rosales et al., 2011
Protein, oil, SSC Maize Spectroscopy 904–1685 PLSR Rp

2 = 0.25–0.89 Tallada et al., 2009
Protein, starch Maize Spectroscopy 890–1700 PLSR SEP = 1.7%, 11.5% Baye et al., 2006
Mineral: Ca, K, Mg, P Peanut Spectroscopy 400–2498 PLSR Rp

2 = 0.172–0.792 Phan-Thien et al., 2011
Moisture, oil, protein, crude fibre Peanut Spectroscopy 1100–2500 MLR R = 0.98, 0.99, 0.99,

0.98
Pandord et al., 1988

Protein, amino acid Peanut Spectroscopy 950–1650 PLSR Rp
2 = 0.99, 0.83–0.96 Wang et al., 2012

Moisture content Peanuts Spectroscopy 400–2500 PLSR Rp
2 = 0.84–0.97 Sundaram et al., 2010

Oil, fatty acids Peanuts Spectroscopy 400–2500 PLSR Rp
2 = 0.99 Sundaram et al., 2010

Moisture, oil, protein, crude fibre Palm Spectroscopy 1100–2500 MLR R = 0.79, 0.78, 0.71,
0.57

Pandord et al., 1988

Amino acid Rapeseed Spectroscopy 1100–2498 MPLSR Rp
2 = 0.89–0.98 Chen et al., 2011

Fatty acid Rapeseed Spectroscopy 400–2500 MPLSR Rp
2 = 0.95–0.98 Velasco and Becker, 1998

Fatty acid Rapeseed Spectroscopy 1100–2500 MPLSR Rp
2 = 0.72–0.98 Kim et al., 2007
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Table 1. Continued

Chemical composition Seed Method Spectra region
(nm)

Analysis method
(s)

Result References

Fibre content Rapeseed Spectroscopy 400–2500 PCA, MPLSR Rp
2 = 0.53–0.81 Wittkop et al., 2012

Moisture, oil, protein, crude fibre Rapeseed Spectroscopy 1100–2500 MLR R = 0.99, 1.0, 0.99, 0.99 Pandord et al., 1988
Oil, protein Rapeseed Spectroscopy 400–2498 PCA, MPLSR Rp

2 = 0.98, 0.96 Petisco et al., 2010
Phenol, crude fibre Rapeseed FT-NIR

spectroscopy
3600–12800 cm–1 PLSR Rp

2 = 0.96, 0.91 Bala and Singh, 2013

Protein Rapeseed Spectroscopy 1100–2500 MPLSR R = 0.94 Velasco and Möllers, 2002
Seed weight, oil, fatty acid Rapeseed Spectroscopy 1100–1460 and

1560–2500
MPLSR R = 0.92, 0.92, 0.73–

0.94
Velasco et al., 1999

Amino acid Rice Spectroscopy 1100–2498 PCR Rp
2 = 0.84–0.95 Zhang et al., 2011

Grain weight, brown rice weight,
amylose content

Rice Spectroscopy 1100–2500 MLR Rp
2 = 0.67, 0.71, 0.85 Wu and Shi, 2004

Starch, protein Rice Spectroscopy 1100–2500 PLSR, LS-SVM,
ICA

Rp = 0.89–0.98 Shao et al., 2011

Amylose, protein Rice Spectroscopy 1100–2500 LS-SVM, ANN Rp = 0.82-0.88 Shao et al., 2009
Moisture, oil, protein, crude fibre Safflower Spectroscopy 1100–2500 MLR R = 0.85, 0.97, 0.77,

0.84
Pandord et al., 1988

Moisture, oil, protein, crude fibre Sesame Spectroscopy 1100–2500 MLR R = 0.99, 0.99, 0.99,
0.75

Pandord et al., 1988

Colour, moisture Soybean Hyperspectral
imaging

400–1000 PLSR Rp = 0.83, 0.97 Huang et al., 2014

Fatty acid Soybean Spectroscopy 850–1048 PLSR, ANN,
LS-SVM

SEP = 0.42–1.67% Igne et al., 2008

Fatty acid Soybean Spectroscopy 850–1048 PLSR SEP = 0.01–0.08% Hurburgh, 2007
Fatty acid Soybean Spectroscopy 850–1048 PLSR, ANN,

SVMR
Rp
2 = 0.67–0.94 Kovalenko et al., 2006

Fatty acid Soybean Spectroscopy 850–1048 MPLSR Rp
2 = 0.63–0.89 Patil et al., 2010

Moisture, oil, protein, crude fibre Soybean Spectroscopy 1100–2500 MLR R = 0.92, 0.99, 0.99,
0.76

Pandord et al., 1988

Moisture, protein, lipid Soybean Spectroscopy 1000–2500 PLSR Rp
2 = 0.50–0.81 Ferreira et al., 2013

Moisture, ash, protein, lipid Soybean Spectroscopy 1000–2500 PLSR Rp
2 = 0.63–0.91 Ferreira et al., 2014

Oil, linoleic, oleic acid Soybean Spectroscopy 400–2500 MPLSR Rp
2 = 0.91, 0.73, 0.68 Rudolphi et al., 2012

Protein, fat Soybean Hyperspectral
imaging

850–1700 PLSR Rc
2 = 0.9, 0.97 Zhu et al., 2011

Protein, oil content Soybean Raman
spectroscopy

200–1800 cm−1 iPLSR Rp
2 = 0.92, 0.87 Lee et al., 2013

Protein, oil, fibre Soybean Spectroscopy 904–1685 PLSR Rp
2 = 0.44-0.90 Armstrong et al., 2011

Sucrose soybean Spectroscopy 400–2500 MPLSR Rp
2 = 0.92 Choung, 2010

Sweetness, amino acid Soybean Hyperspectral
imaging

400–1000 ANNR R = 0.61, 0.60–0.74 Monteiro et al., 2007

Continued
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maize (Hao et al., 2012), the phenol content of rapeseed
(Bala and Singh, 2013) and the polyphenol content of
cocoa beans (Sunoj et al., 2016). In recent years, hyper-
spectral imaging has been used to predict the moisture
content of corn (Cogdill et al., 2004; Mahesh et al.,
2011b) and soybean during drying (Huang et al.,
2014), the sweetness (sucrose, glucose and fructose
contents) of soybean (Monteiro et al., 2007) and the col-
our of soybeans during drying (Huang et al., 2014).

Quality assessment of seeds: insect damage and
diseases

Seed damage by insects, fungi or natural causes, such
as germination, are an important factor in seed quality
during storage and processing. Seed damage is there-
fore taken seriously by consumers and the food indus-
try. Various non-destructive techniques such as
machine vision, spectroscopy, hyperspectral imaging,
soft X-ray imaging, electronic nose and thermal
imaging have been widely used in the detection of
insect damage, insect infestation and diseases in
seeds (Table 2). Machine vision has been used together
with back-propagation neural networks based on col-
our features to detect external defects in rice seeds,
such as germs, diseases and incompletely closed
glumes, with an accuracy of 98.6–99.2% (Cheng et al.,
2006). A machine vision system developed for the
detection of damaged wheat kernels based on morpho-
logical and textural properties was shown to have a
classification accuracy of 91–94% (Delwiche et al.,
2013). A machine vision system was also used to detect
damaged soybeans based on colour features with an
accuracy of 99.6% (Shatadal and Tan, 2003). Recently,
spectroscopy has been used to identify defects in
corn (Esteve Agelet et al., 2012) and soybean
(Sirisomboon et al., 2009). Hyperspectral imaging has
been used to detect sprout damage in wheat (Singh
et al., 2009a; Xing et al., 2010) and to detect sprouting
in barley (Arngren et al., 2011). In a recent study, a
machine vision system was used to detect diseases
and insects for the purpose of quality sorting of areca
nuts with an accuracy of 90.9% (Huang, 2012).
Spectroscopy-based methods have also been used to
detect and classify fungus-infected maize (Giacomo
and Stefania, 2013), wheat (Soto-Cámara et al., 2012)
and soybeans (Wang et al., 2004), to determine the per-
centage of fungal infection in rice (Sirisomboon et al.,
2013) and to identify the green mottle mosaic virus in
cucumber (Lee et al., 2016). However, this technique
has yielded unsatisfactory results for fungal infection
determination in rice because the moisture and starch
contents in rice affect the overall extent of fungal infec-
tion (Sirisomboon et al., 2013). Numerous studies have
been conducted using hyperspectral imaging to detect
fungal-infected wheat (Singh et al., 2012) and maizeTa
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Table 2. Assessment of insect damages and diseases in seeds using different non-destructive techniques

Insect damage/diseases Seed Method
Feature(s)/spectra region
(nm) Analysis method(s) Result References

Disease detection Areca nuts Machine vision Geometric, colour BPNN 90.90% Huang, 2012
Sprout detection Barley Hyperspectral imaging 1002–1626 PCA, NNN, MLMR Error: 3%, 32% Arngren et al., 2011
Damaged detection Corn Spectroscopy 850–1650 PLSDA, SIMCA, KNN,

LS-SVM
<99% Esteve Agelet et al.,

2012a
Aflatoxin B1 Corn Hyperspectral imaging 1100–1700 PLS-DA 96.90% Kandpal et al., 2015
Green mottle mosaic
virus

Cucumber Raman Spectroscopy 400–1800 cm–1 PLS-DA 86% Lee et al., 2016a

Fungal infection Maize Hyperspectral imaging 400–1000 PCA, DA – Del Fiore et al., 2010
Fumonisins detection Maize Spectroscopy 650–2500 MLR Rp

2 = 0.91 Giacomo and Stefania,
2013

Fungus-infect Maize Spectroscopy & color
imaging

904–1685 LDA, ANN 89%, 79% Tallada et al., 2011

Aflatoxin B1 Maize Hyperspectral imaging 1000–2500 PCA, FDA 88–100% Wang et al., 2014
Fungal infection Maize Hyperspectral imaging 1000–2498 PCA, PLSR Rp

2 = 0.73–0.86 Williams et al., 2012
Fungal infection Maize Hyperspectral imaging 400–700 LDA 94.4%, 91.7% Yao et al., 2013
Insect-damaged Mungbean Hyperspectral imaging 1000–1600 PCA, LDA, QDA 85%, 88% Kaliramesh et al., 2013
Defect detection Rice Machine vision Contour, colour PCA, BPNN 91.1–99.4% Cheng et al., 2006
Fungal infection Rice Spectroscopy 950–1650 PLSR R = 0.67 Sirisomboon et al., 2013
Insect-damaged Soybean Hyperspectral imaging 900–1700 PCA, LDA, QDA 40–94% Chelladurai et al., 2014
Insect-damaged Soybean Hyperspectral imaging 400–1000 KS, SVDD 95.60% Huang et al., 2013
Bug damage Soybean Soft X-ray imaging Intensity of X-ray image − Good Pinto et al., 2009
Damaged detection Soybean Machine vision Colour ANN 99.60% Shatadal and Tan, 2003
Defect detection Soybean Spectroscopy 600–1100 PCA, PLSDA, SIMCA 72.2%, 100% Sirisomboon et al., 2009
Fungal-damaged Soybean Spectroscopy 400–1700 PLS, ANN 84–100% Wang et al., 2004
Bacteria infected Watermelon Hyperspectral Imaging 400–1000 PLS-DA, LS-SVM 91.7%, 90.5% Lee et al., 2016b
Fusarium detection Wheat Hyperspectral imaging 400–1000 PCA, SAM 67% Bauriegel et al., 2011
Insect fragments Wheat Hyperspectral imaging 1000–1600 PLSR Rp = 0.99 Bhuvaneswari et al.,

2011
Fungal infection Wheat Thermal imaging – LDA, QDA 96–100% Chelladurai et al., 2010
Fungal infection Wheat Hyperspectral imaging 400–1700 LDA 95% Delwiche et al., 2011
Damaged detection Wheat Machine vision Morphology, texture LDA, KNN 91–94% Delwiche et al., 2013
Insect infestation Wheat Soft X-ray imaging Textural, shape moments,

histogram
BPNN 98% Karunakaran et al., 2004

Insect infestation Wheat Soft X-ray imaging Textural, histogram BPNN 86% Karunakaran et al., 2004
Insect infestation Wheat Thermal imaging – LSD 83% Manickavasagan et al.,

2008
Fungal detection Wheat Electronic nose – PCA, PLS-DA 85.30% Paolesse et al., 2006
Insect detection Wheat Hyperspectral imaging 1000–1700 PLS-DA, iPLS-DA 91–100% Serranti et al., 2013
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(Del Fiore et al., 2010; Williams et al., 2012; Yao et al.,
2013) and to detect bacteria-infected watermelon
seeds (Lee et al., 2016). One study showed that the elec-
tronic nose is a powerful tool for the detection of fungal
contamination in wheat; the accuracy obtained using
partial least-squares discriminant analysis (PLS-DA)
was found to be 85.3% (Paolesse et al., 2006).
Recently, chlorophyll fluorescence has been used to
sort white cabbage seeds, resulting in 97% germination
by removing 13.2% of the seeds with very high chloro-
phyll fluorescence signal from the seed lot (Jalink et al.,
1998). Similar studies have been conducted to evaluate
the seed maturity in cabbage (Dell’Aquila et al., 2002),
tomato (Jalink et al., 1999), barley (Konstantinova et al.,
2002), carrot (Groot et al., 2006) and pepper (Kenanoglu
et al., 2013) using chlorophyll fluorescence. Thermal
imaging has been used to detect fungal infestations
in stored wheat using linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA),
with an accuracy of 100% for healthy samples and
96–97% for infected samples (Chelladurai et al., 2010).
In a study in which a hyperspectral imaging system
(1100–1700 nm) was used to detect aflatoxin B1
(AFB1) contaminants on corn kernels, a PLS-DA was
performed, and a minimum classification accuracy of
96.9% was achieved (Kandpal et al., 2015). Similar stud-
ies have been performed to detect AFB1 contaminants
on the surfaces of healthy maize kernels using a short
wavelength infrared (SWIR) hyperspectral imaging
system (Wang et al., 2014). The feasibility of short-wave
near-infrared hyperspectral (700–1100 nm wavelength
range) and digital colour imaging with different statis-
tical discriminant classifiers was investigated for use in
the detection of wheat damaged by four different
insect species: the rice weevil (Sitophilus oryzae), the
lesser grain borer (Rhyzopertha dominica), the rusty
grain beetle (Cryptolestes ferrugineus) and the red flour
beetle (Tribolium castaneum). Accuracies of 96% were
achieved for healthy wheat kernels and 91–100% for
insect-damaged wheat kernels (Singh et al., 2010a).
Similarly, numerous studies have been performed to
detect insect-damaged (Singh et al., 2009a, 2009b,
2010a, 2010b; Serranti et al., 2013) and mildew-
damaged (Shahin et al., 2014) wheat using hyperspec-
tral imaging. Hyperspectral imaging has also been
used to detect insect-damaged mung bean
(Kaliramesh et al., 2013) and insect fragments in semo-
lina (Bhuvaneswari et al., 2011) and soybean (Huang
et al., 2013; Chelladurai et al., 2014). Soft X-ray imaging
technology has been used to detect red flour beetle
infestation in wheat. An accuracy of 86% was achieved
using textural features with a back-propagation neural
network (BPNN) classifier (Karunakaran et al., 2004b).
Soft X-ray imaging has also been used to detect
internal wheat seed infestation by insects
(Karunakaran et al., 2004a) and bug damage in soybean
seeds (Pinto et al., 2009). In a recent study, thermalTa
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imaging was used to detect insect infestation in wheat
with an accuracy of 77.6% for infested seeds and 83%
for healthy seeds (Manickavasagan et al., 2008). A
recent study has shown that multispectral imaging
can be used for spinach seeds to discriminate unin-
fected seeds from infected seeds with 80–100% classifi-
cation rate (Olesen et al., 2011).

Quality assessment of seeds: variety identification
and classification

Variety identification and classification of seed species
using non-destructive techniques has been extensively
investigated by researchers worldwide (Table 3).
Machine vision has been used to identify four wheat
varieties using morphological features and colour fea-
tures with an accuracy of 95.86%, which suggests that
morphological features are more effective than colour
features in recognizing wheat varieties (Arefi et al.,
2011). Machine vision has also been used to classify
seeds of various species using morphological, colour,
textural and wavelet features and to distinguish
among species of wheat, barley, oats and rye
(Choudhary et al., 2008) and between wheat and barley
(Guevara-Hernandez and Gomez-Gil, 2011). Similarly,
machine vision has been used to identify nine Iranian
wheat seeds based on their varieties, using textural fea-
tures, with an accuracy of 98.15% (Pourreza et al., 2012)
and to recognize five Chinese corn varieties based on
their external features (Chen et al., 2010). Machine
vision has also been used to identify bean varieties
(Venora et al., 2009), discriminate among wheat grain
varieties (Zapotoczny, 2011a, 2011b), identify wheat
varieties (Zayas et al., 1986; Dubey et al., 2006), classify
corn (Jingtao et al., 2012; Pazoki et al., 2013), discrimin-
ate among rapeseed varieties (Li et al., 2007; Kurtulmuş
and Ünal 2015), classify pepper seeds (Kurtulmuş et al.,
2016) and classify rice varieties (Rad et al., 2011; Hong
et al., 2015). Accuracy is an important evaluation par-
ameter in variety identification; most of these studies
have reported highly accurate results, in the range of
85–100%. In addition, machine vision has been
shown to exhibit an overall accuracy of greater than
80% in grading maize (Yi et al., 2007; Wu et al., 2013)
and soybean (Kılıç et al., 2007). Recently, an electronic
nose was used to distinguish among varieties of
wheat seeds with an accuracy of 100% (Zhou et al.,
2012). Thermal imaging was used in a recent study to
identify eight western Canadian wheat varieties. The
overall classification accuracies of eight-class model,
red-class model (four classes), white-class model
(four classes), and pairwise (two-class) model compar-
isons obtained using a quadratic discriminant method
were 76, 87, 79 and 95%, respectively, and those
obtained using bootstrap and leave-one-out validation
methods were 64, 87, 77 and 91%, respectively

(Manickavasagan et al., 2010). Hyperspectral imaging
systems have been used for accurate and reliable dis-
crimination among varieties of maize seeds (Zhang
et al., 2012), for classification of four varieties of
maize seeds in different years (Huang et al., 2016), for
identification of wheat varieties (Choudhary et al.,
2009; Zhu et al., 2012), for differentiation of wheat
classes grown in western Canada (Mahesh et al.,
2008) and for differentiation among varieties of rice
(Kong et al., 2013). Some of these applications have
achieved a classification accuracy of 100%.
Hyperspectral imaging has also been used by several
researchers for hardness classification of maize
(Williams et al., 2009; McGoverin et al., 2011).
Recently, hyperspectral imaging has been used to dis-
tinguish among transgenic soybeans (Esteve Agelet
et al., 2012) and rice (Liu et al., 2014). Similarly, a
NIRS technique has been used to distinguish among
herbicide-resistant genetically modified soybean seeds
(Lee and Choung, 2011). It has also been demonstrated
that multispectral imaging technique can be used to
distinguish transgenic- from non-transgenic rice seeds
(Liu et al., 2014).

Quality assessment of seeds: seed viability

A good-quality seed is one that is capable of germin-
ation under various conditions. A non-viable seed is
one that fails to germinate even under optimal condi-
tions (Bradbeer, 1988). In recent years, non-destructive
techniques, mainly spectroscopy and hyperspectral
imaging, have been widely used to predict seed viabil-
ity (Table 4). A machine vision system was used to pre-
dict alfalfa and sativa seed germinability using the
RGB (red, green, blue) density value with correlation
coefficients of 0.982 and 0.984 for alfalfa and sativa,
respectively (Behtari et al., 2014). Researchers have
also studied soybean and snap bean seed germinability
using electric impedance spectroscopy in the frequency
range of 60 Hz to 8MHz (Vozáry et al., 2007). Recently,
spectroscopy has been used to distinguish viable gourd
(Min and Kang, 2003), cucumber (Mo et al., 2012),
patula pine (Tigabu and Odén, 2003), watermelon
and pepper seeds (Lohumi et al., 2013; Seo et al.,
2016) from their non-viable counterparts, to assess
corn seed viability (Ambrose et al., 2016) and to predict
the viability of cabbage and radish seeds (Shetty et al.,
2011). Most of these studies have reported accuracies of
more than 90% in viable seed identification.
Hyperspectral imaging systems have also been used
for accurate and reliable discrimination of viable and
non-viable seeds of corn (Ambrose et al., 2016), radish
(Ahn et al., 2012), watermelon (Bae et al., 2016) and
pepper (Mo et al., 2014) with accuracies of 95.6, 95,
84.2 and 99.4%, respectively. Recently, a hyperspectral
fluorescence imaging technique was used to extract the
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Table 3. Assessment of variety identification and classification in seeds using different non-destructive techniques

Variety classification/
identification Seed Method

Feature(s)/spectra
region (nm) Analysis method(s) Result References

Grading Bean Machine vision Size, colour ANN 69.1–99.3% Kılıç et al., 2007
Variety identification Bean Machine vision Morphology LDA 82.4–100% Venora et al., 2009
Variety classification Corn Machine vision Morphology, colour,

shape
MLP and Neuro-Fuzzy 94%, 96% Pazoki et al., 2013

Variety identification Corn Machine vision Morphology, colour SVM 97.3–98% Jingtao et al., 2012
Grading Maize Machine vision Morphology – 81.9% Yi et al., 2007
Variety identification Maize Machine vision Geometric, shape,

colour
BPNN 88–100% Chen et al., 2010

Grading Maize Machine vision Colour 95% Wu et al., 2013
Varieties identification Maize Hyperspectral

imaging
380–1030 PCA, KPCA, LS-SVM,

ANN
98.89% Zhang et al., 2012

Hardness Maize Hyperspectral
imaging

1000–2500 PCA Rp = 0.11–0.60 McGoverin and Manley, 2012

Hardness Maize Hyperspectral
imaging

960–2498 PCA, PLSDA RMSEP = 0.18, 0.29 Williams et al., 2009

Varieties classification Maize Hyperspectral
imaging

400–1000 LS-SVM 94.40% Huang et al., 2016

Varieties discrimination Pepper Machine vision Colour, shape and
texture

ANN 84.94% Kurtulmuş et al., 2016

Variety classification Rapeseed Machine vision Colour ANN 92.06–100% Li et al., 2007
Varieties discrimination Rapeseed Machine vision Colour, texture SVM, KNN 99.24% Kurtulmuş and Ünal, 2015
Varieties classification Rice Machine vision Colour, texture ANN 96.67% Rad et al., 2011
GM, non-GM Rice Hyperspectral

imaging
405–970 PCA, PLSDA, LS-SVM,

PCA-ANN
94–100% Liu et al., 2014

Variety identification Rice Hyperspectral
imaging

1039–1612 PLSDA, SIMCA, RF,
KNN, SVM, PCA

80–100% Kong et al., 2013

Varieties classification Rice Machine vision Morphological,
colour, texture

KNN, SVM, RF 90.54% Hong et al., 2015

GM, non-GM Soybean Hyperspectral
imaging

880–1720 LW-PCR, PCA-ANN 72–79% Esteve Agelet et al., 2012b

GM, non-GM Soybean Spectroscopy 400–2500 PCA, PLSDA, SIMCA 97% Lee and Choung, 2011
Classification Wheat Machine vision Morphology, colour ANN 95.86% Arefi et al., 2011
Classification Wheat Machine vision Texture LDA 98.15% Pourreza et al., 2012
Varieties discrimination Wheat Machine vision Geometric 99–100% Zapotoczny, 2011b
Variety identification Wheat Machine vision Shape, size ANN 84–94% Dubey et al., 2006
Varieties discrimination Wheat Machine vision Texture PCA, LDA, NDA, ANN 98% Zapotoczny, 2011a
Variety identification Wheat Hyperspectral

imaging
850–1700 PCA, SIMCA 90–100% Zhu et al., 2012

Varieties discrimination Wheat Electronic nose – PCA, LDA, BPNN 100% Zhou et al., 2012
Varieties discrimination Wheat Thermal imaging – QDA 64–95% Manickavasagan et al., 2010
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fluorescence spectra of cucumber seeds in the 425–700
nm range to discriminate between viable and non-
viable cucumber seeds using four types of algorithms.
The discrimination accuracies achieved based on the
subtraction image, the ratio image and the ratio-
subtraction image were 100 and 99.0% for viable and
non-viable seeds, respectively (Mo et al., 2015).
Hyperspectral imaging has also been used to classify
muskmelon seeds based on germination ability with
an accuracy of 94.6%, using a PLS-DA classification
algorithm (Kandpal et al., 2016). Hyperspectral
imaging in the range of 1000–2498 nm was able to pre-
dict the viability of barley, wheat and sorghum seed
with correlation coefficients of 0.85, 0.92 and 0.87,
respectively (McGoverin et al., 2011). Recently, multi-
spectral imaging has been demonstrated to be a poten-
tial technique to evaluate castor seed viability with
96% correct classification rate at 19 different wave-
lengths ranging from 375 to 970 nm (Olesen et al.,
2015). Other studies have been conducted, using multi-
spectral imaging to examine germination ability and
germ length in spinach seeds; with the use of
PLS-DA of images of spinach seeds it was possible to
classify large spinach seeds from small-sized and
medium-sized seeds (Shetty et al., 2012). Infrared
thermography has also been used to predict whether
a quiescent seed will germinate or die upon water
uptake, and the technique was reported to be able to
detect imbibition- and germination-associated biophys-
ical and biochemical changes (Kranner et al., 2010). A
similar technique has been used for viability evaluation
of lettuce seeds (Kim et al., 2013) and to evaluate ger-
mination capacity of leguminous plant seeds
(Baranowski et al., 2003).

Summary and future trends

This paper provided an overview of previous studies
on seed quality assessment using non-destructive meas-
urement techniques, namely chemical composition
(Table 1), insect damage and diseases (Table 2), variety
identification and classification (Table 3) and viability
(Table 4). Machine vision, spectroscopy, hyperspectral
imaging, thermal imaging, electronic nose and soft
X-ray imaging are the main techniques to determine
seed quality. Among them, spectroscopy and hyper-
spectral imaging techniques for chemical composition,
machine vision, hyperspectral imaging, spectroscopy
and soft X-ray imaging for insect and diseases detec-
tion, machine vision, thermal imaging and hyperspec-
tral imaging for seed variety identification and
classification, and spectroscopy and hyperspectral
imaging for viability of seeds has been widely used in
research, quality assessment, and for industrial pur-
poses. For this, numerous spectroscopy instruments
are commercially available. However, most of theTa
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Table 4. Assessment of seed viability using different non-destructive techniques

Application Seed Method
Feature(s)/spectra
region (nm)

Analysis
method(s) Result References

Classify based on germination
ability

Muskmelon Hyperspectral imaging 948–2494 PLS-DA 94.60% Kandpal et al., 2016

Classify the viable and
non-viable seeds

Gourd Spectroscopy 1100–2500 PLS-DA 96%, 95% Min and Kang,
2003

Classify the viable and
non-viable seeds

Cucumber Raman spectroscopy 150–1890 cm–1 PLS-DA 100% Mo et al., 2012

Classify the viable and
non-viable seeds

Watermelon Hyperspectral Imaging 1000–2500 PLS-DA 84.20% Bae et al., 2016

Discriminate the viable and
empty seeds

Patula pine Spectroscopy 400–2498 PLS model 96%, 88% Tigabu and Odén,
2003

Discriminate the viable and
non-viable seeds

Corn Hyperspectral Imaging 1000–2500 PLS-DA 95.60% Ambrose et al.,
2016b

Discriminate the viable and
non-viable seeds

Radish Hyperspectral Imaging 400–1000 PLS-DA 95% Ahn et al., 2012

Discriminate the viable and
non-viable seeds

Pepper Hyperspectral Imaging 400–700 PLS-DA 99.4% Mo et al., 2014

Discriminate the viable and
non-viable seeds

Watermelon FT-NIR spectroscopy 1000–2500 PLS-DA 100% Lohumi et al., 2013

Discriminate the viable and
non-viable seeds

Cucumber Hyperspectral fluorescence
imaging

425–700 SWI 99%, 97% Mo et al., 2015

Discriminate the viable and
non-viable seeds

Pepper FT-NIR spectroscopy, Raman
spectroscopy

1400–2400, 1800–970
cm–1

PLS-DA 99% Seo et al., 2016

Measure the seed viability Corn FT-NIR spectroscopy, Raman
spectroscopy

1000–2500, 170–3200
cm–1

PCA, PLS-DA 100% Ambrose et al.,
2016a

Predict the viability of seeds Barley, wheat,
sorghum

Hyperspectral Imaging 1000–2498 PCA, PLS-DA R = 0.85, 0.92,
0.87

McGoverin et al.,
2011

Predict the viability of seeds Cabbage, radish Spectroscopy 1100–2500 ECVA, iECVA Error: 6–8%,
2–3%

Shetty et al., 2011

Predicting the seed germinability Alfalfa, Sativa Machine vision RGB density value – R = 0.982, 0.984 Behtari et al., 2014
Predicting the seed germinability Soybean, snap

bean
Electrical impedance
spectroscopy

60 Hz–8 MHz – R2 = 0.27–0.49,
0.44–0.50

Vozáry et al., 2007
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instruments are too expensive to be widely used in
practical production. Therefore, one of the main con-
cerns of current researchers is how to decrease the
cost while maintaining accuracy of analysis. In contrast,
hyperspectral imaging provides both spatial and spec-
tral information and is suitable for both external quality
classification and for prediction of internal chemical
composition. However, current hyperspectral imaging
technology is not widely used compared with spectros-
copy. This limitation may be due to the time-
consuming process of hyperspectral imaging to gener-
ate a hypercube and the large amount of hyperspectral
data. As a new technology that has only been studied
for over a decade, hyperspectral imaging has a long
way to go before it can be moved from laboratories to
practical application. Recently, machine vision techni-
ques have been placed as in-line detection and grading
systems in actual production. Generally, a complete
detection process for machine vision technique includes
image acquisition, image processing and analysis, and
formulation of decisions. These steps can be accom-
plished with only one smart camera, considering the
increasing development of electronics and microproces-
sors. Thermal imaging and soft X-ray imaging are of
very limited use in seed quality assessment due to
high cost, the requirement of a controlled environment
as the precision of this instrument fluctuates with envir-
onmental condition. The electronic nose technique is
commonly used to determine seed quality during stor-
age because it detects chemical interactions between the
substrates over the gas sensors and the aromatic com-
pounds. Electronic noses today generally suffer from
significant weaknesses which limit their widespread
application in seed quality assessment. Their sensing
ability is profoundly influenced by ambient factors
that are very critical in seed quality assessment. We
should address the rapid development of instruments
coupled with the improvement of analysis algorithms
to help to promote efficient technologies for the seed
quality assessment field.

Conclusions

This paper presents an overview of studies that have
shown that non-destructive techniques can be used
effectively as reliable and accurate tools for the com-
position prediction, variety identification and classifi-
cation, quality grading, damage detection, insect
infestation detection and viability and germinability
prediction of agricultural seeds. These non-destructive
techniques are rapid, accurate, reliable and simple tools
for quality assessment of seeds. Given the urgent need
of the industry for advanced testing methods and rapid
development of suitable technologies and instruments,
non-destructive techniques exhibit great potential to be
dominant methods for quality assessment of seeds.
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