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Abstract

In this paper, we classify the finite groups belonging to the class of cyclic-transitive groups. A group G is
said to be cyclic-transitive if the following condition holds: if x , y, z are nonidentity elements of G such
that 〈x, y〉 and 〈y, z〉 are both cyclic, then 〈x, z〉 is also cyclic.
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1. Introduction

A nontrivial group G is said to be cyclic-transitive if generating a cyclic subgroup
gives rise to a transitive relation on the set of nonidentity elements of G. In particular,
a group G belongs to the class of cyclic-transitive groups if the following condition
holds: if x , y, z are elements of G \ {1} such that 〈x, y〉 and 〈y, z〉 are both cyclic,
then 〈x, z〉 is also cyclic.

This property can be introduced as an analogue of another group-theoretical
property. According to [3], if X is a group-theoretical class, a group G is called
X-transitive if the conditions 〈x, y〉 ∈ X and 〈y, z〉 ∈ X imply that 〈x, z〉 ∈ X for all
nontrivial elements x, y, z ∈ G. In a similar fashion, the class of X-transitive groups
can be introduced in graph theoretical terms. If G is a group, we can consider the graph
denoted by 0X(G) and defined in the following way: the set of vertices of 0X(G) is
the set of all nonidentity elements of G; two distinct vertices x and y are joined if they
generate a subgroup belonging to X. It is clear that G is X-transitive if and only if
every connected component of 0X(G) is a complete graph. There are many results
concerning X-transitive groups for particular classes X.

If X is the class of all abelian groups, X-transitive groups are also called
commutative-transitive groups (or CT-groups for short). Groups with this property
have been investigated by several authors (see, for instance, [4, 9–11]).
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The first results on CT-groups are due to Weisner [10]; in particular, he proved that
finite groups with this property are either solvable or simple. Suzuki [9] classified
finite nonabelian simple groups. The structure of finite solvable CT-groups has been
investigated by Wu [11]. Furthermore, Delizia et al. (see [2, 3]) investigated the
structure of X-transitive groups, when X is a group-theoretical class satisfying the
following conditions: X is subgroup closed, it contains all finite abelian groups and is
bigenetic in the class of all finite groups. We recall that if P is a group-theoretical
property and X is a class of groups, then P is said to be a bigenetic property of
X-groups (P is bigenetic in X-groups) if an X-group G has the property P whenever
all of its two-generator subgroups have P . Such classes have also been investigated by
Lennox in [7].

Finally, we mention that the cyclic graph associated with a nontrivial group G
has been studied in [6]; this is essentially the graph 0X(G), where X is the class
of all cyclic groups. Obviously G is cyclic-transitive if and only if every connected
component of the this graph is a complete graph. A full description of nilpotent and
supersolvable groups that are cyclic-transitive has been given in [6].

The main purpose of this paper is to classify finite groups that are cyclic-transitive.
In Section 2, we show that every cyclic-transitive group can be seen as a partitioned
group. More precisely, in Theorem 2.2, we prove that G is cyclic-transitive if and
only if it has a partition of locally cyclic subgroups. In Section 3, we quote a well-
known theorem of Suzuki that determines the structure of all nonsolvable finite groups
with a nontrivial partition. Using the result of Suzuki, we obtain a characterization
of nonsolvable, finite, cyclic-transitive groups (see Theorem 3.2). Finally, in the last
section, we obtain Theorem 4.2 which gives a complete description of solvable, finite,
cyclic-transitive groups. This result is based on Baer’s classification of solvable groups
with a partition.

2. Partitioned groups

Let G be a group and let A= {Ai }i∈I be a collection of its subgroups. Then A is
said to be a partition of G if every nonidentity element of G is contained in exactly
one subgroup of A.

The subgroups Ai in A are said to be the components of the partition; moreover, A
is said to be nontrivial if every component is a proper nontrivial subgroup of G.

Our first result is a lemma that will be useful in proving a characterization of cyclic-
transitive groups in terms of partitions.

LEMMA 2.1. Let G be a group. Suppose that there exists a partition F of G. Then G
is cyclic-transitive if and only if every subgroup of F is cyclic-transitive.

PROOF. Suppose that every subgroup of F is cyclic-transitive. Consider three
nonidentity elements x , y, z of G such that 〈x, y〉 and 〈y, z〉 are both cyclic; we must
show that 〈x, z〉 is cyclic. Suppose, for example, that 〈x, y〉 = 〈a〉 and 〈y, z〉 = 〈b〉.
By hypothesis, F is a partition of G, hence there exist two subgroups H and K in F
such that 〈a〉 ≤ H and 〈b〉 ≤ K . Then y ∈ 〈a〉 ∩ 〈b〉 ⊆ H ∩ K . Since F is a partition,
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the only possibility is H = K and therefore 〈x, z〉 is cyclic, as required. The converse
is clear since the condition of being cyclic-transitive is inherited by subgroups. 2

Then we have the following theorem.

THEOREM 2.2. Let G be a group. Then G is cyclic-transitive if and only if it has a
partition of locally cyclic subgroups.

PROOF. Assume that G is cyclic-transitive. Then we get an equivalence relation on
G \ {1} by saying that a and b are equivalent if 〈a, b〉 is cyclic. For every element
a ∈ G \ {1}, let [a] be the equivalence class of a. We claim that [a] ∪ {1} forms a
subgroup of G. Obviously, a−1

∈ [a] since 〈a, a−1
〉 = 〈a〉. If a, b lie in [a], then

〈a, ab〉 = 〈a, b〉 is cyclic so either ab = 1 or ab ∈ [a]. In any case, ab ∈ [a] ∪ {1}.
Therefore [a] ∪ {1} is a subgroup of G. Now, either [a] = [b] or [a] ∩ [b] is empty.
Thus, G is partitioned by the subgroups given by these equivalence classes together
with {1}. Moreover, [a] ∪ {1} is locally cyclic, for any a ∈ G. In fact, for every x, y
in [a], we get that 〈x, a〉 and 〈y, a〉 are both cyclic and therefore, since G is cyclic-
transitive, 〈x, y〉 is cyclic. Conversely, if G has a partition consisting of locally cyclic
subgroups, then it is cyclic-transitive by Lemma 2.1. 2

3. Nonsolvable groups

The classification of finite groups with a nontrivial partition was proved in 1961 for
solvable groups by Baer and in the general case by Suzuki. This result of Suzuki can be
considered one of the most important contributions to the classification of finite simple
groups, in particular in his use of character theory to show that a finite nonsolvable
group with a nontrivial partition has even order.

We now state Suzuki’s theorem (for the proof, the reader can refer, for instance,
to [8, Theorem 3.5.11]).

THEOREM 3.1 (Suzuki). Let G be a nonsolvable finite group with a nontrivial
partition. Then one of the following holds:

(a) G is a Frobenius group;
(b) G ∼= PGL(2, q), q a prime power, q ≥ 4;
(c) G ∼= PSL(2, q), q a prime power, q ≥ 4;
(d) G ∼= Sz(q), q = 22n+1, n ∈ N.

Furthermore, as an application of Lemma 2.1, we remark that every projective
special linear group of type PSL(2, q) is cyclic-transitive because it has a partition
consisting of cyclic-transitive subgroups (see, for instance, [5, Section II.8]).

If G = PGL(2, pn), with pn > 3, then the set of maximal cyclic subgroups is a
partition (see, for instance, [5, Section II.7] or [8, Examples 3.5.1]). Consequently G
is cyclic-transitive, by Lemma 2.1.

Even though the Suzuki groups are partitioned, the components of the partition are
not cyclic-transitive, so the Suzuki groups are not cyclic-transitive. Hence, Lemma 2.1
and Theorem 3.1 yield the following result.
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THEOREM 3.2. Let G be a nonsolvable finite group. Then G is cyclic-transitive if and
only if one of the following occurs:

(1) G ∼= PGL(2, q), q a prime power, q ≥ 4;
(2) G ∼= PSL(2, q), q a prime power, q ≥ 4.

4. Solvable groups

In order to study the structure of finite solvable groups that are cyclic-transitive, we
need to know the structure of finite, nilpotent, cyclic-transitive groups. The first result
of this section is an immediate corollary of [6, Theorem 4.1].

LEMMA 4.1. Let G be a finite nilpotent group. Then G is cyclic-transitive if and only
if one of the following occurs:

(i) G is a group of exponent p for some prime p;
(ii) G is cyclic;
(iii) G is a dihedral 2-group.

The main theorem of this section is the following. We note that the supersolvable
case has previously been handled in [6, Theorem 5.2]. Appealing instead to Baer’s
classification of finite solvable groups with a nontrivial partition, we will not need to
refer to this result in [6].

THEOREM 4.2. Let G be a finite solvable group. Then G is a cyclic-transitive group
if and only if one of the following holds:

(1) G is a cyclic group;
(2) G is a p-group of exponent p for some prime p;
(3) G is a dihedral group;
(4) G ' S4;
(5) G is a Frobenius group, whose complements are cyclic and whose kernel is either

cyclic or of prime exponent;
(6) G = 〈a〉 × H, where 〈a〉 has prime order p 6= 2 and H is a Frobenius group with

a cyclic Frobenius kernel and Frobenius complements having order p.

The key to proving this is the classification of finite solvable groups with a nontrivial
partition by Baer. We recall this fundamental result which appeared in [1] (for a proof,
the reader can refer, for instance, to [8, Theorem 3.5.10]).

THEOREM 4.3 (Baer). Let G be a finite solvable group with a nontrivial partition 6.
Then one of the following occurs:

(a) G is a p-group for some prime p;
(b) G has a nilpotent normal subgroup N such that N ∈6, |G : N | is a prime p and

every element in G \ N has order p;
(c) G is a Frobenius group;
(d) G ∼= S4.
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PROOF OF THEOREM 4.2. We first suppose that G is cyclic-transitive. We know by
Theorem 2.2 that G is partitioned by cyclic subgroups. If this partition is trivial, then
G is cyclic, and so we may assume that G has a nontrivial partition. Thus, Baer’s
theorem applies. We go through the possibilities from Baer’s theorem.

If G is a p-group, then we may use Lemma 4.1 to see that G is cyclic, has
exponent p, or is a dihedral 2-group.

Next, we suppose that G has a normal nilpotent subgroup N of prime index p
where every element of G \ N has order p. Notice that N is now cyclic-transitive and
nilpotent. Hence, N is cyclic, has prime exponent, or is a dihedral 2-group. If p does
not divide |N |, then the fact that every element outside N has order p forces G to be a
Frobenius group with Frobenius kernel N . If N is cyclic or has prime exponent, then
we are done. Thus, we may assume that N is a dihedral 2-group, and it is not difficult
to see that a dihedral 2-group cannot be a Frobenius kernel.

Thus, we may assume that p divides |N |. If N has prime exponent or is a dihedral
2-group, then this implies that G is a p-group, and we are done. Thus, we may assume
that N is cyclic. If p = 2, we now have exactly the condition to force G to be a dihedral
group. Hence, we suppose that p is odd. Let P be a Sylow p-subgroup of G. Now,
P is not cyclic, so Lemma 4.1 implies that P has exponent p. Since N ∩ P is cyclic,
this implies that N ∩ P = 〈a〉 has order p. Let x ∈ P \ (N ∩ P), and let H = 〈x, Q〉
where Q is the Hall p-complement of N . Observe that 〈a〉 centralizes both x and Q,
so G = 〈a〉 × H . Also, every element in H \ Q lies in G \ N , and so, every element
of H \ Q has order p. It follows that H is a Frobenius group whose Frobenius kernel
is cyclic and whose Frobenius complements have order p.

We next suppose that G is a Frobenius group. Let N be the Frobenius kernel of G
and let H be a Frobenius complement. We know N is nilpotent, and so Lemma 4.1
implies that N is either cyclic, has prime exponent, or is a dihedral 2-group. As already
mentioned, a dihedral 2-group cannot be a Frobenius kernel, so N is either cyclic or
has prime exponent as desired. We know that H is cyclic-transitive, so we can consider
the possibilities from Baer’s theorem. If H is a p-group, then we know that H is cyclic
or generalized quaternion since it is a Frobenius complement. Also, by Lemma 4.1,
we have that H is cyclic, has exponent p, or is a dihedral 2-group. It follows that if H
is a p-group, then H must be cyclic.

We may now suppose that H is not cyclic. Earlier we classified the cyclic-transitive
groups that have type (b) from Baer’s classification. Either, they are a Frobenius group,
a p-group, a dihedral group, or they have a elementary abelian Sylow p-subgroup of
order p2. We know that a Frobenius complement cannot be a Frobenius group. Also,
it cannot have a Sylow 2-subgroup that is dihedral nor a Sylow p-subgroup that is
elementary abelian of order p2. Also, the Sylow 2-subgroup of S4 is not cyclic nor
generalized quaternion, so H is not S4. We conclude that H is cyclic.

The final possibility is that G is S4 which is one of the conclusions.
Conversely, suppose that G is one of the given groups. To show that G is cyclic-

transitive, it suffices by Lemma 2.1 to show that G has a partition by cyclic-transitive
subgroups. If G is cyclic, this is obvious. If G has exponent p, then it is partitioned
by the subgroups of order p which are necessarily cyclic. If G is a dihedral group, it is
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partitioned by the cyclic subgroup C of index 2 and the subgroups of order two which
intersect C trivially.

Observe that S4 is cyclic-transitive, since it is partitioned by the set of maximal
cyclic subgroups (see, for instance, [8, Examples 3.5.1]). Suppose that G is a
Frobenius group, whose complements are cyclic and whose kernel is either cyclic or
of prime exponent. We know G is partitioned by its kernel and complements, and they
are all cyclic-transitive.

Finally, suppose that G = 〈a〉 × H , where 〈a〉 has prime order p 6= 2 and H is a
Frobenius group with a cyclic Frobenius kernel and Frobenius complements having
order p. Let K be the Frobenius kernel of H and let N = 〈a, K 〉 = 〈a〉 × K . Observe
that N is cyclic. Suppose that g ∈ G \ N . Then g = amh, where m is an integer
and h ∈ H \ K . Now, am and h commute. So the order of g is the least common
multiple of the orders of am and h. But h has order p and am has order dividing p, so
g has order p. We conclude that all the elements in G \ N have order p, and so G is
partitioned by N and the subgroups of order p that intersect N trivially. In particular,
G is cyclic-transitive. 2
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