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We present three-dimensional direct numerical simulations and an analytic model
of reflection-driven magnetohydrodynamic (MHD) turbulence in the solar wind. Our
simulations describe transverse, non-compressive MHD fluctuations within a narrow
magnetic flux tube that extends from the photosphere, through the chromosphere
and corona and out to a heliocentric distance r of 21 solar radii (R�). We launch
outward-propagating ‘z+ fluctuations’ into the simulation domain by imposing a
randomly evolving photospheric velocity field. As these fluctuations propagate
away from the Sun, they undergo partial reflection, producing inward-propagating
‘z− fluctuations’. Counter-propagating fluctuations subsequently interact, causing
fluctuation energy to cascade to small scales and dissipate. Our analytic model
incorporates dynamic alignment, allows for strongly or weakly turbulent nonlinear
interactions and divides the z+ fluctuations into two populations with different
characteristic radial correlation lengths. The inertial-range power spectra of z+ and
z− fluctuations in our simulations evolve toward a k−3/2

⊥ scaling at r > 10R�, where
k⊥ is the wave-vector component perpendicular to the background magnetic field. In
two of our simulations, the z+ power spectra are much flatter between the coronal
base and r' 4R�. We argue that these spectral scalings are caused by: (i) high-pass
filtering in the upper chromosphere; (ii) the anomalous coherence of inertial-range
z− fluctuations in a reference frame propagating outwards with the z+ fluctuations;
and (iii) the change in the sign of the radial derivative of the Alfvén speed at
r= rm' 1.7R�, which disrupts this anomalous coherence between r= rm and r' 2rm.
At r > 1.3R�, the turbulent heating rate in our simulations is comparable to the
turbulent heating rate in a previously developed solar-wind model that agreed with
a number of observational constraints, consistent with the hypothesis that MHD
turbulence accounts for much of the heating of the fast solar wind.

Key words: astrophysical plasmas, plasma nonlinear phenomena, space plasma physics

† Email address for correspondence: benjamin.chandran@unh.edu

https://doi.org/10.1017/S0022377819000540 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-4177-3328
https://orcid.org/0000-0002-8841-6443
mailto:benjamin.chandran@unh.edu
https://doi.org/10.1017/S0022377819000540


2 B. D. G. Chandran and J. C. Perez

1. Introduction
One model for the origin of the solar wind relies upon Alfvén waves (AWs) with

wavelengths much larger than the proton gyroradius and frequencies much smaller
than the proton cyclotron frequency. In this model, photospheric motions and/or
magnetic reconnection in the solar atmosphere launch AWs into the corona and
solar wind, where the AWs undergo partial non-WKB (Wentzel–Kramers–Brillouin)
reflection (Velli, Grappin & Mangeney 1989; Zhou & Matthaeus 1989). Subsequent
interactions between counter-propagating AW packets transfer fluctuation energy
from large scales to small scales. At sufficiently small scales, the fluctuation energy
dissipates. Large-scale AWs also exert an outward force on the plasma. Several studies
have found that this dissipation and momentum deposition can account for much of
the heating and acceleration of the solar wind (e.g. Cranmer, van Ballegooijen &
Edgar 2007; Verdini et al. 2010; Chandran et al. 2011; van der Holst et al. 2014).

A number of authors have investigated different aspects of reflection-driven
magnetohydrodynamic (MHD) turbulence. For example, Heinemann & Olbert
(1980), Velli (1993) and Hollweg & Isenberg (2007) investigated the linear AW
propagation problem, accounting for radial variations in the density, outflow velocity
and magnetic-field strength. Dmitruk et al. (2002), Cranmer & van Ballegooijen
(2005), Verdini & Velli (2007), Chandran & Hollweg (2009) and Zank et al. (2018)
investigated the radial evolution of MHD turbulence in the solar atmosphere and
solar wind accounting for reflection and nonlinear interactions. Cranmer et al. (2007),
Verdini et al. (2010), Chandran et al. (2011), van der Holst et al. (2014) and Usmanov,
Goldstein & Matthaeus (2014) incorporated reflection-driven MHD turbulence into
one-dimensional (1-D) and 3-D solar-wind models. Verdini, Velli & Buchlin (2009)
and Verdini et al. (2012) carried out numerical simulations of reflection-driven MHD
turbulence, in which they approximated the nonlinear terms in the governing equations
using a shell model. Dmitruk & Matthaeus (2003) carried out direct numerical
simulations of reflection-driven MHD turbulence (i.e. without approximating the
nonlinear terms) in the corona in the absence of a background flow. van Ballegooijen
et al. (2011) carried out direct numerical simulations of reflection-driven MHD
turbulence in the chromosphere and corona without a background flow. Perez &
Chandran (2013), van Ballegooijen & Asgari-Targhi (2016) and van Ballegooijen
& Asgari-Targhi (2017) carried out direct numerical simulations of reflection-driven
MHD turbulence from the low corona to the Alfvén critical point (at a heliocentric
distance r of rA ∼ 10R�) and beyond, taking into account the solar-wind outflow
velocity.

In § 3 of this paper, we present three new direct numerical simulations of reflection-
driven MHD turbulence extending from the photosphere, through the chromosphere,
through a coronal hole and out to r = 21R�. These simulations go beyond previous
simulations extending to r & rA by incorporating the chromosphere. This enables us
to account, at least in an approximate way, for the strong turbulence that develops
in the chromosphere, which launches a broad spectrum of fluctuations into the corona
(van Ballegooijen et al. 2011). Our simulations also reach larger r than the simulations
of Perez & Chandran (2013) and contain 16 times as many grid points in the field-
perpendicular plane as the simulations of van Ballegooijen & Asgari-Targhi (2017).

To offer some insight into the physical processes at work in our simulations, we
present an analytic model of reflection-driven MHD turbulence in § 4. This model
accounts for the generation of inward-propagating AWs by non-WKB reflection,
nonlinear interactions between counter-propagating AW packets and the development
of alignment between outward-propagating and inward-propagating fluctuations.
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Reflection-driven MHD turbulence 3

For reasons that we describe in §§ 3 and 4, we divide the outward-propagating
fluctuations into two populations with different characteristic radial correlation lengths.
Our model reproduces our numerical results reasonably well.

The power-law scalings of the inertial-range power spectra in our simulations vary
with radius. We discuss the causes of these variations in § 6, after reviewing several
relevant studies in § 5. We briefly discuss other wave-launching parameter regimes in
§ 7 and phase mixing in § 8, and we present our conclusions in § 9.

2. Transverse, non-compressive fluctuations in a radially stratified corona and
solar wind
We focus exclusively on non-compressive fluctuations, which are observed to

dominate the energy density of solar-wind turbulence (Tu & Marsch 1995), and
which carry an energy flux in the low corona that is sufficient to power the solar
wind (De Pontieu et al. 2007). A disadvantage of our approach is that we neglect
nonlinear couplings between compressive and non-compressive fluctuations (see, e.g.
Cho & Lazarian 2003; Chandran 2005; Luo & Melrose 2006; Chandran 2008; Yoon
& Fang 2009; Shoda et al. 2019), which are likely important in the solar atmosphere
and solar wind. For example, the plasma density varies by a factor of ∼6 over a
distance of a few thousand km perpendicular to the background magnetic field B0 in
the low corona (Raymond et al. 2014), which suggests that phase mixing (Heyvaerts
& Priest 1983) is an efficient mechanism for cascading AW energy to small scales
measured perpendicular to B0 near the Sun.1 We also neglect the parametric decay
of AWs into slow magnetosonic waves and counter-propagating AWs (e.g. Galeev &
Oraevskii 1963; Sagdeev & Galeev 1969; Cohen & Dewar 1974; Tenerani, Velli &
Hellinger 2017), which may cause outward-propagating AWs in the fast solar wind
to acquire a k−1

‖ spectrum by the time these fluctuations reach r = 0.3 au (Chandran
2018), where k‖ is the wave-vector component parallel to the background magnetic
field, and 1 au is the mean Earth–Sun distance. Nevertheless, the simulations that we
report in § 3 describe an important subset of the full turbulent dynamics.

Our analysis begins with the continuity, momentum and induction equations of ideal
MHD,

∂ρ

∂t
+∇ · (ρv)= 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇ptot +

B · ∇B
4π

− ρ∇Φ, (2.2)

and
∂B
∂t
=∇× (v×B), (2.3)

where ρ, v and B are the mass density, velocity and magnetic field, Φ is the
gravitational potential, ptot = p + B2/8π is the total pressure and p is the plasma
pressure. We set

v =U+ δv B=B0 + δB (2.4a,b)

and take the background flow velocity U to be aligned with B0. We neglect density
fluctuations, setting

δρ = 0. (2.5)
1In contrast, Helios radio occultation observations show that the fractional density variations drop to 0.1–0.2

at r ∈ (5R�, 20R�) (Hollweg, Cranmer & Chandran 2010).
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4 B. D. G. Chandran and J. C. Perez

We assume that the fluctuations are transverse and non-compressive, i.e.

δv ·B0 = 0 δB ·B0 = 0 ∇ · δv = 0, (2.6a−c)

and we take ρ, U and B0 to be steady-state solutions of (2.1) through (2.3) (as well
as the MHD energy equation). The Alfvén velocity and Elsasser variables are given
by

vA =
B0
√

4πρ
z± = δv ∓ δb, (2.7a,b)

where δb= δB/
√

4πρ. Rewriting (2.2) and (2.3) in terms of z±, we obtain (Velli et al.
1989; Zhou & Matthaeus 1990)

∂z±

∂t
+ (U± vA) · ∇z± + z∓ · ∇(U∓ vA)+

1
2
(z− − z+)(∇ · vA ∓

1
2
∇ ·U)

=−

(
z∓ · ∇z± +

∇ptot

ρ

)
. (2.8)

As in homogeneous MHD turbulence, the ρ−1∇ptot term in (2.8) cancels the
compressive part of the z∓ · ∇z± term to maintain the condition ∇ · z± = 0.

We assume that the background magnetic field B0 possesses a field line that is
purely radial. Working, temporarily, in spherical coordinates (r, θ, φ), with θ = 0
coinciding with this radial field line, we restrict our analysis to

θ� 1. (2.9)

We further assume that

vAφ =Uφ = ∂U/∂φ = ∂vA/∂φ = 0 (2.10)

and
1
B0

∂B0

∂r
∼O(r−1). (2.11)

Since z∓ ·B0= 0, these assumptions imply that to leading order in θ (Chandran et al.
2015a)

b̂0 · ∇=
∂

∂r
, (2.12)

and
z∓ · ∇(U∓ vA)= z∓(U ∓ vA)(∇ · b̂0/2), (2.13)

where
b̂0 =

B0

B0
. (2.14)

We take B0 to be directed away from the Sun, so that z+ (z−) corresponds to
outward-propagating (inward-propagating) fluctuations (when viewed in the local
plasma frame), and we define vector versions of the variables introduced by
Heinemann & Olbert (1980),

g=
(1+ η1/2)z+

η1/4
f =

(1− η1/2)z−

η1/4
, (2.15a,b)
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where
η= ρ/ρa, (2.16)

and ρa is the value of ρ at the Alfvén critical point, at which U = vA. Mass
conservation and flux conservation imply that

ρU
B0
= const., (2.17)

which in turn implies that
vA = η

1/2U. (2.18)

With the use of (2.15) and (2.18), we rewrite z± in (2.8) in terms of g and f , obtaining
the nonlinear Heinemann–Olbert equations (Heinemann & Olbert 1980; Chandran &
Hollweg 2009),

∂g
∂t
+ (U + vA)

∂g
∂r
−

(
U + vA

2vA

)
dvA

dr
f =−z− · ∇g−

(
1+ η1/2

η1/4

)
∇ptot

ρ
(2.19)

∂f
∂t
+ (U − vA)

∂f
∂r
−

(
U − vA

2vA

)
dvA

dr
g=−z+ · ∇f −

(
1− η1/2

η1/4

)
∇ptot

ρ
. (2.20)

Equations (2.19) and (2.20) are equivalent to the equations solved by Perez &
Chandran (2013) and van Ballegooijen & Asgari-Targhi (2016), van Ballegooijen &
Asgari-Targhi (2017).2

Because (2.6) is also satisfied by non-compressive fluctuations in reduced MHD
(RMHD), equations (2.19) and (2.20) could be viewed as an inhomogeneous version
of RMHD. However, the way in which we have arrived at (2.19) and (2.20) – in
particular, starting with (2.5) and (2.6) as assumptions – differs from the usual
derivation of the RMHD equations (see, e.g. Schekochihin et al. 2009), which begins
by assuming that δB� B0 and λ� l, where λ (l) is the characteristic length scale
of the fluctuations measured perpendicular (parallel) to B0. We conjecture that (2.19)
and (2.20) may provide a reasonable description of transverse, non-compressive
fluctuations and their mutual interactions even when the assumptions δB � B0 and
λ � l fail. For example, if collisionless damping (Barnes 1966) or passive-scalar
mixing (Schekochihin et al. 2016; Meyrand et al. 2019) removes compressive and
longitudinal fluctuations, then (2.5) and (2.6) may be reasonable approximations even
if δB∼B0 and λ∼ l. We note that neither our derivation of (2.19) and (2.20), nor the
derivation of RMHD as a limit of the Vlasov equation (Schekochihin et al. 2009),
requires that β = 8πp/B2 be ordered as either large or small.

3. Direct numerical simulations
We have carried out three direct numerical simulations of (2.19) and (2.20) using

the pseudo-spectral/Chebyshev REFLECT code (Perez & Chandran 2013). In each
simulation, the numerical domain is a narrow magnetic flux tube with a square
cross-section, as illustrated in figure 1. This flux tube extends from the photosphere

2Equations (2.1), (2.2), (2.3), (2.19), (2.20), and the plasma internal-energy equation possess two conservation
laws involving f and g. The first is total-energy conservation, and the second is sometimes referred to as
‘non-WKB wave-action conservation’ (Heinemann & Olbert 1980; Cranmer & van Ballegooijen 2005; Verdini
& Velli 2007; Chandran et al. 2015a). This second conservation relation can be derived from the equation of
cross-helicity conservation (Chandran et al. 2015a).
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6 B. D. G. Chandran and J. C. Perez

FIGURE 1. Numerical domain of the REFLECT code.

Quantity Run 1 Run 2 Run 3

δvph,rms . . . . . . . . . . . . 1.3 km s−1 1.3 km s−1 1.3 km s−1

τ (ph)
v . . . . . . . . . . . . 3.3 min 9.6 min 9.3 min

Lbox(1R�) . . . . . . . . . . . . 4.1× 102 km 4.1× 102 km 1.6× 103 km

Lbox(1.0026R�) . . . . . . . . . . . . 4.1× 103 km 4.1× 103 km 1.6× 104 km

Number of grid points . . . . . . . . . . . . 2562
× 16 385 2562

× 16 385 2562
× 16 385

TABLE 1. Simulation parameters.
Note: δvph,rms is the root mean square (r.m.s.) amplitude of the velocity fluctuation at the

photosphere, τ (ph)
v is the correlation time of the photospheric velocity and Lbox is the

perpendicular dimension (along either the x or y direction) of the numerical domain.

at r= rmin = 1R�, through the chromosphere, the ‘transition region’ (the narrow layer
at the top of the chromosphere), and a coronal hole and then out to a heliocentric
distance of

rmax = 21R�. (3.1)

We model the transition region in our simulations as a discontinuity in the density at

rtr = 1.0026R�, (3.2)

a distance of roughly 1800 km above the photosphere. (We have collected in
table 2 several heliocentric distances that we refer to repeatedly in the discussion to
follow.) The walls of the simulation domain are parallel to the background magnetic
field B0. As r increases and B0(r) decreases, the width Lbox of the simulation domain
perpendicular to B0 grows according to the relation

Lbox(r)= Lbox(1R�)
[

B0(1R�)
B0(r)

]1/2

. (3.3)

Because B0 drops sharply between the photosphere and the transition region (see
(3.16) below), Lbox(rtr) ' 10Lbox(1R�). The values of Lbox(1R�) and Lbox(rtr) in our
three simulations are listed in table 1. We discuss why we choose these values for
Lbox(1R�) in § 3.2.

At r > rtr, the field lines of B0 are nearly radial, even though we allow for
super-radial expansion of the magnetic field. This is because the flux-tube width
is much smaller than the characteristic radial distance over which B0 varies by a
factor of order unity. Because the flux tube is narrow and B0 is nearly radial, we
can ignore the curvature of the field-perpendicular surfaces to a good approximation
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Symbol Numerical value Corresponding location

rtr 1.0026R� Transition region
rb 1.0027R� Coronal base
rm 1.71R� Alfvén-speed maximum
rA 11.1R� Alfvén critical point
rmax 21R� Maximum r in simulation domain

TABLE 2. Glossary of heliocentric distances.

at r> rtr. We thus use Cartesian coordinates, x and y, to denote position in the plane
perpendicular to the radial line that runs down the centre of the simulation domain.

At r< rtr, our assumption in § 2 that B0 is nearly radial breaks down, because the
flux tube expands so rapidly with height above the photosphere. Because of this, and
because we neglect compressive fluctuations, our simulations provide only a crude
approximation of chromospheric turbulence. Nevertheless, we retain the chromosphere
in our simulations, because turbulence in the actual chromosphere launches a broad
spectrum of AWs into the corona (van Ballegooijen et al. 2011), and our model
chromosphere gives us a way of approximating this turbulent wave-launching process.

3.1. Radial profiles of ρ, B0 and U
We choose the radial profiles of ρ, U and B0 to approximate the conditions found in
coronal holes and the fast solar wind. Above the transition region, at r> rtr, we set

ρ = (109s−15.6
+ 2.51× 106s−3.76

+ 1.85× 105s−2)mp cm−3, (3.4)

B0 = 1.5[s−6( fmax − 1)+ s−2
]G, (3.5)

and

U = 9.25× 1012

(
B0

1 G

)(
ρ

mp cm−3

)−1

cm s−1, (3.6)

where

s=
r

R�
, (3.7)

fmax = 9 (3.8)

is the super-radial expansion factor, and mp is the proton mass. Equation (3.4) is
adapted from the coronal-hole electron-density measurements of Feldman et al. (1997).
We have modified those authors’ density profile by adding the s−2 term in (3.4) so
that the model extrapolates to a reasonable density at large r and by increasing the
coefficient of the s−15.6 term in order to match the low-corona density in the model of
Cranmer & van Ballegooijen (2005). Equation (3.5) is taken from Hollweg & Isenberg
(2002). The general form of (3.6) follows from (2.17). The numerical coefficient on
the right-hand side of (3.6) is chosen so that

U(rb)= 1.2 km s−1 U(1 au)= 750 km s−1, (3.9a,b)

where
rb = 1.0027R� (3.10)
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8 B. D. G. Chandran and J. C. Perez

is a heliocentric distance just larger than rtr that we take to correspond to the base of
the corona. Given the radial profiles in (3.4) through (3.6), the Alfvén critical point
is at

rA = 11.1R�, (3.11)

the Alfvén speed reaches its maximum value at

rm = 1.71R�, (3.12)

and

vA(rb)= 935 km s−1 vA(rm)= 2730 km s−1 vA(rA)=U(rA)= 627 km s−1.
(3.13a−c)

Below the transition region, we set

ρ = ρphec(1−s)/s, (3.14)

where
ρph = 4.78× 1016mpcm−3 (3.15)

is the photospheric density, c= [str/(1− str)] ln(ρtr,</ρph), str = rtr/R� and ρtr,< is the
density just below the transition region, which we take to be 100 times greater than
the value of the density at r= rtr from (3.4). We then set (cf. van Ballegooijen et al.
2011)

B=

[
(B2

ph − B2
tr)(ρ − ρtr,<)

ρph − ρtr,<
+ B2

tr

]1/2

, (3.16)

at r< rtr, where
Bph = 1400 G (3.17)

is the assumed magnetic-field strength in the photospheric footpoint of the simulated
flux tube, and Btr is the value of B at r= rtr from (3.5).

We plot the radial profiles of ρ, B, U and vA in figure 2. We also plot the z+ travel
time between the photosphere and radius r,

T(r)=
∫ r

R�

dr
U + vA

. (3.18)

3.2. Boundary conditions
We take the z± fluctuations to satisfy periodic boundary conditions in the xy-plane.
At the photosphere, we impose a time-dependent velocity field. We set the velocity
Fourier components at the photosphere equal to zero when k⊥ > 3 × 2π/Lbox(R�),
where

k⊥ =
√

k2
x + k2

y , (3.19)

and kx and ky are the x and y components of the wave vector k. We set the amplitudes
of the velocity Fourier components at k⊥63× 2π/Lbox(R�) equal to a constant, which
we choose so that the r.m.s. amplitude of the fluctuating velocity at the photosphere
is

δvph,rms = 1.3 km s−1, (3.20)
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FIGURE 2. The radial profiles of the solar-wind outflow velocity U, Alfvén speed vA,
plasma density ρ divided by the proton mass mp, background magnetic-field strength B0
and z+ travel time from the transition region T(r) in our direct numerical simulations. We
use the same profiles when evaluating quantities in the analytic model that we present
in § 4.

consistent with observational constraints on the velocities of solar granules (Richardson
& Schwarzschild 1950). We then assign random values to the phases of these velocity
Fourier components at the discrete set of times tn = n τ0, where τ0 = 5 min in Run 1
and τ0 = 20 min in Runs 2 and 3. To determine the phases at times between
successive tn, we use cubic interpolation in time. We define the correlation time of
the photospheric velocity τ (ph)

v to be the time lag over which the normalized velocity
autocorrelation function decreases from 1 to 0.5. The resulting velocity correlation
times are listed in table 1.

Our choices of τ0 and Lbox(R�) determine (at least in part – see § 3.7) the
correlation time τc and perpendicular correlation length L⊥ of the AWs launched by
the Sun. (Since we only drive photospheric velocity modes with k⊥6 3× 2π/Lbox(R�),
L⊥ is a few times smaller than Lbox.) Estimates of L⊥(rb) range from ' 103 km
(Cranmer et al. 2007; Hollweg et al. 2010; van Ballegooijen & Asgari-Targhi 2016;
van Ballegooijen & Asgari-Targhi 2017) to more than 104 km (Dmitruk et al. 2002;
Verdini & Velli 2007; Verdini et al. 2012), and estimates of τc(rb) range from ' 1–5
min (Cranmer & van Ballegooijen 2005; van Ballegooijen & Asgari-Targhi 2016; van
Ballegooijen & Asgari-Targhi 2017) to one or more hours (Dmitruk & Matthaeus
2003). Given the uncertainty in L⊥(rb) and τc(rb), we vary Lbox(R�) and τ0 by factors
of 4 and 5, respectively, in our different simulations in order to investigate how the
values of L⊥(rb) and τc(rb) influence the properties of the turbulence at larger r.
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10 B. D. G. Chandran and J. C. Perez

No information flows into the simulation domain through the outer boundary at r=
rmax, because rmax > rA. We thus do not impose an additional boundary condition at
the outer boundary.

3.3. Hyper-dissipation
To dissipate the fluctuation energy that cascades to small wavelengths, we add a hyper-
dissipation term of the form

Dg =−νg

(
∂2

∂x2
+
∂2

∂y2

)4

g (3.21)

to the right-hand side of (2.19), and a hyper-dissipation term of the form

Df =−νf

(
∂2

∂x2
+
∂2

∂y2

)4

f (3.22)

to the right-hand side of (2.20). We choose the magnitude and radial dependence of
the hyper-dissipation coefficients νg and νf so that dissipation becomes important near
the grid scale at all radii in each simulation. In particular, we take νg and νf to be
proportional to [Lbox(r)/Lbox(R�)]8.

3.4. Numerical algorithm
The REFLECT code solves (2.19) and (2.20) using a spectral element method based
on a Chebyshev–Fourier basis (Canuto et al. 1988). In each of our three simulations,
we split the numerical domain into 1024 subdomains. Each subdomain covers the full
flux-tube cross-section pictured in figure 1 using 256 grid points along both the x
and y directions, but only part of the flux tube’s radial extent. Along the r axis, each
subdomain contains 17 grid points, two of which are boundary grid points. The total
number of radial grid points is 16 385. Except at rmin and rmax, these boundary grid
points are shared by neighbouring subdomains. Eight of the subdomains are in the
chromosphere.

A Chebyshev/Fourier transform of (2.19) and (2.20) leads to a system of ordinary
differential equations for the Chebyshev–Fourier coefficients in each subdomain. These
equations are coupled through matching conditions (continuity of δv and δB) at the
boundaries between neighbouring subdomains. The REFLECT code advances the
solution forward in time using a third-order Runge–Kutta method, with an integrating
factor to handle the hyper-dissipation terms. Within each subdomain, the REFLECT
code discretizes the radial interval using a Gauss–Lobatto grid, which makes it
possible to compute the Chebyshev transform using a fast cosine transform.

3.5. Duration of the simulations
We run each simulation from t = 0 until t = 13.2 h. Between t = 0 and t = 4 h, the
magnetic and kinetic energies in the simulations fluctuate while trending upwards. For
reference, it takes 1.3 h for an outward-propagating AW to travel from the photosphere
to the Alfvén critical point at rA= 11.1R�, and 3 h for an outward-propagating AW to
travel from the photosphere to rmax= 21R� (see figure 2). After t' 4 h, the magnetic
and kinetic energies fluctuate around a steady value. We regard the turbulence as being
in a statistical steady state at t > 6 h. All the numerical results that we present are
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(a) (b)

(c) (d)

FIGURE 3. Panels (a,b,c) show the r.m.s. amplitudes of z± in Runs 1 through 3 and
in the analytic model described in § 4. The lower-right panel shows δBrms/B0 in Runs 1
through 3, where δBrms is the r.m.s. amplitude of the magnetic-field fluctuation.

calculated from time averages between t = 6 h and t = 13.2 h, except for the z+HF,rms
and z+LF,rms profiles in Run 2; those profiles, because of technical difficulties, were only
computed from averages between t= 12 h and t= 13 h.

3.6. Radial profiles of the fluctuation amplitudes
In figure 3, we plot the r.m.s. amplitudes of z±, denoted z±rms, as a function of r
in Runs 1 through 3 and in the analytic model discussed in § 4. The lower-right
panel of figure 3 shows the fractional variation in the magnetic-field strength as a
function of r in our three numerical simulations. In all three simulations, z+rms ' z−rms
in the chromosphere, because of strong AW reflection at the transition region and
photosphere. On the other hand, z+rms� z−rms in the corona and solar wind because of
the limited efficiency of reflection in these regions and because z− fluctuations are
rapidly cascaded to small scales by the large-amplitude z+ fluctuations.

The value of z+rms increases between r = R� and r = 5R� because of the radially
decreasing density profile. Equation (2.19) implies that the r.m.s. amplitude of g (grms)
is independent of r when (i) the fluctuations are in a statistical steady state, (ii) z−rms�

z+rms and (iii) nonlinear interactions can be ignored. At r< 5R�, ρ(r)� ρ(rA), and it
follows from (2.15) that z+rms ∝ grmsρ

−1/4. Equations (2.15) and (2.19) thus imply that
the linear physics of AW propagation causes z+rms to increase rapidly with increasing r
at r< 5R�, since z−rms� z+rms in this region. When nonlinear interactions are taken into
account, grms becomes a decreasing function of r, but the linear physics ‘wins out’
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at r < 5R�, in the sense that z+rms ∝ grmsρ
−1/4 remains an increasing function of r.

Since the rate of non-WKB reflection vanishes at r= rm= 1.71R�, the z− fluctuations
seen at r = rm in all three simulations must be generated elsewhere. At r < rA, z−

fluctuations propagate with a negative radial velocity once they are produced, and thus
the z− fluctuations seen at r= rm in the simulations originate at r> rm.

3.7. Two components of outward-propagating fluctuations
In our simulations, the transition region, which acts like an AW antenna, is
characterized by two time scales at the perpendicular outer scale of the turbulence,
which we take to be

L⊥ = 1
3 Lbox. (3.23)

The first time scale is the correlation time of the photospheric velocity field,
τ (ph)
v , which we define as the time increment required for the normalized velocity

autocorrelation function at the photosphere to decrease from 1 to 0.5. This time
increment is 3.3 min, 9.6 min and 9.3 min in Runs 1, 2 and 3, respectively, as
displayed in table 1. The second time scale is the nonlinear time scale

τnl =
L⊥
z±rms

(3.24)

of the balanced turbulence (‘balanced’ meaning that z+rms ' z−rms) just below the
transition region at r = rtr,< = rtr − ε, where ε is an infinitesimal distance, and
z±rms(rtr,<) ' 30 km s−1. (Section 3.10 discusses an effect that shortens this second
time scale relative to the estimate in (3.24) in Runs 1 and 2.) Although the right-hand
side of (3.24) contains a ± sign, we do not include a ± sign on the left-hand side,
because we will only evaluate (3.24) at locations at which z+rms ' z−rms. We define

τ
(tr)
nl = τnl(rtr,<). (3.25)

Given the values of Lbox(rtr) listed in table 1, τ (tr)
nl is 0.8 min, 0.8 min and 3 min in

Runs 1, 2 and 3, respectively, values that are several times smaller than τ (ph)
v . This

suggests that the transition region in our simulations launches two populations of z+
fluctuations characterized by different time scales and hence different radial correlation
lengths.

To investigate this possibility, we define

gLF(x̃, ỹ, r, t)=
1

2∆

∫ ri+2∆

ri

dr′g(x̃, ỹ, r′, t), (3.26)

gLF,rms = 〈|gLF|
2
〉

1/2, (3.27)

and
gHF,rms =

√
g2

rms − g2
LF,rms, (3.28)

where x̃= x/Lbox, ỹ= y/Lbox, and 〈· · ·〉 denotes an average over x, y and t. The quantity

∆= cavτ
(tr)
nl vA(rb) (3.29)
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FIGURE 4. Root mean square amplitudes of z+HF and z+LF (defined in (3.26) through
(3.28) and (3.32)) in Runs 1 through 3 and in the analytic model described in § 4.

is the approximate radial correlation length in the low corona of a z+ fluctuation that
is generated by a disturbance at the transition region whose correlation time is τ (tr)

nl ,

ri =

rmin if r< rmin +∆,
r−∆ if rmin +∆6 r 6 rmax −∆,

rmax − 2∆ if r> rmax −∆
(3.30)

and cav is a dimensionless constant of order unity. We set

cav ' 0.6, (3.31)

which enables us to carry out the radial average in (3.26) in a computationally efficient
way, using an integer number of subdomains. Given the above definitions, ∆= 0.08R�
in Runs 1 and 2, and ∆= 0.32R� in Run 3. We define

z+LF,rms =
η1/4gLF,rms

1+ η1/2
z+HF,rms =

η1/4gHF,rms

1+ η1/2
. (3.32a,b)

We emphasize that, although we use the subscripts ‘LF’ and ‘HF’ as shorthand for
‘low frequency’ and ‘high frequency’, the defining difference between z+LF,rms and
z+HF,rms is the difference in their radial correlation lengths.

In figure 4 we plot the radial profiles of z+LF,rms and z+HF,rms in our numerical
simulations and the analytic model of § 4. As this figure shows, all three simulations
contain both z+LF and z+HF fluctuations, and these fluctuations evolve in different ways
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FIGURE 5. The characteristic value of the sine of the alignment angle θ between z+ and
z−, defined in (3.33), in Runs 1 through 3 and in the analytic model of § 4 (using (4.8)).

as they propagate away from the Sun. In all three runs, z+HF,rms ' z+LF,rms in the low
corona. As r increases, z+HF,rms/z

+

LF,rms decreases, particularly in Run 2, suggesting that
the high-frequency component of z+ cascades and dissipates more rapidly than the
low-frequency component.

3.8. Alignment
Figure 5 shows the characteristic value of the sine of the angle between z+ and z−,

sin θ =
〈|z+ × z−|〉
〈|z+|〉〈|z−|〉

, (3.33)

in both our numerical simulations and the model we present in § 4. As r increases,
sin θ decreases, particularly in Run 2, causing nonlinear interactions between z+ and
z− to weaken (see, e.g. Boldyrev 2005, 2006; Perez & Chandran 2013; Chandran,
Schekochihin & Mallet 2015b).3

3.9. Turbulent heating
In figure 6 we plot the rate Q at which energy is dissipated per unit mass by
hyper-dissipation in our simulations (see Perez & Chandran 2013) as a function
of r, as well as the turbulent heating rate in the analytic model described in § 4.
The amplitudes of the turbulent fluctuations in our simulations are consistent with the

3We note that a different alignment angle, between δv and δb fluctuations, was the basis for Boldyrev’s
(2006) theory of scale-dependent dynamic alignment.
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FIGURE 6. The turbulent-heating rate per unit mass Q in Runs 1 through 3 and in the
analytic model of § 4. The dotted line labelled C11 is the turbulent-heating rate in the
solar-wind model of Chandran et al. (2011), which approximates the heating needed to
power the fast solar wind.

results of several observational studies that were summarized in figure 9 of Cranmer &
van Ballegooijen (2005), including non-thermal line widths in coronal holes inferred
from SUMER (Solar Ultraviolet Measurements of Emitted Radiation) and UVCS
(Ultraviolet Coronagraph Spectrometer) measurements (Banerjee et al. 1998; Esser
et al. 1999). For comparison, the r.m.s. amplitudes of the fluctuating velocity δvrms
at r = rtr in Runs 1, 2 and 3 are, respectively, 30.4 km s−1, 30.0 km s−1 and
26.7 km s−1.4 The values of δvrms at r = 2R� in Runs 1, 2 and 3 are, respectively,
170 km s−1, 157 km s−1 and 146 km s−1. Because the turbulence amplitudes in our
simulations are consistent with the aforementioned observations, the turbulent heating
rate in each of our simulations can be used to estimate the rate at which transverse,
non-compressive MHD turbulence would heat the solar wind as a function of r if the
correlation lengths and correlation time at r= rb in the simulation were realistic.5

To estimate the amount of turbulent heating that would be needed to power the
solar wind, we also plot in figure 6 the turbulent-heating rate in the one-dimensional
(flux-tube) solar-wind model of Chandran et al. (2011). This model included Coulomb
collisions, super-radial expansion of the magnetic field, separate energy equations for
the protons and electrons, proton temperature anisotropy, a transition between Spitzer

4In contrast to z±, δv is continuous across the transition region, and it makes no difference whether we
evaluate δvrms at, just above or just below the transition region.

5An important caveat to this statement is that we have neglected the interaction between non-compressive
fluctuations and compressive fluctuations, including phase mixing, which we discuss in § 8.
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conductivity near the Sun and a Hollweg collisionless heat flux at larger r and
enhanced pitch-angle scattering by temperature-anisotropy instabilities in regions
in which the plasma is either mirror or firehose unstable. The model agreed with
a number of remote observations of coronal holes and in situ measurements of
fast-solar-wind streams.

The turbulent-heating rate in the Chandran et al. (2011) model, which we
denote QC11, is for the most part comparable to (i.e. within a factor of 3 of) the
heating rate in our numerical simulations. The simulated heating rates in Runs 1
and 3 are in fact strikingly close to QC11 at r & 4R�. However, in all three runs,
Q> QC11 at r = 2− 3R�. This latter discrepancy is largest in the case of Run 2, in
which Q' 3QC11 at r= 2R�. Although Run 2 has the largest heating rate of all three
simulations at r = 2R�, the simulated heating rate in Run 2 is smaller than QC11 at
r & 5R� by a factor of ∼ 2.

The only region in which the simulated heating rate differs from QC11 by a factor
&4 is at r<1.3R� in Run 3, where Q/QC11 falls below 0.1. Even in Runs 1 and 2, the
simulated heating rate at r<1.3R� is smaller than QC11 by a factor of ∼2. The finding
that Q. 0.5QC11 at r< 1.3R� in all three runs may indicate the presence of additional
heating mechanisms in the actual low corona, such as compressive fluctuations, a
possibility previously considered by Cranmer et al. (2007) and Verdini et al. (2010).

Recently, van Ballegooijen & Asgari-Targhi (2016), van Ballegooijen & Asgari-
Targhi (2017) carried out a series of direct numerical simulations of reflection-driven
MHD turbulence and concluded that such turbulence is unable to provide enough
heating to power the solar wind. The reason we reach a different conclusion is likely
that we use the two-fluid solar-wind model of Chandran et al. (2011) to estimate
the amount of heating required, whereas van Ballegooijen & Asgari-Targhi (2016),
van Ballegooijen & Asgari-Targhi (2017) used a one-fluid solar-wind model (A. van
Ballegooijen, private communication). In the Chandran et al. (2011) two-fluid model,
the electron temperature is lower than the proton temperature, and thus less heat is
conducted back to the chromosphere than in a one-fluid solar-wind model.

3.10. Simulation results: Elsasser power spectra
We define the perpendicular Elsasser power spectra

E±(k⊥, r)= k⊥

∫ 2π

0
dφ|z̃±(k⊥, φ, r, t)|2, (3.34)

where z̃±(k⊥, φ) is the Fourier transform of z± in x and y (see figure 1), φ is the
polar angle in the (kx, ky) plane and (. . . ) indicates a time average. As illustrated
in figure 7(a), we find that E±(k⊥) exhibits an approximate power-law scaling of the
form

E±(k⊥, r)∝ k−α
±(r)

⊥ (3.35)

from k⊥' 3× 2π/Lbox to k⊥' 15× 2π/Lbox at all r in all three of our simulations. We
evaluate α±(r) by fitting E±(k⊥, r) to a power law within this range of wave numbers,
and plot the resulting values of α±(r) in figure 7.

Although we drive only large-scale (k⊥ 6 3 × 2π/Lbox) velocity fluctuations at
the photosphere, figure 7 shows that there is broad-spectrum turbulence throughout
the chromosphere. This is because of the strong reflection of z+ fluctuations at
the transition region and the strong reflection of z− fluctuations (at all k⊥) at the
photosphere (enforced by the fixed-velocity boundary condition at r = R�), which
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(a)

(b)

(c) (d)

FIGURE 7. (a) The Elsasser power spectra E±(k⊥, r) defined in (3.34) as functions of
perpendicular wavenumber k⊥ at r = 20R� in Run 1. (b,c,d) The spectral indices α+(r)
and α−(r) defined in (3.35) in our three numerical simulations.

together lead to comparatively ‘balanced’ turbulence (meaning that z+rms ' z−rms) in
the chromosphere, as shown previously by van Ballegooijen et al. (2011). In the
low chromosphere, α± ' 1.3–1.5 in all four simulations, which is similar to the
value α± ' 3/2 that arises in numerical simulations of homogeneous, balanced,
RMHD turbulence (Mason, Cattaneo & Boldyrev 2008; Beresnyak 2012; Perez
et al. 2012). On the other hand, α+ decreases from ' 1.5 to ' 0.8 as r increases
from 1.001R� to rtr = 1.0026R� in Runs 1 and 2. This spectral flattening arises
because the Alfvén-speed gradient in the upper chromosphere acts as a high-pass
filter on outward-propagating AWs in Runs 1 and 2, causing lower-k⊥ (and hence
lower-frequency – see Goldreich & Sridhar (1995)) z+ fluctuations to undergo
non-WKB reflection, and allowing higher-k⊥ (and hence higher-frequency) z+
fluctuations to propagate unhindered to the transition region (Velli 1993; Réville,
Tenerani & Velli 2018). The difference in Run 3 is that Lbox is larger, and thus z+
fluctuations do not reach sufficiently large k⊥ values that they can avoid non-WKB
reflection in the upper chromosphere.6 The idea that z+ fluctuations at the high-k⊥

6The transition region in our simulations is a density discontinuity, which reflects z+ fluctuations with an
efficiency that is independent of k⊥ (van Ballegooijen et al. 2011); reflection at the transition region helps
explain why α− is comparatively small in the upper chromosphere in Runs 1 and 2, but it does not act like
a high-pass filter in our simulations.
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end of the inertial range propagate through the chromosphere more easily in Runs 1
and 2 than in Run 3 is consistent with the fact that z+rms(rb) and δBrms are somewhat
larger in Runs 1 and 2 than in Run 3 (see table 1 and figure 3).

As r increases from rtr to rA and beyond, α± approaches ' 3/2 in all three runs.
In Runs 1 and 2, the increase in α+ as r increases from rtr to rA is not steady. In
Run 1, α+ decreases as r increases from 2.8R� to 4.2R�, and in Run 2, α+ plateaus
around a value of 1 between r = 2R� and r = 3R�. This behaviour suggests that, in
these two simulations, the turbulent dynamics at 2R� . r . 4R� drives α+ towards a
value close to 1, and the tendency for α+ to evolve towards 3/2 sets in at r & 4R�.
We discuss these trends further in § 6.

4. Two-component analytic model of reflection-driven MHD turbulence

Chandran & Hollweg (2009) (hereafter CH09) developed an analytic model of
reflection-driven MHD turbulence in the solar corona and solar wind. This model
can reproduce the radial profile of z+rms in our numerical simulations fairly accurately,
provided the constant χ introduced in equation (34) of CH09 is treated as an
adjustable free parameter that is allowed to take on different values in different
simulations. With the best-fit values of χ , the CH09 model also reproduces the
turbulent-heating profiles in Runs 1 and 2 reasonably well. However, the model
is significantly less accurate at reproducing Q(r) in Run 3 and deviates markedly
from the z−rms profiles in all three runs. Moreover, the CH09 model does not explain
the differences between the best-fit values of χ for Runs 1, 2 and 3 (which are,
respectively, 0.55, 0.72 and 0.36), or explain how these values can be determined
from the perpendicular correlation length and correlation time of the AWs launched
by the Sun. These shortcomings indicate that there are important physical processes
operating in our numerical simulations that were not accounted for by CH09.

In order to elucidate these processes, we develop a new analytic model of reflection-
driven MHD turbulence at

r > rb, (4.1)

where rb is the radius of the coronal base defined in (3.10). The reader who is not
interested in the technical details may wish to skip to § 4.6, which summarizes the
free parameters and boundary conditions of the model and compares the model with
our simulation results.

We begin by dividing the z+ fluctuations into two components as described in § 3.7:

z+ = z+HF + z+LF, g= gHF + gLF. (4.2a,b)

The quantities, z+HF and z+LF have different radial correlation lengths (see (3.26)), but we
take them to have the same perpendicular outer scale L⊥.7 We make the simplifying
approximation that the HF and LF fluctuations are uncorrelated; i.e. gHF · gLF = 0,
where (. . .) indicates a time average. Non-WKB reflection is more efficient for low-
frequency AWs than for high-frequency AWs (Heinemann & Olbert 1980; Velli 1993).
We thus take f to be a ‘low-frequency quantity’ that is correlated with gLF but not gHF.

7This is an over-simplification for Runs 1 and 2, because α+(rb) ' 0.8 in these runs, indicating that
much of the z+HF energy is concentrated at high k⊥. We neglect this spectral flattening in our analytic model,
however, because there is minimal flattening in Run 3 and because we wish to keep the model as simple as
possible.
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Upon taking the dot product of (2.19) with 2gHF, averaging and assuming a statistical
steady state, we obtain

(U + vA)
d
dr

g2
HF,rms = 2R · gHF, (4.3)

where gHF,rms= |gHF|
21/2

(with analogous definitions for gLF,rms, z+HF,rms, z+LF,rms, frms and
z−rms), and R represents the right-hand side of (2.19). The nonlinear term on the right-
hand side of (2.19) acts to cascade gHF fluctuations to small scales at which the
fluctuations dissipate. We set R · gHF =−γ

+

HFg2
HF,rms, where γ +HF is the cascade rate of

the outer-scale gHF fluctuations. Equation (4.3) then becomes

(U + vA)
d
dr

g2
HF,rms =−2γ +HFg2

HF,rms. (4.4)

We follow Velli et al. (1989) and Verdini et al. (2009) in taking the outer-scale z−
fluctuations to be anomalously coherent in a reference frame that propagates outward
with the z+ fluctuations, because the z− fluctuations are produced by sources that
propagate outward at speed U + vA. We thus estimate γ +HF using a strong-turbulence
scaling regardless of the value of z−HF,rms, setting

γ +HF =
cdissz−rms

L⊥
, (4.5)

where cdiss is a dimensionless free parameter.
Using a similar procedure, but this time for gLF, we find that

(U + vA)
d
dr

g2
LF,rms =−2γ +LFg2

LF,rms, (4.6)

where γ +LF is the rate at which outer-scale gLF fluctuations cascade to small scales
and dissipate. In writing (4.6), we have dropped a term containing f · gLF on the
assumption that f � gLF. We set

γ +LF =
cdissz−rmsA

L⊥
, (4.7)

where the dimensionless coefficient A models the weakening of nonlinear interactions
between gLF and f as these two fluctuation types become increasingly aligned with
each other. We discuss how we determine A in § 4.3 below. In order to compare our
model with our simulation results, we take A to be related to sin θ in (3.33) via the
equation

sin θ =
0.55(Ag2

LF,rms + g2
HF,rms)

g2
LF,rms + g2

HF,rms
, (4.8)

which expresses the idea that only low-frequency g fluctuations align with f
fluctuations, while both low-frequency and high-frequency g fluctuations contribute
to the average that is used to compute sin θ in (3.33). The factor of 0.55 in (4.8)
is included because this is the typical value of the right-hand side of (3.33) for
outer-scale fluctuations in homogeneous RMHD turbulence (Chandran et al. 2015b).
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4.1. Amplitude of the inward-propagating fluctuations

To determine z−rms, we assume that z− cascades primarily via interactions with z+LF
(or, equivalently, gLF). The outer-scale z− cascade rate then depends upon the critical-
balance parameter (Goldreich & Sridhar 1995; Boldyrev 2006)

χ−LF =
z+LF,rmsL

+

r,LFA
L⊥vA

, (4.9)

where L+r,LF is the radial correlation length of the gLF fluctuations. The critical-balance
parameter χ−LF is an estimate of the fractional change in an outer-scale z− fluctuation
that results from a single ‘collision’ with an outer-scale gLF fluctuation lasting a time
1t∼ L+r,LF/vA (Lithwick, Goldreich & Sridhar 2007).

If χ−LF� 1, then each such collision causes only a small perturbation to the outer-
scale z− fluctuation, and the turbulence is weak. In this limit, the effects of successive
collisions add like a random walk, and roughly

N = (χ−LF)
−2 (4.10)

collisions are needed for nonlinear interactions to cause an order-unity change
in the outer-scale z− fluctuation. The outer-scale z− cascade time scale t−NL is
then ∼ NL+r,LF/vA. The generation of outer-scale z− (or f ) fluctuations by non-WKB
reflection in this weak-turbulence regime can also be viewed as a random-walk-like
process. Equation (2.20) implies that, in a reference frame S− that propagates with
radial velocity U − vA, the increment to f from non-WKB reflection during a time
1t= L+r,LF/vA is of order

1f ∼
(

U − vA

2vA

) ∣∣∣∣dvA

dr

∣∣∣∣ gLF,rms1t. (4.11)

It follows from (2.15) that the corresponding increment to z− is of order

1z− ∼
(

U + vA

2vA

) ∣∣∣∣dvA

dr

∣∣∣∣ z+LF,rms1t. (4.12)

The r.m.s. value of z− is approximately the ‘amount’ of z− that ‘builds up’ in frame S−
by non-WKB reflection during the cascade/damping time scale ∼N1t. The resulting
value of z−rms is ∼N1/21z−, or, equivalently,

z−rms ∼
L⊥
A

(
U + vA

2vA

) ∣∣∣∣dvA

dr

∣∣∣∣ . (4.13)

If χ−LF & 1, then the outer-scale z− fluctuations are sheared coherently throughout
their lifetimes, the turbulence is strong and t−NL ∼ L⊥/(z+LF,rmsA). In this case, z−rms is
approximately the rate at which z− fluctuations are produced by non-WKB reflection
multiplied by t−NL, which again leads to (4.13). This estimate, with A→ 1, is the same
as that obtained by Chandran & Hollweg (2009) for the strong-turbulence limit. In the
limits U→ 0 and A→ 1, equation (4.13) is also the same as the estimate by Dmitruk
et al. (2002) for the strong-turbulence limit.

Since (4.13) holds in both the weak and strong-turbulence regimes, we set

z−rms =
c−L⊥

A

(
U + vA

2vA

) ∣∣∣∣dvA

dr

∣∣∣∣ (4.14)

https://doi.org/10.1017/S0022377819000540 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000540


Reflection-driven MHD turbulence 21

regardless of the value of χ−LF, where c− is a dimensionless piecewise constant function
that has one value at r > rm and a smaller value at r 6 rm, where rm is defined
in (3.12). Before discussing c− further, we note an immediate consequence of (4.14),
that z−rms increases as A (or equivalently sin θ ) decreases. This is because reducing sin θ
decreases the rate at which outer-scale z− fluctuations cascade without decreasing the
rate at which they are produced by non-WKB reflection.

4.2. Suppression of inward-propagating fluctuations at r< rm

The reason we take c− to have a smaller value at r < rm than at r > rm is that
the non-WKB-reflection source term for z− fluctuations reverses direction at r = rm,
since dvA/dr changes sign. Since gLF has a large radial correlation length, when z−
fluctuations produced via non-WKB reflection at r > rm propagate to r < rm, they
tend to cancel out the z− fluctuations that are produced via non-WKB reflection at
r < rm, reducing z−rms. If the z− fluctuations at r = rm can propagate a radial distance
∼ (rm−R�) before cascading and dissipating, then this cancellation effect is large. On
the other hand, if the z− fluctuations at r= rm can only propagate a radial distance �
(rm−R�) before cascading and dissipating, then little cancellation occurs. To account
for this phenomenology, we set

c− =

{
c−I if r 6 rm,

c−O if r> rm,
(4.15)

where c−O is a dimensionless free parameter,

c−I =
c−O

1+M
, (4.16)

M =
vAmL⊥m

z+LFmL∇
, (4.17)

L∇ is a free parameter with dimensions of length, and vAm, L⊥m, and z+LFm are the
values of vA, L⊥ and z+LF,rms at r= rm. As we argue below (see (4.20)), A is of order
unity at r < rm, which means that M is the approximate radial distance an outer-
scale z− fluctuation at r = rm propagates before cascading to smaller scales, divided
by L∇. We can rewrite M in terms of quantities evaluated at r = rb by making the
approximations that vA�U at r 6 rm and gLF,rms(rm)' gLF,rms(rb) and by using (2.17).
This yields

M =
vAbL⊥b

z+LFbL∇

(
vAm

vAb

)1/2

, (4.18)

where vAb, L⊥b and z+LFb are the values of vA, L⊥ and z+LF,rms at r= rb.

4.3. Alignment factor and critical-balance parameter
To estimate the alignment factor A introduced in (4.7), we first note that nonlinear
interactions between counter-propagating AWs produce negative residual energy, with
z− anti-parallel to z+ (i.e. an excess of magnetic energy over kinetic energy) (Müller &
Grappin 2005; Boldyrev et al. 2011). At r> rm, dvA/dr< 0, and it follows from (2.15)
and (2.20) that non-WKB reflection also acts to produce negative residual energy. On
the other hand, at r< rm, dvA/dr>0, and non-WKB reflection acts to produce positive
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residual energy. In other words, at r< rm, linear processes (non-WKB reflection) and
nonlinear processes have competing effects on the alignment of z−. Based on these
arguments, we conjecture that at r < rm the outer-scale fluctuations do not develop
significant alignment, and that at r> rm the outer-scale z+LF and z− fluctuations become
increasingly aligned as the z+LF fluctuations ‘decay’ via nonlinear interactions. We also
conjecture that A is a decreasing function of τ (ph)

v , because a larger τ (ph)
v increases

the efficiency of non-WKB reflection, which produces z− fluctuations that are aligned
with z+LF. In addition, we conjecture that A is a decreasing function of

Γ =
z+LF,rmsL

+

r,LF

L⊥vA
, (4.19)

which is the critical-balance parameter χ−LF in (4.9) without the factor of A. There
are two reasons for taking A to decrease with increasing Γ . The first is that when
Γ �1, outer-scale z− fluctuations can propagate through many different outer-scale z+LF
fluctuations before cascading to smaller scales. The z− fluctuations that are co-located
with a particular outer-scale z+LF ‘eddy’ of radial extent ∼ L+r,LF are thus a mixture
of the z− fluctuations produced by the non-WKB reflection of that z+LF eddy and z−
fluctuations that were initially produced by the non-WKB reflection of z+LF eddies
located farther from the Sun. The greater the number of distinct outer-scale z+LF eddies
whose reflections contribute to the value of z− at any single point, the less aligned
the z− field will be with any individual z+LF eddy. Moreover, when Γ > 1, shearing
of the z− fluctuations by z+LF rotates the z− fluctuations into alignment with z+LF, and
the resulting value of A is a decreasing function of Γ (Chandran et al. 2015b). We
quantify the foregoing conjectures by setting

A=


A0 if r< rm,

A0

[
1+

τ (ph)
v Γ

τθ
ln
(

g2
LFm

g2
LF,rms

)]−1

if r> rm,
(4.20)

where the dimensionless constant A0 and the time constant τθ are free parameters.
In the linear, short-wavelength, AW propagation problem, if an AW is launched

into a coronal hole by a boundary condition imposed at the transition region and
photosphere, and if the AW period is P, then the radial wavelength of the AW
at radius r is (U + vA)P. That is, the wave period remains constant as the wave
propagates away from the Sun, and the radial wavelength varies in proportion to the
wave phase velocity. We take nonlinear, non-WKB z+ fluctuations to behave in the
same way, setting

L+r,LF

L+r,LFb
=

U + vA

Ub + vAb
, (4.21)

where L+r,LFb, Ub and vAb are the values, respectively, of L+r,LF, U and vA evaluated at
r= rb, and likewise for L+r,HF. It then follows from (2.17), (3.3), (3.23) and (4.21) that

Γ = Γb
gLF,rms

gLFb

√
vA

vAb
, (4.22)

where Γb is the value of Γ at r= rb.
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4.4. Solving for the fluctuation-amplitude profiles
Upon combining (4.6), (4.7), (4.14) and (4.15), we obtain

d
dr

ln g2
LF,rms =


−cI

d
dr

ln vA if r 6 rm,

cO
d
dr

ln vA if r> rm,

(4.23)

where
cI ≡ cdissc−I cO ≡ cdissc−O . (4.24a,b)

After integrating (4.23), we find that

g2
LF,rms

g2
LFb
=


(
vAb

vA

)cI

if rb < r< rm,(
vAb

vAm

)cI
(
vA

vAm

)cO

if r> rm,

, (4.25)

where gLFb is the value of gLF,rms at r = rb. Upon combining (4.4), (4.5), (4.14) and
(4.15), we obtain

d
dr

ln g2
HF,rms =


−

cI

A
d
dr

ln vA if r 6 rm

cO

A
d
dr

ln vA if r> rm.

(4.26)

With the aid of (4.20) and (4.22), we integrate (4.26) to obtain

g2
HF,rms

g2
HFb
=


(
vAb

vA

)cI/A0

if r< rm,(
vAb

vAm

)cI/A0

wcO/A0e−H if r> rm,

(4.27)

where

H =
cθc2

OΓb

σ 2A0

(
vAm

vAb

)(1−cI)/2

(σwσ ln w−wσ
+ 1), (4.28)

w=
vA

vAm
σ =

1+ cO

2
, (4.29a,b)

gHFb is the value of gHF,rms at r= rb and cθ = τ (ph)
v /τθ .

4.5. Turbulent-heating rate
The turbulent-heating rate in our model is

Q=
ρ

2

[
γ +HF(z

+

HF,rms)
2
+ γ +LF(z

+

LF,rms)
2
+ γ −(z−rms)

2
]
, (4.30)

where
γ − = γ −LF + γ

−

HF (4.31)
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is the cascade rate of the outer-scale z− fluctuations, and γ −LF (γ −HF) is the contribution
to γ − from interactions between z− fluctuations and LF (HF) z+ fluctuations. To allow
for either weakly turbulent (χ−LF < 1) or strongly turbulent (χ−LF > 1) shearing of z−
fluctuations by z+LF fluctuations, we set

γ −LF =
cdissz+LF,rmsA

L⊥
×

{
χ−LF if χ−LF 6 1,
1 if χ−LF > 1. (4.32)

In analogy to (4.9), we define the critical-balance parameter for the shearing of z−
fluctuations by z+HF fluctuations to be

χ−HF =
z+HF,rmsL

+

r,HF

L⊥vA
, (4.33)

where we have omitted the factor of A, because we take z− to be aligned with z+LF
but not with z+HF. We then set

γ −HF =
cdissz+HF,rms

L⊥
×

{
χ−HF if χ−HF 6 1,
1 if χ−HF > 1, (4.34)

4.6. Comparison with simulation results
To compare our model with one of our numerical simulations, we treat L⊥(rb) =
Lbox(rb)/3, L+r,LF(rb), L+r,HF(rb) and z+rms(rb) as boundary conditions in our model,
which we determine using the measured values of these quantities in that particular
simulation. Also, motivated by figure 4, we set

g2
HFb

g2
LFb
= 1 (4.35)

in all our model solutions. We take L+r,HF(rb) in our simulations to be the radial
separation 1r at which C(rb, 1r)= 1/2, where

C(r, 1r)=
〈g(x̃, ỹ, r, t) · g(x̃, ỹ, r+1r, t)〉

〈|g(x̃, ỹ, r, t)|2〉
(4.36)

is the radial autocorrelation function of the g fluctuations and x̃ and ỹ are defined
following (3.28). On the other hand, because figure 4 shows that the LF fluctuations
are energetically dominant at r= rmax, we define L+r,LF(rmax) to be the value of 1r at
which C(rmax,−1r)= 1/2. Applying (4.21), we then set L+r,LF(rb)= L+r,LF(rmax)(Ub +

vAb)/[U(rmax)+ vA(rmax)] = 0.886L+LF(rmax). The values of Lbox(rb), L+r,LF(rb), L+r,HF(rb)
and z+rms(rb) in our three simulations are listed in table 3.

We take the free parameters cdiss, c−O , τθ , A0 and L∇ to be the same regardless of
the simulation with which we are comparing our model. We then vary these free
parameters to optimize the agreement between our model and all three simulations.
We list the resulting parameters in table 4.

Figures 3 through 6 show the radial profiles of z+rms, z−rms, z+HF,rms, z+LF,rms, sin θ and Q
that result from our model using the best-fit parameters in table 4 and the boundary
conditions in table 3. As these figures show, our model reproduces a number of trends
seen in the simulations. For example, in both the model and simulations, z+HF,rms/z

+

LF,rms
and sin θ decrease with increasing r, particularly in Run 2. The radial decrease in
z+HF/z

+

LF is consistent with our expectation that high-frequency z+ fluctuations cascade
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Quantity Run 1 Run 2 Run 3

z+rms(rb) . . . . . . . . . . . . 61 km s−1 55 km s−1 41 km s−1

L+r,HF(rb) . . . . . . . . . . . . 0.015R� 0.015R� 0.10R�
L+r,LF(rb) . . . . . . . . . . . . 0.071R� 0.27R� 0.35R�
L⊥(rb) . . . . . . . . . . . . 1.4× 103 km 1.4× 103 km 5.3× 103 km

TABLE 3. Boundary conditions in our analytic model for matching Runs 1 through 3.

Note: z+rms is the r.m.s. amplitude of the outward-propagating Elsasser variable, L+r,LF is
the radial correlation length of the low-frequency outward-propagating Heinemann–Olbert

variable gLF, L+r,HF is the radial correlation length of the high-frequency
outward-propagating Heinemann–Olbert variable gHF, L⊥ is the perpendicular outer scale

(see (3.23)) and rb is the radius of the coronal base defined in (3.10).

Parameter Value

cdiss . . . . . . . . . . . . 0.2
c−O . . . . . . . . . . . . 1.8
τθ . . . . . . . . . . . . 3.2 min
A0 . . . . . . . . . . . . 0.6
L∇ . . . . . . . . . . . . 0.15R�

TABLE 4. Best-fit free parameters in our analytic model.

Note: The quantity cdiss is a coefficient appearing in the cascade/damping rates γ +HF and
γ +LF ((4.5) and (4.7)), c−O is a coefficient in our estimate of z−rms (see (4.14)

through (4.16)), τθ and A0 are constants appearing in our estimate of the alignment
angle (4.20) and L∇ is a length scale that affects the degree to which z− fluctuations

produced by non-WKB reflection at r> rm ' 1.7R� cancel out the z− fluctuations
produced by non-WKB reflection at r< rm (see (4.14) through (4.17)).

and dissipate more rapidly than low-frequency z+ fluctuations, because high-frequency
z+ fluctuations are not aligned with z−. In our model, the radial decrease in sin θ is
related both to the comparatively rapid cascade of the unaligned high-frequency z+
fluctuations and the fact that the low-frequency z+ fluctuations become increasingly
aligned with z− as they interact nonlinearly with z−. We note that the decrease in
sin θ coincides with an increase in z−rms for the reasons described following (4.14). The
model reproduces the z±rms profiles in the simulations fairly accurately. The turbulent-
heating rates in the model and simulations also agree quite well, but the heating rate
in the model is somewhat smaller than in Run 3 at r> 3R�. The most notable failing
of the model is that z−rms=Q= 0 at r= rm, because our estimate of z−rms is proportional
to the local value of dvA/dr, which vanishes at r= rm. A more realistic model would
account for the fact that z− fluctuations propagate a finite distance before cascading
and dissipating, which would smooth out the profiles of z−rms and Q in the vicinity of
r= rm. Importantly, despite the aforementioned differences between the model and our
numerical results, varying the boundary conditions in the model to match the measured
conditions in the simulations largely accounts for the differences between the z±rms and
Q profiles in Runs 1, 2, and 3 without any modification to the free parameters in
table 4. This suggests that the model provides a reasonably accurate representation of
the dominant physical processes that control these radial profiles.
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5. Previous studies of the Elsasser power spectra in MHD turbulence
In this section, we review previous studies of the Elsasser power spectra in

homogeneous RMHD turbulence and reflection-driven MHD turbulence. The reader
already familiar with this literature may wish to skip directly to § 6. We follow the
convention of describing the turbulent z± fluctuations as collections of AW packets,
using λ to denote the length scale of a wave packet measured perpendicular to the
magnetic field, l±λ to denote the correlation length measured along the magnetic field
of z± wave packets with perpendicular scale λ, and δz±λ to denote the amplitude
of wave packets at scale λ – i.e. the r.m.s. increment in z± across a distance λ
perpendicular to the magnetic field.

5.1. Balanced, homogeneous RMHD turbulence
In ‘balanced turbulence’, the statistical properties of z+ and z− fluctuations are
identical. In particular,

δz+λ = δz
−

λ l+λ = l−λ , (5.1a,b)

and the cross-helicity (the difference between the energies per unit mass of z+ and
z− fluctuations) is zero. In homogeneous RMHD turbulence, the strongest nonlinear
interactions are local in scale, meaning that δz±λ fluctuations are cascaded primarily by
z∓ fluctuations at perpendicular scales comparable to λ. To understand how a δz±λ wave
packet cascades, it is helpful to consider a propagating ‘slice’ of the wave packet – i.e.
a single cross-section of the wave packet in the plane perpendicular to the background
magnetic field (see, e.g. Lithwick et al. 2007). This slice ‘collides’ with a series of
counter-propagating δz∓λ wave packets. Each collision has a duration of

t±λ ∼
l∓λ
vA
. (5.2)

The instantaneous rate at which δz∓λ wave packets shear δz±λ wave packets is ∼ δz∓λ /λ.
During a single collision, the aforementioned ‘slice’ of the δz±λ fluctuation undergoes
a fractional distortion of order (Goldreich & Sridhar 1995; Goldreich & Sridhar 1997;
Lithwick et al. 2007)

χ±λ =
δz∓λ l∓λ
λvA

. (5.3)

5.1.1. Weak balanced turbulence
If χ±λ � 1, a δz±λ wave packet undergoes only a small fractional change during each

collision, and the turbulence is weak. Ng & Bhattacharjee (1996, 1997) and Goldreich
& Sridhar (1997) advanced a phenomenological model of weak, incompressible, MHD
turbulence in which the effects of consecutive collisions are uncorrelated and add like
a random walk. After N collisions, the r.m.s. fractional change in a δz±λ wave packet
is ∼ N1/2χ±λ . After N ∼ (χ±λ )−2 collisions, the r.m.s. fractional distortion of the wave
packet grows to a value of order unity, and the energy contained within the wave
packet cascades to smaller scales. The cascade time scale is thus

τ±λ ∼ (χ
±

λ )
−2t±λ ∼

λ2vA

(δz∓λ )2l∓λ
. (5.4)

Because neither the δz+λ nor δz−λ wave packet is altered significantly during any single
collision, the leading and trailing edges of a δz±λ wave packet are sheared in virtually
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the same way during each collision, and the parallel length scale of the wave packets
does not change as the fluctuation energy cascades to smaller λ (Shebalin, Matthaeus
& Montgomery 1983); i.e.

l±λ ∝ λ
0. (5.5)

In the inertial range, the z± energy-cascade rate (per unit mass), ε±, is independent
of scale:

ε± ∼
(δz±λ )2

τ±λ
∝ λ0. (5.6)

Equations (5.1), (5.4), (5.5) and (5.6) imply that

δz±λ ∝ λ
1/2. (5.7)

The scaling of the one-dimensional power spectrum of the z± fluctuations, denoted
E±(k⊥), follows from the relation

k⊥E±(k⊥)∼ (δz±λ )
2
|λ=k−1

⊥

, (5.8)

where k⊥ is the component of the wave vector perpendicular to the background
magnetic field. Equations (5.7) and (5.8) imply that

E±(k⊥)∝ k−2
⊥
. (5.9)

The scaling in (5.9) has been found in direct numerical simulations (Perez &
Boldyrev 2008) as well as in exact solutions to the weak-turbulence wave kinetic
equations for incompressible MHD turbulence (Galtier et al. 2000). It is worth noting,
however, that in weak-turbulence theory all AWs are cascaded by k‖= 0 modes, where
k‖ is the wave-vector component along B0, and these zero-frequency modes violate
the assumptions of weak-turbulence theory. Several studies have addressed this issue,
as well as its consequences for imbalanced turbulence (Boldyrev & Perez 2009;
Schekochihin, Nazarenko & Yousef 2012; Meyrand, Kiyani & Galtier 2015), as
discussed further in § 5.2.1.

5.1.2. Strong balanced turbulence
If χ±λ & 1, then each slice of a δz±λ wave packet is strongly distorted during a single

collision, the turbulence is strong and z± energy at scale λ cascades to smaller scales
on the time scale

τ±λ ∼
λ

δz∓λ
, (5.10)

leading to a scale-independent energy-cascade rate

ε± ∼
(δz±λ )2δz

∓

λ

λ
∝ λ0. (5.11)

Equations (5.1) and (5.11) imply that

δz±λ ∝ λ
1/3, (5.12)

which implies via (5.8) that
E±(k⊥)∝ k−5/3

⊥ . (5.13)
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Goldreich & Sridhar (1995) conjectured that in strong, balanced, RMHD turbulence
(and also in anisotropic, incompressible, MHD turbulence), the linear and nonlinear
time scales of each wave packet are comparable, i.e.

χ±λ ∼ 1. (5.14)

Numerical simulations confirm that this ‘critical-balance’ conjecture describes strong
RMHD turbulence not only on average (Cho & Vishniac 2000), but structure
by structure (Mallet, Schekochihin & Chandran 2015). Together, equations (5.12)
and (5.14) imply that

l±λ ∝ λ
2/3. (5.15)

Several studies have argued, on the basis of numerical simulations and theoretical
arguments, that the inertial-range power spectrum in strong, balanced, RMHD
turbulence is flatter than in the Goldreich–Sridhar model and closer to k−3/2

⊥ , because
of scale-dependent dynamic alignment (Boldyrev 2005, 2006; Mason et al. 2008;
Perez et al. 2012) and/or intermittency (Maron & Goldreich 2001; Chandran et al.
2015b; Mallet & Schekochihin 2017). On the other hand, Beresnyak (2012, 2014)
argued for a scaling closer to k−5/3

⊥ based on the Reynolds-number scaling of the
amplitude of dissipation-scale structures. A possible resolution of the disagreement
between these two sets of studies was provided by Loureiro & Boldyrev (2017a),
Loureiro & Boldyrev (2017b) and Mallet, Schekochihin & Chandran (2017a), Mallet,
Schekochihin & Chandran (2017b), who investigated the disruption of sheet-like
structures in RMHD turbulence by the tearing instability and magnetic reconnection
(see also Pucci & Velli 2014; Pucci et al. 2018; Vech et al. 2018).

5.2. Imbalanced RMHD turbulence in homogeneous plasmas
In ‘imbalanced turbulence’, one of the Elsasser variables, say z+, has a substantially
higher r.m.s. amplitude than the other,

z+rms > z−rms. (5.16)

Equation (5.16) includes the highly imbalanced case, in which z+rms� z−rms, as well as
moderately imbalanced turbulence, in which, e.g. z+rms ' 2z−rms.

5.2.1. Weak imbalanced turbulence
When (5.16) is satisfied and

χ+λ � 1 χ−λ � 1, (5.17a,b)

the turbulence is both imbalanced and weak. Galtier et al. (2000) showed that in the
weak-turbulence theory of imbalanced incompressible MHD turbulence,

α+ + α− = 4, (5.18)

where
E±(k⊥)∝ k−α

±

⊥
, (5.19)

the homogeneous-turbulence version of (3.35). Lithwick & Goldreich (2003) argued
that in weak incompressible MHD turbulence, the spectra are ‘pinned’ at the
dissipation wavenumber k⊥d, with E+(k⊥d) = E−(k⊥d), and that the more energetic
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Elsasser variable has the steeper inertial-range power spectrum. Boldyrev & Perez
(2009) espoused a different picture, in which a ‘condensate’ of magnetic fluctuations
at k‖ = 0 dominates the energy cascade, leading to a state in which α+ = α− = 2.
Schekochihin et al. (2012) developed a theory accounting for both weakly turbulent
AWs with non-zero k‖ and two-dimensional modes with k‖ = 0, and found that
α+=α−= 2 for the weakly turbulent modes and α+=α−= 1 for the two-dimensional
modes in the imbalanced case.

5.2.2. Strong imbalanced turbulence
When (5.16) is satisfied and χ+λ or χ−λ is & 1, the turbulence is considered strong.

A number of authors have developed models of strong imbalanced MHD turbulence
(e.g. Beresnyak & Lazarian 2008; Chandran 2008a; Beresnyak & Lazarian 2009;
Perez & Boldyrev 2009; Perez & Boldyrev 2010; Podesta & Bhattacharjee 2010).
Here we focus on the study by Lithwick et al. (2007) (hereafter LGS), who explored
an assumption about the forcing of outer-scale z− fluctuations that turns out to be
particularly relevant to inhomogeneous reflection-driven MHD turbulence in the solar
wind.

LGS assumed, in addition to (5.16), that

χ−λ & 1. (5.20)

Equation (5.20) implies that δz−λ fluctuations are sheared on a time scale λ/δz+λ that
is comparable to or less than the time l+λ /vA for a slice of a δz−λ wave packet to pass
through a counter-propagating δz+λ wave packet. The cascade time scale for δz−λ wave
packets is therefore

τ−λ ∼
λ

δz+λ
. (5.21)

LGS argued that, since a δz−λ wave packet cascades after it has propagated along the
background magnetic field for a distance ∼ vAτ

−

λ , the parallel correlation length of the
δz−λ wave packet is

l−λ ∼ vAτ
−

λ ∼
vAλ

δz+λ
. (5.22)

LGS further argued that, since δz+λ wave packets separated by a distance l−λ along the
magnetic field are sheared by uncorrelated δz−λ fluctuations,

l+λ ∼ l−λ . (5.23)

It follows from (5.3), (5.22) and (5.23) that

χ−λ ∼ 1 χ+λ ∼
δz−λ
δz+λ

< 1. (5.24a,b)

The apparent implication of the second half of (5.24a,b), particularly when
δz−λ /δz

+

λ � 1, is that δz+λ wave packets cascade in a weakly turbulent manner, through
multiple, uncorrelated collisions with δz−λ wave packets, each of which leads to a
small fractional change in the δz+λ wave packet of order χ+λ (see § 5.1.1). LGS argued,
however, that each δz+λ wave packet is in fact sheared coherently throughout its
lifetime, even when χ+λ ∼ δz

−

λ /δz
+

λ � 1. To establish this conclusion, LGS considered
the ‘z+ frame’, which moves with z+ fluctuations at speed vA along B0 relative to the
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background plasma. They then proposed a thought experiment in which the amplitude
of z− is infinitesimal, so that z− has negligible effect upon z+. The z+ vector field
is then time-independent in the z+ frame. If the z+ fluctuations are initialized with
a power-law spectrum spanning the entire inertial range, and if z− fluctuations are
continuously injected at the outer scale with an arbitrarily long coherence time T in
the z+ frame, then the z− fluctuations will cascade to small scales and set up not
just a statistical steady state, but an actual steady state in the z+ frame in which
the z− vector field is independent of time. This latter conclusion follows because z−
is nonlinearly distorted by z+, which is constant in time in the z+ frame. The δz−λ
fluctuations encountered by a δz+λ wave packet are therefore coherent for an arbitrarily
long time, and in particular for a time much longer than the crossing time

t+cross,λ ∼
l−λ
vA

(5.25)

required for a slice of the δz+λ wave packet to propagate through a δz−λ wave packet.
Building upon this thought experiment, LGS proceeded to consider the more

realistic case in which δz−λ is finite, but still small compared to δz+λ at all λ. They
made a key assumption, which we call the ‘coherence assumption’, that the coherence
time T (at a fixed position in the z+ frame) of the forcing of outer-scale z− fluctuations
is at least as long as the z+ cascade time at the outer scale, as was the case in the
thought experiment above. When the coherence assumption holds, the dominant
mechanism for decorrelating the δz−λ fluctuations encountered by a δz+λ wave packet
is the variation of the z+ vector field, not the crossing of counter-propagating wave
packets, and the δz+λ wave packet is sheared coherently throughout its lifetime. The z+
cascade time scale at scale λ then becomes

τ+λ ∼
λ

δz−λ
, (5.26)

and

ε+ ∼
(δz+λ )2

τ+λ
∼
(δz+λ )2δz

−

λ

λ
. (5.27)

Because of (5.24a,b), τ−λ ∼ λ/δz
+

λ and

ε− ∼
(δz−λ )2

τ−λ
∼
(δz−λ )2δz

+

λ

λ
. (5.28)

Setting ε± ∝ λ0, LGS combined equations (5.27) and (5.28) to obtain

δz+λ ∝ δz
−

λ ∝ λ
1/3, (5.29)

which, via (5.8), implies that

E±(k⊥)∝ k−5/3
⊥ . (5.30)

5.3. Anomalous coherence in reflection-driven MHD turbulence
Velli et al. (1989) (hereafter VGM) proposed a model of reflection-driven MHD
turbulence in which the Elsasser power spectra were isotropic functions of the
wavenumber k, denoted E±(k). They divided the z± fluctuations into ‘primary’ and
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‘secondary’ components, where the primary components of z± had the usual phase
velocities of U ± vA. The secondary components of z± were driven modes produced
by the reflection of z∓ fluctuations and as a consequence had phase velocities of
U ∓ vA. VGM considered the super-Alfvénic solar wind at r > rA and took z− to
be dominated by secondary fluctuations. VGM estimated the r.m.s. amplitude of the
secondary component of z− at scale k−1, which we denote z−k,s, to be

z−k,s ∼
z+k,p

kvAτr
, (5.31)

where z+k,p is the r.m.s. amplitude of the primary component of z+ at scale 1/k, τr is
the reflection time scale (which depends only on the radial profile of the background
flow), z+k,p/τr is the rate at which z−k,s fluctuations are produced by the reflection of
z+k,p fluctuations and 1/(kvA) is the time it takes for the secondary z− fluctuations at
scale 1/k to propagate out of the primary z+ fluctuations that produced them. VGM
argued that the secondary z− fluctuations shear the z+ fluctuations coherently in time,
since both fluctuation types have phase velocities of U + vA. They then set the z+
cascade power to be

ε+ ∼ kz−k,s(z
+

k,p)
2
∼
(z+k,p)3

vAτr
(5.32)

and took ε+ to be independent of k, obtaining z+k,p ∝ k0. Equations (5.8) and (5.31)
then yield

E+(k)∝ k−1 E−(k)∝ k−3. (5.33a,b)

It is useful to compare the VGM model with the LGS model discussed in § 5.2.2.
In both models, the z− fluctuations are anomalously coherent in the reference frame of
the z+ fluctuations. In the LGS model, this coherence is introduced via the ‘coherence
assumption’ discussed in § 5.2.2. VGM argued that this coherence arises because of
the physics of AW reflection. A key difference between the models is that VGM
neglected the ‘tertiary’ small-scale z− fluctuations that are produced as secondary z−
fluctuations cascade to small scales. In the LGS model, these tertiary z− fluctuations
are anomalously coherent in the z+ reference frame and drive the Elsasser spectra
towards a k−5/3

⊥ scaling rather than a k−1 scaling.

5.4. Inverse cascade in reflection-driven MHD turbulence
van Ballegooijen & Asgari-Targhi (2017) carried out direct numerical simulations
of reflection-driven MHD turbulence in the solar corona and solar wind using a
methodology similar to the one we have employed. Using their simulation data,
they computed the rate ε±(k⊥, r, t) at which nonlinear interactions transfer z±
energy from perpendicular wavenumbers less than k⊥ to perpendicular wavenumbers
greater than k⊥ (their equation (17) divided by ρ, with R→ Lbox/2, f±,k→ φ±,k and
a→ k⊥Lbox/2),

ε±(k⊥, r, t)=
1

[Lbox(r)]2
∑

k⊥l>k⊥

∑
k⊥j<k⊥

∑
k⊥i

Mlji(k2
⊥i − k2

⊥j − k2
⊥l)φ±,lφ±,jφ∓,i, (5.34)

where φ±k is the Fourier transform (in x and y) of the Elsasser streamfunction φ±
(defined such that z± = ∇φ± × B0/B0), and Mlji is a dimensionless mode-coupling
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coefficient that depends upon k⊥l, k⊥j and k⊥i, but not upon the mode amplitudes. They
found that ε+(k⊥, r, t) became negative across a broad range of k⊥ within a modest
range of radii just larger than the radius (or radii) at which dvA/dr changes signs –
e.g. just beyond the Alfvén-speed maximum at r= rm in the subset of their simulations
in which the background density was smooth.

To explain their findings, they considered two locations, one just inside the r= rm
surface at r= r1 and one just outside the r= rm surface at r= r2, such that |dvA/dr|
was the same at the two radii. They noted that, because z+rms � z−rms, z− fluctuations
cascade much more rapidly than z+ fluctuations. There thus exists a range of values
of r2 − r1 for which the time 1t12 required for z+ fluctuations to propagate from r1
to r2 is small compared to the outer-scale z+ cascade time scale but large compared
to the outer-scale z− cascade time scale. For values of r2 − r1 in this range,

φ+,k(r2, t) ' φ+,k(r1, t−1t12) (5.35)
φ−,k(r2, t) ' −φ−,k(r1, t−1t12), (5.36)

where 1t12 is the z+ propagation time between r1 and r2. Equation (5.35) holds
because nonlinear interactions do not have enough time to substantially alter the
z+ fluctuations during their transit from r1 to r2. Equation (5.36) follows from the
change in sign of dvA/dr at r = rm.8 Because φ−,k changes sign and φ+,k remains
almost unchanged, ε+ in (5.34) changes sign between r1 and r2. Between the coronal
base and the Alfvén-speed maximum, nonlinear interactions set up the usual direct
cascade of energy from large scales to small scales, causing ε+ to be positive at r1.
At r2, ε+ thus becomes negative, indicating an inverse cascade.

van Ballegooijen & Asgari-Targhi (2017) found that as the z+ fluctuations propagate
farther beyond r = rm, they gradually adjust to the new value of z−, and the direct
cascade of energy from large scales to small scales resumes. This transition back to
a direct cascade occurs first at large k⊥ (at which the nonlinear time is short) and
later at small k⊥. In one of their simulations, there is an inverse cascade of z+ energy
throughout the region between the Alfvén-speed maximum at 1.4R� and an outer
radius of r= 2.5R�. In a second simulation, there is an inverse cascade between the
Alfvén-speed maximum at 1.6R� and an outer radius of 4R�. Since the outer-scale z+
cascade time is comparable to the time required for vA to change by a factor of 2 in
the z+ reference frame (Dmitruk et al. 2002; Chandran & Hollweg 2009), the above
results indicate that the inverse cascade persists (in the z+ reference frame) for a time
comparable to the outer-scale z+ energy-cascade time scale.

Although ε+ became negative between r ' rm and r ' 2rm in the numerical
simulations of van Ballegooijen & Asgari-Targhi (2017), the energy-dissipation rate
(computed from the dissipation terms added to the governing equations) decreased
by only a factor of ' 2 within the inverse-cascade region. The reason for this is that
the direct-cascade region at r < rm had already ‘done the work’ of transporting z+
energy to large k⊥, and the inverse cascade between r ' rm and r ' 2rm was unable
to completely evacuate the high-k⊥ part of the spectrum.

6. The Elsasser power spectra in our numerical simulations
In our numerical simulations, α+ and α− approach ' 3/2 as r increases to values

& rA, as illustrated in figure 7. These spectral indices are broadly consistent with
8Because the z− fluctuations cascade very rapidly near r= rm, equation (2.20) can be solved approximately

by balancing the last term on the left-hand side and the first term on the right-hand side. In this approximation,
changing the sign of dvA/dr changes the sign of f .
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the LGS model of strong imbalanced turbulence. As discussed in § 5.2.2, the central
assumption of the LGS model is the ‘coherence assumption’ – that outer-scale z−
fluctuations are injected in a manner that remains coherent over the lifetime of the
outer-scale z+ fluctuations when viewed in the ‘z+ reference frame’, which moves
along B0 at the same velocity (U + vA) as the z+ fluctuations. It is difficult, at
least for us, to justify this assumption with any generality for homogeneous RMHD
turbulence. However, the coherence assumption is often satisfied in reflection-driven
MHD turbulence, because the outer-scale z− fluctuations are produced by the reflection
of outer-scale z+ fluctuations, and by definition these z+ fluctuations remain coherent
in the z+ reference frame throughout their lifetimes. A second requirement of the
LGS model is that χ−λ & 1. This requirement is marginally satisfied at r & rA in all
three simulations, as we will document in greater detail in a separate publication.
The LGS model thus provides a credible explanation for the Elsasser power spectra
at r & rA in Runs 1 through 3. The discrepancy between the predicted α± = 5/3
scaling and the measured α± ' 3/2 scaling may result from some combination of
intermittency and scale-dependent dynamic alignment, as in homogeneous RMHD
turbulence (see § 5.1.2).

As discussed in § 3.10 (see also Velli 1993; Réville et al. 2018), the steep
Alfvén-speed gradient in the upper chromosphere acts as a high-pass filter. High-k⊥
z+ fluctuations, which have large nonlinear frequencies and hence large linear
frequencies (Goldreich & Sridhar 1995), can propagate through this region with
minimal reflection. In contrast, low-k⊥ z+ fluctuations undergo strong non-WKB
reflection as they propagate from the lower chromosphere to the transition region.
This selective transmission accounts for the very small value of α+ just above the
transition region in Runs 1 and 2. The z+ spectrum in Run 3 does not flatten in
the same way, presumably because the nonlinear time scale is larger than in Runs 1
and 2 because of the larger value of L⊥, causing all the z+ fluctuations in Run 3 to
undergo significant reflection in the upper chromosphere.

As discussed in § 5.4, van Ballegooijen & Asgari-Targhi (2017) showed that the
z+ fluctuations undergo a transient inverse cascade at rm . r . 2rm, where rm is the
location of the Alfvén-speed maximum (1.71R� in our simulations). This inverse
cascade results from the change in sign of dvA/dr at r = rm, which reverses the
direction of the fast-cascading z− fluctuations, which in turn reverses the sign of ε+
in (5.34). The tendency for z− fluctuations to reverse direction at r= rm destroys the
anomalous coherence of the z− fluctuations in the z+ reference frame near r = rm,
making the LGS model inapplicable. We do not have a detailed theory for how the
spectra should scale between r = rm and r = 2rm in the presence of this inverse
cascade, but the simulation results indicates that the z+ spectrum flattens significantly
in this region relative to the LGS prediction.

7. Other parameter regimes and lack of universality

One of the principal sources of uncertainty in modelling MHD turbulence in the
solar-wind acceleration region concerns the dominant length scales and time scales of
the AWs launched by the Sun. For the correlation lengths and correlation times that
we have considered in this work, the two-component analytic model developed in § 4
reasonably approximates our simulation results, and the Elsasser power spectra in our
simulations evolve, at least approximately, towards the scalings of the LGS model at
r & rA. However, we have also carried out another simulation with higher-frequency
photospheric forcing and the same perpendicular correlation length as in Run 3.
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This additional simulation is not well described by either our two-component model
or the LGS model. For example, at very large r, the z+ power spectrum evolves
towards a k−1

⊥ scaling, albeit at radii for which δB ' B0. We will describe this
simulation in more detail in a future publication, but we mention it now to caution
the reader that the picture we have developed in this paper does not apply universally
for all combinations of correlation times and correlation lengths at the photosphere.

8. Phase mixing
By focusing on transverse, non-compressive fluctuations and neglecting density

fluctuations, we neglect ‘phase mixing’ (Heyvaerts & Priest 1983), by which we
mean the process in which an initially planar AW phase front becomes corrugated as
it propagates through a medium in which vA (or U) varies across the magnetic field.
This corrugation corresponds to a transfer of fluctuation energy to larger k⊥. Phase
mixing could provide the additional heating that seems to be needed (see figure 6)
to power the fast solar wind at r . 1.3R� over and above the heating provided by
reflection-driven MHD turbulence. Observations of comet Lovejoy show that the
density varies by a factor of ∼ 6 over distances of a few thousand km perpendicular
to B0 at r= 1.3R� in both closed-field regions and open-field regions (Raymond et al.
2014). On the other hand, Helios radio occultation data indicate that the fractional
density variations are ' 0.1 − 0.2 at 5R� < r < 20R� (Hollweg et al. 2010). We
conjecture that the transition from large δn/n0 at r' 1.3R� to small δn/n0 at r & 5R�
results from mixing of density fluctuations by the non-compressive component of
the turbulence, which acts to reduce δn/n0 as plasma flows away from the Sun. The
limited radial extent of the large-δn/n0 region suggests that most of the phase mixing
occurs close to the Sun. Moreover, since phase mixing is more effective for AWs
with larger parallel wavenumbers and frequencies, phase mixing at r . 5R� may
act as a low-pass filter, by preferentially removing high-frequency AW fluctuation
energy. Future investigations of reflection-driven MHD turbulence that account for
phase mixing will be important for developing a more complete understanding of
solar-wind turbulence and its role in the origin of the solar wind.

9. Conclusion
We have carried out three direct numerical simulations of reflection-driven MHD

turbulence within a narrow magnetic flux tube that extends from the photosphere,
through the chromosphere, through a coronal hole and out to a maximum heliocentric
distance of 21R�. Our simulations assume fixed, observationally motivated profiles
for ρ, U and B0 and solve only for the non-compressive, transverse components
of the fluctuating magnetic field and velocity. In each simulation, the turbulence is
driven by an imposed, randomly evolving, photospheric velocity field that has a single
characteristic time scale and length scale. Because outward-propagating AWs undergo
strong reflection at the transition region, there is an approximately equal mix of z+
and z− fluctuations in the chromosphere, and vigorous turbulence develops within the
chromosphere (van Ballegooijen et al. 2011). As a result, the waves that escape into
the corona have a broad spectrum of wavenumbers and frequencies. In the corona and
solar wind, outward-propagating z+ fluctuations undergo partial non-WKB reflection,
thereby generating inward-propagating z− fluctuations, but z+rms� z−rms.

In order to explain the radial profiles of z±rms and the turbulent-heating rate in
our simulations, we have developed an analytic model of reflection-driven MHD
turbulence that relies on the following conjectures: (i) the Sun launches two
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populations of z+ fluctuations into the corona, a short-radial-correlation-length (HF)
population and a long-radial-correlation-length (LF) population; (ii) non-WKB
reflection of LF z+ fluctuations is the dominant source of z− fluctuations; (iii) LF z+
fluctuations become aligned with z− at r> rm, where rm is defined in (3.12), causing
LF z+ fluctuations to cascade and dissipate more slowly than HF z+ fluctuations;
(iv) the change in sign of dvA/dr at r = rm leads to a reduction in z−rms at r < rm;
and (v) z− fluctuations are anomalously coherent in a reference frame that moves
outward with the z+ fluctuations, because the z− fluctuations are produced by the
outward-propagating z+ fluctuations via non-WKB reflection (Velli et al. 1989; Verdini
et al. 2009).

To compare our analytic model and numerical results, we determine the inner
boundary conditions in our model by setting the quantities listed in the left column
of table 3 equal to their measured or inferred values at the coronal base in our
simulations. We then vary the five free parameters in our model (see table 4) to
maximize the agreement between the model and simulations, using a single set of
free-parameter values to match all three simulations. The resulting best-fit profiles
of z±rms and Q in our model agree reasonably well with our numerical results. The
turbulent heating rate in our simulations is also comparable to the turbulent heating
rate in the solar-wind model of Chandran et al. (2011) at r & 1.3R�, which agreed
with a number of observational constraints. This suggests that MHD turbulence can
account for much of the heating that occurs in the fast solar wind.

The inertial-range Elsasser power spectra in our simulations vary with radius. In
the lower chromosphere, the spectral indices α+ and α− (defined in (3.35)) are ' 3/2,
consistent with theories of balanced RMHD turbulence (§ 5.1). In Runs 1 and 2, α+
drops with increasing r in the upper chromosphere, reaching values less than 1 just
above the transition region. We attribute this spectral flattening to the steep Alfvén-
speed gradient in the upper chromosphere, which acts as a high-pass filter (Velli 1993;
Réville et al. 2018), as discussed in § 3.10. Much farther from the Sun, at r & 10R�,
α+ and α− are reasonably close to 3/2 in all three runs, in approximate agreement
with the LGS model of strong imbalanced turbulence, which is reviewed in § 5.2.2.
However, at smaller radii, between r' rm = 1.7R� and r' 2rm, α+ hovers near unity
in Runs 1 and 2. We attribute this latter behaviour to a disruption of the anomalous
coherence of inertial-range z− fluctuations in the z+ reference frame. This disruption is
caused by the sign change in dvA/dr at r= rm, which, as shown by van Ballegooijen
& Asgari-Targhi (2017), leads to an inverse cascade of z+ energy in this same region
(§ 5.4).

As mentioned in § 7, we have carried out additional, as-yet-unpublished numerical
simulations similar to the ones we report here, but with different photospheric
boundary conditions. For some values of the correlation length and correlation time
of the photospheric velocity field, the fluctuations at r & 10R� conform to neither the
analytic model of § 4 nor the LGS model described in § 5.2.2. Determining how the
properties of non-compressive turbulence at r & 10R� depend upon the photospheric
boundary conditions remains an open problem. Further work is also needed to
determine how compressive and non-compressive fluctuations interact and evolve as
they propagate away from the Sun and also to investigate the role of non-transverse
(e.g. spherically polarized) fluctuations (see, e.g. Vasquez & Hollweg 1996; Horbury,
Matteini & Stansby 2018; Squire et al. 2019).

Observations have led to a detailed picture of solar-wind turbulence at r' 1 au (e.g.
Belcher & Davis 1971; Matthaeus & Goldstein 1982; Bruno & Carbone 2005; Podesta,
Roberts & Goldstein 2007; Horbury, Forman & Oughton 2008; Chen et al. 2012;
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Wicks et al. 2013a). With the recent launch of NASA’s Parker Solar Probe (Fox et al.
2016), it will soon become possible to measure velocity and density fluctuations
(Kasper et al. 2016) as well as electric-field and magnetic-field fluctuations (Bale
et al. 2016) at heliocentric distances as small as 9.8R�. Such measurements will
provide critical tests for numerical and theoretical models such as the ones we have
presented here.
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