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We propose a novel framework for large-scale maritime ship group surveillance using
spaceborne optical imaging satellite data and Electronic Intelligence (ELINT) satellite data.
Considering that the size of a ship is usually less than the distance between different ships
for large-scale maritime surveillance, we treat each ship as a mass point and ship groups
are modelled as point sets. Motivated by the observation that ship groups performing tactical
or strategic operations often have a stable topology and their attributes remain unchanged,
we combine both topological features and attributive features within the framework of
Dempster-Shafer (D-S) theory for coherent ship group analysis. Our method has been tested
using different sets of simulated data and recorded data. Experimental results demonstrate
our method is robust and efficient for large-scale maritime surveillance.
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1. INTRODUCTION. Maritime surveillance (Tunaley, 2004; Guerriero et al.,
2008; Garcia et al., 2010) is indispensable to guarantee maritime domain awareness,
which, in turn, is a prerequisite for a number of military and non-military applications
such as ship traffic surveillance, identification of security threats and economic risks,
monitoring both cooperative vessels and non-cooperative vessels. In particular, the
development of ship group detection and tracking capabilities based on interpretation
of satellite-derived information is vital for large-scale maritime surveillance. For
military or security agencies, it is of particular interest to pay attention to non-
cooperative passive systems for monitoring large-scale maritime activities. Non-
cooperative systems are those that can observe a ship group’s activities without their
participation. Typical non-cooperative systems include radar imaging systems, optical
imaging systems, acoustic surveillance and electronic intelligence (ELINT).
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Multiple non-cooperative systems are often deployed together to achieve better
surveillance performance. Many benefits can be achieved when using multi-sensor
data fusion in multi-target surveillance systems (Zou et al., 2013). The data from each
sensor can be used to complement the data of the other sensors to obtain broader
coverage and more accurate target estimates and Identity (ID) decision and in turn
eliminate the false tracks and countermeasures. Association of sensor measurements
from multiple non-cooperative systems is a challenging problem as the surveillance
area is generally large and the signal propagation environment is complex, making it
difficult to associate observations from different sensors, due to timing, accuracy, and
different types of sensor measurements. In addition, ship group surveillance poses
particular challenges for spaceborne sensors: small targets need to be detected, wide
areasneed to be surveyed, andboth targets andbackgroundare anything but stationary.
In this work, we aim to address the multi-sensor data fusion problem for large scale

ship group surveillance, given a set of measurements obtained by optical imaging
satellite and Electronic Intelligence (ELINT) satellite. Fusion of data from optical
imaging and ELINT satellites is a challenging task. For an optical imaging system,
high spatial resolution observing modes can provide ship characterisation and
classification. Optical imaging can achieve sufficiently high resolution to allow vessel
identification. However, the signals are sensitive to weather conditions and darkness,
and the area coverage is relatively small. ELINT can be used to detect ships by their
radar and other electromagnetic radiation. Although ELINT satellites can have a
higher revisit frequency and often acquire dense and continuous measurements, ships
may go undetected at some sampling intervals. In addition, there are spurious reports
of possible targets, or clutter measurements that arise independently of the targets of
interest.
Three basic alternatives, including raw data fusion, feature-level fusion and

decision-level fusion, can be used for multi-sensor data fusion (Liggins et al., 2008).
As sensor data from optical imaging and ELINT satellites are not commensurate, they
must be fused at the feature/state vector level or decision-level. Techniques for feature-
level fusion typically extract features from multiple sensor observations and combine
them into a single concatenated feature vector that is an input to pattern recognition
techniques such as neural networks, clustering algorithms, or template methods.
Decision-level fusion combines sensor information after each sensor has made a
preliminary determination of an entity’s location, attributes, and identity. Examples
of decision-level fusion methods include weighted decision methods, classical
inference, Bayesian inference, and Dempster-Shafer’s (D-S) (Dempster, 1968; Shafer,
1967) method.
We propose a novel decision-level fusion framework for large-scale ship group

surveillance using spaceborne optical imaging satellite data and ELINT satellite data.
Each target in the measurements is treated as an independent mass point, and multi-
target association is accomplished by coherent point set analysis using both topo-
logical and attributive features within the framework of D-S theory. The flowchart of
our method is shown in Figure 1.
The contributions of our work are threefold. Firstly, a novel Coherent Point Set

(CPS) analysis framework is proposed for the fusion of optical imaging satellite data
and electronic intelligence satellite data for large-scale maritime surveillance. To the
best of our knowledge, this work is the first to investigate CPS for multimodal remote
sensing data fusion. Secondly, multi-scale features including both category-level
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attributes and topology attributes are exploited in CPS and this ensures that ship
groups can be correctly associated under noisy measurements or with imperfect
detection. Thirdly, extensive experiments on simulated and recorded data have been
carried out to verify the effectiveness and robustness of the proposed method under
various scenarios.
The rest of this work is organised as follows. In Section 2, ship detection in optical

imaging data and ELINT records is presented. Section 3 gives a detailed description of
the category-level attributes and topology attributes for ship groups. Section 4 reports
the CPS analysis framework. Experimental results are presented in Section 5 and
finally Section 6 concludes the paper.

2. SHIP DETECTION AND ATTRIBUTE EXTRACTION
2.1. Ship Detection in Optical Imaging Data. For optical ship detection, we have

trained a hybrid generative-discriminative model. To remove the effect of false alarms
caused by land areas, land/sea area segmentation is firstly performed based on
Geographical Information System (GIS) information. Both shape features and texture
features are then exploited for optical ship modelling. In our experiments, a Histogram
of Gradient (HOG) feature (Dalal and Triggs, 2005) is computed for shape modelling
and a pyramid binary pattern feature (Sun et al., 2011) is computed for texture
modelling.
The hybrid learning model involves two processes: offline training process and

online detection process, as shown in Figure 2. For offline training, the Expectation
Maximization (EM) algorithm is used to fit the Probabilistic Latent Semantic
Analysis (PLSA) (Hofmann, 2001) model. (The feature set is denoted by F= { f1,
f2, . . ., fM}, the target set is denoted by O= {o1, o2, . . ., oN}, and the latent topic
set is denoted by Z= {z1, z2, . . ., zK}). After learning the model parameter P ( fi|zk)
and P(zk|oi

train), each training sample can be represented by a K-dimensional vector
P(z|oi

train). Then a discriminative four-category (including cloud, island, ocean wave
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Figure 1. Flowchart of our proposed framework.
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and ship) Support Vector Machine (SVM) classification model is learned using
P(|oi

train) and its corresponding category label. During online detection, the model
parameter P( fi|zk) from training samples is used to fit the PLSA model of testing
samples. The learned SVM model is then adopted to categorise the testing samples
based on P(z|otest).

2.2. Trajectory Clustering of ELINT Records. ELINT satellites are designed to
intercept radar emissions. ELINT involves the collection and analysis of intercepted
signals by other than the intended recipient. It involves the exploitation of signal
“externals,” referring to the characteristics of the actual transmitted signal (including
frequency of carriers and subcarriers, modulation, bandwidth, power level, etc.), beam
footprint parameters, and emitter location and motion. A collection signal parameter
can be used to obtain a Radio Frequency (RF) fingerprint for each emitter/emitter
platform, which can then be used to locate and rapidly identify the specific emitter or
emitter type in subsequent intercepts.
As ELINT acquires dense observation of target position and attribute in a short

period, target detection in ELINT data is essentially a trajectory-clustering problem.
We proposed a two-level clustering algorithm for target detection in ELINT data
(as shown in Figure 3). Radiation signals are firstly classified by their RF fingerprints.
Then, spatial-temporal constraints are applied to cluster signals with similar RF
fingerprints into meaningful trajectories.

Target
Category

Shape Feature Texture Feature
Shape Feature Texture Feature

Testing

Sea Area

Samples

Figure 2. Ship detection in optical images.
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3. SHIP GROUP ATTRIBUTE EXTRACTION. Considering that the
size of a ship is often less than the distance between different ships for large-scale
maritime surveillance, we treat each ship as a mass point and ship groups are modelled
as point sets.

3.1. Category-level Attributes. As measurements from ELINT records and
optical imagery are different, a unified definition of target attributes would benefit
the fusion process. Considering that target category is of particular interest for tactical
and strategic operational analysis in large-scale maritime surveillance, ship attributes
are defined as the probability of belonging to a specific class.
For ELINT satellites, the carrier frequency, pulse width and repetition interval of

the radiation source signal can be obtained after splitting up the intercepted signal and
feature extraction. With the support of an intelligence database (which is acquired
offline by manual efforts), we can identify the target category based on the radiation
source. However, it should be noted that targets from the same category can carry
different types of radiation source and the same type of radiation source can be carried
by different target categories. Let R= {Rt|t [ [1, T ]} and C= {Cm| m [ [1, M ]}
denote the radiation source set and target category set respectively, Ui denotes the
Electronic Reconnaissance (ER) record of target i and the ER measurement can be
written as:

U = U1,U2, · · ·Un{ },Ui = Ui1,Ui2 · · · ,UiT{ } (1)
where Uit denotes the probability of target i carrying radiation type Rt. This is com-
puted by extracting the carrier frequency, pulse width and repetition interval of the
radiation signal and matching these features to the database. Based on the relationship
between radiation source and target categories from intelligence database, we can get:

Vt = Vt1,Vt2, · · ·VtM{ } (2)
where Vtk denotes the probability of radiation source Rt carried by target category Ck.
The probability that target i belongs to target category Ck based on ELINT measure-
ment is then computed as:

sik =
XN
t=1

UitVtk (3)

For optical observations, we can perform object category recognition using various
features. The aspect ratio (length/width) of different ships is a simple yet very robust
discriminative feature and is used for optical attributes computation. Considering that
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Figure 3. Trajectory clustering of ELINT measurements.
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the extraction of aspect ratio of different ships in optical imagery may suffer from
measurement error, fuzzy set theory is introduced for ship category description and a
modified normal distribution is used as the membership function:

pi′k =
exp − ti′ − Lk1( )2

2σ2

� �
, ti′ ≤ Lk1

1, Lk1 , ti′ , Lk2

exp − ti′ − Lk2( )2
2σ2

� �
, ti′ ≥ Lk2

8>>>><
>>>>:

(4)

where pi′k denotes the probability that target i′ belongs to target category Ck, σ is the
limit coefficient and is determined based on empirical estimate, ti′ denotes aspect ratio
of target i′, [Ck1, Ck2] is the dynamic range of Ck.
Combining category-level attributes from ELINT observations and optical imaging

satellite observations, the basic probability assignment function is given as:

Spii′ =
XM
k=1

sikpi′k (5)

The basic probability assignment function of point pairs si↔ ti′ and sj↔ tj′ based on
category-level attributive characteristics can be computed as follows:

Sp i, j, i′, j′
� � = Spii′Sp jj′ (6)

3.2. Topology Attributes. Motivated by the observation that ship groups
performing tactical or strategic operations often have a stable topology in a short
time period, we present a robust point set geometric descriptor, named Point Pair
Topological Characteristics (PPTC). The computation process of the PPTC descriptor
is shown in Figure 4.
Given a point set S composed of n points, the PPTC of point sj relative to point si is:

PPij(si) = ρ si, sj
� �

,θ si, sj
� �|si, sj [ S

�
; ρ si, sj
� �

[ 1, p
� �

; θ si, sj
� �

[ 1, q
� �	 (7)

where ms is the mass centre of the point set, ρ (si, sj) denotes the normalized distance
from point sj to point si, θ(si, sj) denotes the normalized angle between vector sisj

�

and vector sims
�

, p and q are the quantized number of distance and angle respectively.
The PPTC descriptor of a point set is formed by concatenating all PPij(si) together.
The PPTC descriptor has several advantages for topology preservation. Firstly, it
normalizes and quantizes the logarithm distance between point pairs. It is insensitive
to measurement error such as point position deviation. Secondly, each point set has its
separate coordinate system, which makes the descriptor robust to inaccurate orien-
tation between point pairs. Thirdly, the PPTC is a global topology descriptor and it is
robust to noise and local measurement errors.
Based on the PPTC descriptor, a new basic probability assignment function of point

pairs si↔ ti′ and sj↔ tj′ is computed as follows.

α = exp − ρi′ ti′, t j′
� �− ρi si, sj

� �

 


max
m,n′

ρm sm, sn( ), ρn′ tn′, tm′( )� 	
,

σ2α

0
@

1
A (8)
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β = exp − θi′ ti′, tj′
� �− θi si, sj

� �

 


max
m,n′

θm sm, sn( ), θn′ tn′, tm′( ){ }

,
σ2β

0
@

1
A (9)

Cpij,i′j′ = 1− α( ) 1− β
� � (10)

Cp(i, j; i ′, j ′) = 1/(1+ Cpij,i ′j ′ + Cpji;j′i′
� �2) (11)

where α and β denotes the similarity of logarithm distance and angle between point
pairs, σα and σβ denotes covariance of distance and angle respectively, Cpij,i′j′ is the
similarity between Ptij(si) and Pti′j′(ti′), Cp(i, j;i′, j′) is the basic probability assignment
function of si↔ ti′ and sj↔ tj′. Small values of Cpij,i′j′ indicates a high level of topology
similarity.

4. SHIP GROUP ASSOCIATION
4.1. Coherent Point Set (CPS). Given the template point set S= {s1, s2, . . ., sn}

from optical satellite data and the target point set T= {t1, t2, . . .,tm} from ER satellite
data, our goal is to fuse the observations by point set association matrix M =
[Mij]n×m, whose element Mij [ [0, 1] denotes the corresponding relationship between
si [ S and tj [ T. If the similarity measurement of (si, tj) is Cij, the cost matrix of
matching the two point sets is:

C(S,T,M) =
Xn
i=1

Xm
j=1

MijCij (12)

Association of multi-target groups is equivalent to finding the optimized point set
association probability matrix M̂ under the constraint of one-to-one mapping.

M̂ = argmin
M

C(S,T,M) (13)

Figure 4. Point set topology descriptor.
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In order to combine ship group category-level attributes and topology
attributes efficiently within a unified framework, we use the D-S evidence
theory. The core idea of D-S evidence is to get the total basic probability
assignment function by integrating the basic probability assignment function of each
item of evidence. The synthesized basic probability assignment function can be
computed as:

C(i, j, i′, j′) =

P
α=(i↔i′,j↔j′)

Cp(m1, n1;m
′
1, n

′
1) ∗ Sp(m2, n2;m

′
2, n

′
2)

1− P
α=Φ

Cp(m1, n1;m
′
1, n

′
1) ∗ Sp(m2, n2;m

′
2, n

′
2)

(14)

where α= (m1↔m1′, n1↔n1′) > (m2↔m2′, n2↔n2′). To get a global coherent
result, relaxation labelling technique (Ouyang et al., 2012) is used to refine the iterative
process. Firstly, we obtain the initial association probability matrix
M(0) = [Mij

(0)](n+1)×(m+1) by C(i, j;i′, j′), where Mij
(0) is the initial probability of si↔ tj.

For any point si′ (i′ ≠ i), only one point tj′ ( j′≠ j) is associated with tj. Let
max
j′=j

C(i, j; i′, j′)� �
denote the support of si′↔ tj′ for si↔ tj, the initial association

probability matrix Mij
(0) is the average support for si↔ tj from all si′↔ tj′ (i′≠ i, j′≠ j).

At the rth iteration (r > 0), the support [Mij
(r)](n+1)×(m+1) of si′↔ tj′ for si↔ tj is not

only related to C(i, j;i′, j′) but also to Mi′j′
(r−1).

4.2. Sensitivity Analysis. We simulate a scenario of maritime surveillance of
100 × 100 kilometres, where a ship group of nine ships from four different categories
[L1, L2, L3, L4] is present, including one ship from category L1, two ships from
category L2, three ships from category L3 and three ships from category L4. The
ground truth of ship numbers for optical imaging satellite and ELINT satellite is
denoted by nP = nQ= 9. For optical imaging measurement, an image with
5000 × 5000 pixels of 20 metres resolution is generated. Nine points are randomly
selected from the image as the template points. Each point has a corresponding aspect
ratio kratio drawn from [Lk1, Lk2] of category Lk as its optical attribute. The observed
aspect ratio is randomly generated from [Lk − σLk, Lk + σLk] where σ is the deviation
error. The ELINT observations are simulated by transforming the optical point
positions with a similarity transformation. The transformation parameters are
0·1 4 s45·0, −π 4 θ 4 π, −2000 4 tx, ty 4 2000, where s is the scale factor, θ is
the rotation angle, tx and ty are the displacements. As the ELINT data and optical
image data have different location precision, a zero mean Gaussian noise with
covariance δ = f × dminT (dminT is the minimum distance between targets, f is the noise
level factor) is added to the ER position. There are also false alarms in the ELINT
observations and they are modelled by adding nQo = γ × nQ points to the ELINT
data.
For the simulated experiments, we use the parameters setting f= 1, σ= 0·5, s= 0·9,

θ = − (3/4) π, the results using different methods with nQo = 0 and nQo = 20 are
shown in Figure 5 respectively. The red icons denote observation points from ELINT
data and the green icons denote observation points from optical data. The geo-
metrical forms denote target type. In both ELINT and optical data sets, point
category information is given manually.
To test the robustness of the proposed algorithm to the location noise, the target size

deviation and the outliers, we ran two groups of experiments on the simulated data
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with different degrees of noise and different levels of outlier ratio. We ran 200
experiments for each group. Figure 6 shows the correct matching rate varying with the
noise level factor f and the target size deviation error σ. The results demonstrate the
robustness of our proposed method.

Type L1 Type L2 Type L3 Type L4 Outliers

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

X Position (m) X Position (m) X Position (m)

Y
P

os
it

io
n

(m
)

Y
P

os
it

io
n

(m
)

Y
P

os
it

io
n

(m
)

(a)

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Type L1 Type L2 Type L3 Type L4 Outliers

Y
P

o
si

ti
o
n

(m
)

Y
P

o
si

ti
o
n

(m
)

Y
P

o
si

ti
o
n

(m
)

X Position (m) X Position (m)X Position (m)

(b)

Figure 5. Association results using simulated data. (a) nQo = 0. (b) nQo = 20. The left column
shows association results using topology features, the middle column shows association results
using category-level attributes, and the right column shows association results of the proposed
method.
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Figure 6. Robustness to measurement error. (a) The correct matching rate varying with f. (b) The
correct matching rate varying with σ.
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5. EXPERIMENTAL RESULTS. To verify the effectiveness of the pro-
posed CPS method for large-scale ship group surveillance, three groups of experiments
on real world recorded data have been carried out. Ship detection statistics in optical
images and ELINT records are presented in Section 5.1 and Section 5.2 respectively,
and ship group association results are given in Section 5.3.

5.1. Optical Ship Detection Results. We collected 316 optical images from
CBERS and SPOT 4 satellites. The resolution ranges from ten to five metres, some
typical samples of test images are shown in Figure 7. 1653 candidate ship region
images were obtained after land/sea segmentation and candidate ship area detection.
In our experiments, the candidate ship region images have been partitioned into two
randomly selected halves: one half forms the training set and the other forms the
testing set. The training set consists of 495 randomly selected images. The rest of
the images in the data forms the testing set for separate performance evaluation. The
optical ship model learnt from the training data is used to classify images in the testing
set into either ships or background.
To measure the performance of optical ship detection, the following parameters

are used:
Recall = |NC|

�
|NG|,

Precision = |NC|
�
|ND|

(15)

where Nc, NG, ND represents the number of correctly detected, ground truth and
actual detected ships, respectively.

Figure 7. Several typical samples of testing images.
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We compare our method with two state-of-the-art methods including Principal
Component Analysis and K-Nearest Neighbour (PCA+KNN) and Feature+SVM
(Zhu et al., 2010). The PCA+KNN method is selected as it is the baseline method for
optical ship category classification and the Feature+SVM method is selected as it is
the most successful paradigm in the literature. PCA+KNN method firstly performs
principal component analysis on the extracted features and then classifies candidate
ship images using KNN (In our experiments K= 7). Feature+SVM method directly
inputs the extracted features to SVM classifier. We have carried out two groups of
experiments. In the first group, candidate ship images are classified into

Table 1. Statistical result of different methods using two-class strategy.

Methods Recall (%) Precision (%)

PCA+KNN 88·23 60·28
Feature+SVM 89·39 70·08
Our method 88·51 71·55

Table 2. Statistical result of different methods using multi-class strategy.

Methods Recall (%) Precision (%)

PCA+KNN 77·34 82·98
Feature+SVM 86·48 81·45
Our method 88·77 83·03

latitude coordinates(N0)
(a) (b)

(c) (d)

lo
ng

tit
ud

e
co

or
di

na
te

s(
E0 )

latitude coordinates(N0)lo
ng

tit
ud

e
co

or
di

na
te

s(
E0 )

lo
ng

tit
ud

e
co

or
di

na
te

s(
E0 )

latitude coordinates(N0)latitude coordinates(N0)

lo
ng

tit
ud

e
co

or
di

na
te

s(
E0 )

Figure 8. (a) ELINT Records. (b) Trajectory clustering results of our algorithm. (c) Trajectory
clustering results based on logical rules. (d) Trajectory clustering results based on Hough
Transform.
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ships and background (two-class strategy). In the second group, the background
category is further classified into cloud, island, ocean wave and background (multi-
class strategy). The results are reported in Table 1 and Table 2 respectively.

5.2. ELINT Trajectory Clustering Results. To verify the effectiveness of our
trajectory clustering algorithm in ELINT records, our two-level clustering algorithm
has been compared to clustering methods based on logical rules and Hough transform
using two sets of recorded data. The results are shown in Figure 8 and Figure 9. It can
be seen that our algorithm recovers the most meaningful trajectories.

5.3. Association Results using Recorded Data. To test the proposed algorithm in
real-world applications, ships detected in the SPOT 4 optical remote sensing image
(20 m resolution) forms the template point set, the location of the radiation source
from the ELINT sensor observation forms the target point set. The template point set
has seven members (as shown in the left column of Figure 10 (a)) while the target point
set has 17 members (as shown in the right column of Figure 10 (a)). The template
points and target points are depicted by different point markers.
Both shape features and texture features are exploited for optical ship modelling in

the template points. Radiation signals in the target point set are classified by their RF
fingerprints. For category-level attribute characterization, ships have been classified
into four categories, namely aircraft carrier, cruiser, frigate and depot ship. The topo-
logy attribute descriptor is computed from the relative position of different ships in the
group.
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Figure 9. (a) ELINT Records. (b) Trajectory clustering results of our algorithm. (c) Trajectory
clustering results based on logical rules. (d) Trajectory clustering results based on Hough
Transform.
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The association results using both category-level attributes and topology attributes
under the framework of CPS are shown in Figure 10. Figure 10 (a) gives the visualized
demonstration while Figure 10 (b) shows the numerical values of the association
matrix. As a time delay exists in the optical image and the ELINT record and the ship
groups in the template set and target set are not the same, it can be seen from Figure 10
(a) that the CPS are robust to topology distortions. ELINT records usually have more
false detections and thus generate lots of outliers in the target set. The association
matrix in Figure 10(b) demonstrates our method can obtain the correct association
under the presence of multiple outliers. It is suitable for real-world application
scenarios.

6. CONCLUSIONS. In this work, we propose a novel decision-level fusion
framework for large-scale ship group surveillance using spaceborne optical imaging
satellite data and ELINT satellite data. The proposed framework consists of three
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Figure 10. Association results using recorded data. (a) Association results. (b) The association
matrix.
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major steps: target detection, attributes extraction and evidence fusion. Considering
that the size of a ship is often less than the distance among different ships for large-
scale maritime surveillance, each target in the measurements is treated as an indepen-
dent mass point, and multi-target association is accomplished by coherent point set
analysis using both topological and attributive features. Experimental results on both
simulated and recorded data have demonstrated the robustness and effectiveness of
the proposed algorithm.
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