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We present a study on the solitons in strongly coupled Yukawa fluids using a simple
fluid model (SFE), supplemented by an appropriate equation of state for the medium. The
formulation covers a broad range of coupling (�) and screening (κ) parameters, showing
an agreement with the nonlinear quasilocalized charged approximation and generalized
hydrodynamic models in the weak screening regime of the solitons in Yukawa media.
The results also show a quantitative agreement with the experimentally measured values
of the width and Mach number with the normalized amplitude. It has also been observed
that the amplitude and width of the soliton in the weak screening limit increase with �
up to � ∼ 10, beyond which they remain independent of � values. Molecular dynamics
simulations also confirm that the localization begins to emerge beyond � ∼ 10, showing
no significant effects on the characteristics of the solitons in Yukawa media. Therefore,
the SFE model is capable of predicting the impact of the onset of the localization on the
solitons in Yukawa media. Additionally, the amplitude of the soliton increases while its
width decreases with κ values. The SFE model also explores the possibility of forming
refractive soliton structures, whose intensity increases with κ values and decreases with
� values.
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1. Introduction

Solitons are stable, localized wave packets that maintain their shape and speed
while propagating through a medium. They arise due to a delicate balance between
nonlinear and dispersive effects, making them a fascinating subject of study in var-
ious fields of physics (Gu, 2013, Arora, Rani & Emadifar, 2022). Solitons can be
found in numerous settings, including water waves (Craig et al. 2006), optical fibres
(Gordon, 1983), carbon nanotubes systems (Chamon, 2000, Kumar et al. 2022),
charged fluids and even biological systems (Gu, 2013, Arora, Rani & Emadifar,
2022). Dusty plasma offers a unique opportunity to study the characteristics of soli-
tons in charged fluids on very accessible spatiotemproal scale (Shukla, 1983). The
interaction of the dust particles can be modelled by Yukawa potential, characteriz-
ing with the coupling parameter � = Q2/aT and the screening parameter κ = a/λd ,
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where Q, T , a and λd are the dust charge, dust temperature, lattice constant and
screening length, respectively.

These nonlinear excitations in the strongly coupled regime of the medium are well
explored using various theoretical models, such as the generalized hydrodynamic
(GH) model (Kaw, 2001, Chakrabarti & Ghosh 2015), the nonlinear quasilocal-
ized charged approximation (QLCA) model (Prince Kumar and Devendra Sharma,
2023, Prince Kumar and Devendra Sharma, 2022) and molecular dynamical (MD)
simulations (Kumar, Tiwari & Das, 2017, Tiwari et al. 2015). These models success-
fully describe the soliton structures within their respective regimes of applicability.
The one-component version of the GH model has been applied to describe how
the viscoelasticity of the medium affects the solitons, with the relaxation time τm
and the viscosity η as essential parameters (Sharma, Boruah & Bailung, 2014). This
version of the GH model has a limited scope, preventing it from effectively explor-
ing the wide range of the screening regime of the nonlinear excitations in Yukawa
media (Kaw, 2001). The nonlinear QLCA model, however, overcomes this barrier
by incorporating the explicit localization of the constituent particles in the formu-
lation (Prince Kumar and Devendra Sharma, 2023, Prince Kumar and Devendra
Sharma, 2021). The QLCA was developed as a framework to model the dielectric
response and the dispersion of collective modes in strongly coupled liquid-phase
plasmas, where the coupling parameter (� � 1) indicates a highly localized regime.
Consequently, this framework is applicable only within the localized domain of
systems (Prince Kumar and Devendra Sharma, 2023, Golden & Kalman 2000).
Moreover, investigating the influence of the parameter � on solitons in dusty plas-
mas is interesting, given the limited insights provided by experimental results. The
purpose of this paper is to present a description of the dust solitons across a wide
range of parametric values using a simple fluid model (SFE) and to compare it with
existing models, MD simulations and experimental results.

The paper presents a SFE model (Khrapak & Thomas 2015), supplemented by a
suitable equation of state, to characterize solitons across a broad range of param-
eters � and κ. We adopt the practical expression of the internal energy and the
pressure, applicable across coupling regime, to calculate the compressibility of the
Yukawa medium (Khrapak & Thomas 2015). The formulation covers a broad range
of parameters � and κ , consistent with the weak screening limit of the nonlin-
ear QLCA and GH models in characterizing the solitons in Yukawa media. The
results obtained within the framework of the SFE model also exhibit a quantita-
tive agreement with experimentally measured values of the width and Mach number
for various values of the normalized amplitude (Sharma, Boruah & Bailung, 2014).
Agreement is achieved for lower values of κ , and the characteristics of the solitons
are not significantly altered by varying the � parameter. It has been observed that
the amplitude and width of the soliton in the weak screening limit increases with
� up to the value � ∼ 10, beyond this value it remains independent of � values.
The MD simulations presented in this paper also confirm that the localization starts
emerging beyond � ∼ 10 which shows no impact on the solitons in Yukawa media.
Therefore, the SFE model can accurately predict the effects of the onset of local-
ization on the nonlinear excitations in Yukawa media. The amplitude and width
of the soliton increases and decreases, respectively, with κ values. The SFE model
also explores the possibility of forming refractive soliton structures whose intensity
increases and decreases with κ and � values, respectively.

The SFE model may successfully overcome the limitations of the nonlinear QLCA
in the weak coupling regime (Prince Kumar and Devendra Sharma, 2023) and the
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one-component version of the GH model (Kaw, 2001) in the strong screening limit
of the solitons in Yukawa media. However, it is known that the simplistic fluid
treatment is applicable to longer wavelengths or low frequencies and becomes irrele-
vant in the highly localized regime. The fluid model’s limited scope prevents it from
accessing relatively shorter collective modes, as its phenomenological equation of
state is not applicable in this limit (Khrapak & Thomas 2015). The significant con-
tribution to the formation of the Korteweg-de Vries (KdV) solitons, however, comes
from lower spectral modes, which are efficiently captured within the framework of
the SFE model. Additionally, the precise practical formulations of thermodynamic
quantities enable us to achieve quantitative results and conduct detailed comparisons
with outcomes from other approaches. The future scope of the formulation is briefly
discussed at the end of the paper.

The structure of the article is as follows. The description of the model equations
for the soliton in strongly coupled Yukawa media is presented in § 2. The KdV
equation is derived using the fluid equations in § 2.1. The analytical KdV results
across coupling regime and their comparison with the existing models are presented
in § 3. The comparison with the experimental data, the MD simulation, the nonlinear
QLCA model and the GH model are presented in §§ 3.2, 3.3, 3.4 and 3.5, respec-
tively. The simulation on the evolution of the general perturbation is presented in
§ 3.6. The summary and conclusions of the study are presented in § 4.

2. Simple fluid equations with an equation of state for Yukawa fluids: the SFE model

The description of long-wavelength collective excitations in a strongly coupled
Yukawa fluid can obtained using the fluid equations that are supplemented with
appropriate modified thermodynamic quantities. The momentum and continuity
equation for a charged dust fluid are (Khrapak & Thomas 2015)

∂ud

∂t
+ (ud · ∇)ud = Q

md
E − 1

mdnd
∇Pd, (2.1)

∂nd

∂t
+ ∇ · (ndud) = 0. (2.2)

The adiabatic compressiblilty of the medium can be related to isothermal
compressibility by using expression given as(

∂P
∂nd

)
S

= γ

(
∂P
∂nd

)
T

(2.3)

where S is system entropy and γ = CP/CV is the adiabatic index. Using above
expression, (2.1) can therefore be written as

∂ud

∂t
+ (ud · ∇)ud = Q

md
E − V 2

thγα
∇nd

nd
, (2.4)

where Vth = √
Td/md is the thermal velocity of dust particles, Td is the dust-

thermal energy, Q = −Ze is the dust charge, the electric field E = −∇φ and α =
(1/Td) (∂P/∂nd)T is the isothermal compressibility modulus.

Upon normalization, (2.4) takes the form

∂ud

∂t
+ (ud · ∇)ud = μ∇φ − γα

3�

∇nd

nd
, (2.5)
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and the normalized Poisson equation becomes

∇2φ = 1

μ
[nd + ne − ni] , (2.6)

where ne = δe exp (σeφ), and ni = δi exp (−σiφ). We have the dimensionless param-
eters μ = ZdTd/(mda2ω2

pd), δe = ne0/Zdnd0, δi = ni0/Zdnd0 and σi,e = Td/Ti,e. The
equilibrium dust density nd0, the ratio Td/e, dust acoustic frequency ωpd =√

4πQ2nd0/md and mean dust separation a = (4πnd0/3)−1/3 are used as normaliza-
tions for the density, potential, time and length, respectively. Equations (2.5)–(2.7)
along with the continuity (2.2) constitute a nonlinear model as the convective non-
linearity in the second term and the nonlinear second term in right-hand side of (2.5)
are retained. The value of the coefficient γα is given as (Khrapak & Thomas 2015,
Khrapak & Thomas 2015)

γα = α + (p − � (∂p/∂�))2

u − � ((∂p/∂�))
(2.7)

where u, p and α account for particle–particle correlation and plasma-related effects.
The u(�, κ), p(�, κ) and α(�, κ), are the system excess energy, pressure and isother-
mal compressibility modulus (Khrapak & Thomas 2015). The expressions for these
parameters are presented in appendix A. The model equations presented here are
first used to drive the KdV equation to study soliton structures in Yukawa media
across various coupling regimes. This is followed by the analysis of the results and
their validation with experimental data, MD simulation, the GH model and the
QLCA model. For simplicity, from now on, let α = γα

3�
.

2.1. Derivation of the KdV equation for a strongly coupled Yukawa fluid
In order to obtain the KdV equation (Davidson, 2012) for this system, we first

introduce slow variables ζ and τ , given by

ζ = ε1/2(x − v0t), τ = ε3/2t, (2.8)

where ε is a smallness parameter measuring the weakness of the perturbation and
V0 represent the phase velocity of the dust acoustic wave (DAW). In terms of ζ and
τ the equations become

ε3/2 ∂nd

∂τ
− V0ε

1/2 ∂nd

∂ζ
+ ε1/2 ∂ndud

∂ζ
= 0, (2.9)

ε3/2 ∂ud

∂τ
− V0ε

1/2 ∂ud

∂ζ
+ ε1/2ud

∂ud

∂ζ
= με1/2 ∂φ

∂ζ

− α

nd

∂nd

∂ζ

(2.10)

and

ε3/2 ∂2φ

∂ζ 2
= 1

μ

{
δe

[
1 + σeφ + 1

2
σ 2

e φ2 + ..

]

− δi

[
1 − σiφ + 1

2
σ 2

i φ2 + ..

]
+ nd

}
.

(2.11)
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We can now expand the variables nd , ud and φ in the power series of ε,

nd = 1 + εn(1)
d + ε2n(2)

d + . . . . . . . . . .

ud = εu(1)
d + ε2u(2)

d + . . . . . . . . . .

φ = εφ(1) + ε2φ(2) + . . . . . . . . . .

(2.12)

Substituting (2.12) into (2.9), (2.10), (2.11) and equating coefficients of ε3/2, we get,
to lowest order,

−V0
∂n(1)

d

∂ζ
+ ∂u(1)

d

∂ζ
= 0, (2.13)

−V0
∂u(1)

d

∂ζ
+ α

∂n(1)
d

∂ζ
− μ

∂φ(1)

∂ζ
= 0 (2.14)

and

−h1

μ
φ − 1

μ
n(1)

d = 0. (2.15)

After integrating and rearranging terms, the following linear expressions are
obtained:

u(1)
d = − μV0

(V 2
0 − α)

φ(1), (2.16)

n(1)
d = − μ

(V 2
0 − α)

φ(1) (2.17)

and

V0 =
(

μ

h1
+ α

)1/2

, (2.18)

where h1 = (Tdδe/Te + Tdδi/Ti) and κ2 = h1
μ

= a2

λ2
D
. Equation (2.18) describes how

the phase velocity of the DAW changes with α.
The KdV equation derived for strongly coupled Yukawa fluids using (2.5)–(2.7)

and (2.2) is given as

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂ζ
+ B

∂3φ(1)

∂ζ 3
= 0, (2.19)

where the nonlinear coefficient A and the dispersion coefficient B are given by

A =
[

μα

2V0(V 2
0 − α)

− 3μV0

2(V 2
0 − α)

+ (V 2
0 − α)h2

2V0h1

]
, (2.20)

B = (V 2
0 − α)μ

2V0h1
, (2.21)

with h2 = [
δi(Td/Ti)2) − δe(Td/Te)2

]
.

https://doi.org/10.1017/S0022377825000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000248


6 P. Kumar and D. Sharma

(a) (b)

FIGURE 1. The amplitude (φm) of the soliton with U0 is presented in (a) for different values
of � while keeping κ = 0.5. The amplitude (φm) of the soliton with U0 is presented in (b) for
different values of κ while keeping � = 100.

Equation (2.19) can be solved by separating variables, resulting in a solution in
the laboratory frame,

φ(x, t) = φmsech2
[ z
�

]
, (2.22)

where

φm = 3U0

A
and � =

√
4B
U0

, (2.23)

where φm and � represent the amplitude and width of the soliton, respectively. Here,
z denotes a coordinate in the laboratory frame, and U0 is the normalized velocity of
the solitary wave.

3. Analytical results and their comparison with other approaches
3.1. Analytical KdV solutions using the SFE model

This section presents the variation of the width and amplitude of the solitary struc-
tures across a broad range of the � and κ parameters. The amplitude φm and width
� of the solitary structures can be calculated using (2.23). The parameters φm and �
implicitly depend on � and κ through the isothermal compressibility α(�, κ), which
influences the KdV coefficients A and B presented in (2.20) and (2.21), respectively.
The variation of the amplitude of the solitary structures is presented in figures 1(a)
and 1(b) for different values of � and κ , respectively. The value of parameters �
and κ are considered to characterize the solitary structures in the weak to moderate
coupling regime of the system. The variation of φ with U0 for a set of � values
is presented in figure 1(a), with the value of κ fixed at 0.5. It has been observed
that the amplitude increases with U0 for the fixed values of � and κ = 0.5. As can
be seen in figure 1(a), the amplitude of the solitary structures also increase with �
values, however, the increment is more pronounced only at lower values of �. In
figure 1(a), each colour represents a different value of �: blue for � = 0.01; red dot-
ted for � = 0.1; yellow for � = 1.0; purple for � = 10; green circles for � = 100. As
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FIGURE 2. The figure illustrates the equilibrium radial distribution function (RDF) various val-
ues of the coupling parameter �. Peaks in the RDF begin to appear at � ∼ 10 and are most
prominent around � ∼ 100. All results are plotted with a fixed screening parameter of κ = 0.5.

the value of � increases, the increment in the amplitude decreases. This dependency
is observed up to � = 10, beyond which the amplitude remains independent of �. It
is evident from the overlap of the purple line (for � = 10) and the green circles (for
� = 100) in the figure 1(a). It has been observed that the amplitude is highly sensi-
tive to � at relatively weak coupling regime and higher values of U0. Interestingly,
the peak in the RDF start emerging after � > 1, as illustrated in figure 2, confirms
that the localization of the constituent particles becomes significant for � > 1. It
can be concluded that the caging of the constituent particles in the potential land-
scapes does not significantly contribute to the formation of the solitary structures in
Yukawa systems. The formation of the solitary structures in this quasilocalized limit
will be discussed within the QLCA model further in the upcoming section.

The variation of φm with U0 for a set of κ values is presented in figure 1(b),
with � fixed at 100. It has been observed that the amplitude increases with U0
for the fixed values of κ and � = 100. As depicted in figure 1(b), the amplitude of
the solitary structures increases with κ values, and the increment being pronounced
across all values of κ. In figure 1(b), each colour represents a different value of
κ : blue for κ = 0.5; red dotted for κ = 1.1; yellow for κ = 1.7; purple for κ = 2.3.
This occurs because as κ increases, the interaction among particles weakens, making
the interaction between neighbouring particles more significant than the collective
interactions. We will present a comparison of these observations with the nonlinear
QLCA model in the upcoming section.

The variation of � with U0 for a set of � values is presented in figure 3(a), with
κ fixed at 0.5. It has been observed that the width decreases with U0 for the fixed
values of � and κ = 0.5. The width of the solitary structures increase with � values,
however, the increment is more pronounced only at lower values of �.

As the value of � increases, the increment in the width decreases. This dependency
is observed up to � = 10, beyond which the width remains independent of �. It is
evident from the overlap of the purple line (for � = 10) and the green circles (for
� = 100) in the figure 3(a). Similar to the cases of amplitude, the width is also
highly sensitive to � only at relatively weak coupling regime and at higher values
of U0. The variation of � with U0 for a set of κ values is presented in figure 3(b),
with � fixed at 100. The width decreases with κ , however, the decrement is more
pronounced only at lower values of �. Solitons are stable, localized wave packets
that occur when the nonlinearity, resulting from interactions between dust particles,
balances with the dispersion from the collective response of the dusty plasma. As the
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(a) (b)

FIGURE 3. The width (�) of the soliton with U0 is presented in (a) for different values of �
while keeping κ = 0.5. The width (�) of the soliton with U0 is presented in (b) for different
values of κ while keeping � = 100.

(a) (b)

FIGURE 4. The width and Mach number are plotted with the soliton amplitude in (a) and (b),
respectively, for κ = 0.3 and � = 100.

dust temperature increases, or equivalently as the coupling parameter � decreases,
this balance is disrupted because the effects of nonlinearity weaken. This disruption
leads to the formation of broader and shorter solitons.

3.2. Experimental validations of the SFE model
This section is dedicated to providing experimental validation of the SFE model.

The variation of the Mach number and the width � of the soliton structures for
the normalized amplitude is presented in figure 4 under the same experimental con-
ditions (Sharma, Boruah & Bailung, 2014). The width of the soliton presented in
figure 4(a) decreases with the normalized amplitude of the soliton. The Mach num-
ber presented in figure 4(b) increases with the normalized amplitude of the soliton.
These analytical results show a good quantitative agreement with the experimentally
measured values of the width and the Mach number with normalized amplitude (see
Sharma, Boruah & Bailung, 2014). Agreement is achieved for lower values of κ ,
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FIGURE 5. The snapshot of the solitary waves at time, induced by an electric field perturbation
with a magnitude of E = 25.40, for different values of �. The solitary pulse, depicted in red
and green and blue dotted, emerges at � = 10, � = 50 and � = 100, respectively, with a fixed
screening parameter of κ = 0.5.

and the characteristics of the soliton are not significantly altered by varying the �
parameter.

3.3. Validations with MD simulations
In this section, the MD simulations are conducted to validate the theoretically

predicted results across a range of � values. The soliton structures shown in figure 5
are excited by applying an electric field within a small region of the rectangular
simulation box. Further details regarding the simulation parameters and methodol-
ogy can be referenced in our previous work (Prince Kumar and Devendra Sharma,
2024). Figure 5 represents the soliton-like structures for the various values of � and
a constant κ = 0.5. The red, green and dotted blue lines represent the soliton profiles
for � = 10, 50 and 100, respectively. It can be seen from figure 5 that the charac-
teristic properties of the solitons remain independent of �. These results are in close
quantitative agreement with the theoretical predictions shown in figures 1 and 3.
They predict that the amplitude and width of the solitons remain independent of
� beyond � ∼ 10 (the onset of localization). Therefore, the theoretical model accu-
rately predicts the onset of localization and its effects on the nonlinear excitations in
Yukawa media.

3.4. Comparison with the nonlinear QLCA model
In this section, we present a brief comparison between the SFE model and the non-

linear QLCA model across various sets of � and κ parameters. The basic equations
for the nonlinear QLCA model are presented in appendix B. The QLCA model, due
to its construction, remains applicable to the highly localized regime, whereas the
SFE model also tends to cover a relatively weak coupling regime. The fluid model’s
limited scope prevents it from accessing relatively shorter collective modes, as its
phenomenological equation of state is not applicable in this limit. The contribution
of relatively shorter wavelengths to the formation of soliton structures becomes sig-
nificant in the stronger screening limit (κ > 1), a phenomenon successfully described
by the nonlinear QLCA model. Figure 6 illustrates the solitons derived from the sim-
ple fluid and the nonlinear QLCA model for various values of κ. The results plotted
for κ = 0.3 and 1.0 in figure 6(a) and 6(b), respectively, show that the SFE model
agrees with the observations of the nonlinear QLCA model in the weak screening
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(a) (b)

FIGURE 6. The soliton profiles calculated from the SFE model and QLCA for κ = 0.3 and
κ = 1.0 are presented in (a) and (b), respectively. The value of the parameter � is considered to
remain within the quasilocalized regime of the medium.

limit. The soliton structures are derived within the nonlinear QLCA framework uti-
lizing the analytical form of the D-matrix, which is calculated using the isothermal
compressibility as outlined in (B.4). However, the description of the relatively high
screening regime of nonlinear excitations requires a more sophisticated form of the
D-matrix cable of accommodating the relatively higher modes in the formulation.
Moreover, the significance contribution to the formation of the KdV solitons comes
from lower spectral modes that are efficiently captured within the framework of
the SFE model. The QLCA results confirms the applicability of the SFE model in
describing the weak to moderate screening regime of the solitons in Yukawa media.

3.5. Comparsion with the GH model
In this section, we present a brief comparison between the SFE model and the

GH model for describing the solitons in Yukawa media. A brief introduction to
the KdV equations derived within the GH framework is provided in appendix C.
The KdV coefficients are the function of the system excess energy via the relaxation
time (τm) and the coefficient of viscosity (η). Since the excess energy u(�) of the
medium remains independent of κ , this version of the model has a limited scope,
preventing it from effectively exploring the wide range of the screening regime of the
nonlinear excitations in Yukawa media. However, the SFE model has accessibility
to explore the relatively high screening regime of the solitons in Yukawa fluids, as
the internal energy and the compressibility in the model are the explicit functions
of the κ (see (A.1) and (A.5)). The Mach number and the width � of the soliton
structures for the normalized amplitude are depicted in figure 4. These results can
also be reproduced using the GH model for a specific set of experimental parameters
(Sharma, Boruah & Bailung, 2014). These observations further confirm the efficacy
of the SFE model in describing the nonlinear excitations in strongly coupled Yukawa
systems. Similar to the case of the SFE model, we also observe from the GH model
that the characteristics of the soliton structures do not depend on the � value.
However, the GH model proves more accurate in describing the effects of shear
waves in the medium, an area where the SFE model falls short.

3.6. Numerical simulations with the general perturbations
To simulate the evolution of the general perturbations governed by (2.5)–(2.7)

and (2.2), we employ a pseudospectral technique utilizing the fast Fourier transform
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(a) (b)

FIGURE 7. The figure illustrates the progression of an initial gaussian density perturbation
characterized by a width � = 10 and an amplitude A = 0.05. Panels (a) and (b) correspond
to different values of κ and �, respectively.

library (Frigo, May 1999). These discretization schemes are chosen to adhere to
the Courant–Friedrichs–Lewy condition (Russell, 1989). For time integration, we
employ the Adams–Bashforth method (Durran, 1991). The aliasing effects induced
by nonlinear terms are mitigated using the well-established two-thirds rule proposed
by Orszag (Patterson & Orszag 1971). We apply an initial Gaussian pulse in the
medium for a wide range of � and κ values. The mathematical form of the profile
is written as

nd = n0 exp

[
−

(
z − z0

�

)2
]

, (3.1)

where � and n0 are the width and amplitude of the perturbation. The initial density
perturbation, depicted in figure 7(a) with a blue colour for κ = 2.0, disintegrates
into positive and negative density profiles travelling in opposite directions. The
snapshot of the profile at tωpd = 150 is shown in yellow in figure 7(b). To investigate
the effects of κ , we further evolve the initial perturbation with κ = 2.5 and present
the snapshot of the density at t = 150ωpd in figure 7(a) with the green colour. The
increment in the intensity of the refractive soliton with κ is also confirmed with
the MD simulation results (Donkó et al. 2020). Now, we are interested in exploring
the effects of � on the evolution of the general density perturbations. Therefore, the
snapshot of the disintegrated profiles is plotted in figure 7(b) for different values
of �. The blue, red and green colours represent the profile at t = 50ω−1

pd for � = 1.0,

t = 50 ω−1
pd for � = 10 and t = 50ω−1

pd for � = 50, respectively. This shows that the
intensity of rarefactive solitons decreases with �, and no rarefactive solitons are
observed beyond � = 1 at κ = 3.0.

4. Summary and conclusions

We have introduced the SFE model to describe the nonlinear excitations in
strongly coupled Yukawa fluids across a broad spectrum of � and κ values. The
equation of state of the medium is obtained using the practical expressions for
the internal energy and pressure, which are applicable across a wide range of the
coupling regime. The formulation describes the solitons across a wide spectrum of
parameters � and κ values, encompassing the respective domains of applicability
of the nonlinear QLCA and GH models in characterizing the solitons in Yukawa
media. The formulation also reproduces the experimentally measured values of the
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width and Mach number for various values of the normalized amplitude (Sharma,
Boruah & Bailung, 2014). It has been observed that the amplitude and width of
the soliton in weak coupling limit (no-localization) increases with � up to the value
� ∼ 10, beyond this value it remains independent to � values. The MD simulations
confirm that the localization starts emerging beyond � ∼ 10 which shows not impact
on the solitons in Yukawa media.

The SFE model may successfully overcome the limitations of the nonlinear QLCA
in the weak coupling regime and the one component plasma version GH model
in the strong screening limit of solitons in Yukawa media. It is known that the
simplistic fluid treatment (Prince Kumar and Devendra Sharma, 2020) is applica-
ble to longer wavelengths or low frequencies and becomes irrelevant in the highly
localized regime. The fluid model’s limited scope prevents it from accessing rel-
atively shorter collective modes, as its phenomenological equation of state is not
applicable in this limit. However, the significant contribution to the formation of
the KdV solitons comes from lower spectral modes, which are efficiently captured
within the framework of the SFE model. Additionally, the precise practical for-
mulations of thermodynamic quantities enable us to achieve quantitative results
and conduct detailed comparisons with outcomes from other approaches. The SFE
model presents a distinctive opportunity to precisely quantify the longitudinal non-
linear excitations and their instabilities of Yukawa or dusty plasma systems (Sandip
Dalui, Prince Kumar, and Devendra Sharma, 2023). This is facilitated by the explicit
dependency of the compressibility, pressure, adiabatic index and internal energy of
the system on � and κ. One of the example is modulational instability which is likely
to occur in frequency ranges where the dispersion relation of the DAW exhibits
anomalous behaviour, such as regions of negative dispersion. In a specific range
of � and κ , the compressibility changes its sign to negative, resulting in a nega-
tive dispersion relation at a certain k value. As a consequence, the group velocity
approaches zero at a specific value of k and subsequently becomes negative. In this
context, it would be interesting to investigate how variations in � and κ influence
the modulational instability of the dust acoustic modes.

The present work can be of finite interest to the complex (dusty) plasma and
nonlinear plasma waves communities. It offers valuable insights into the underlying
physics of nonlinear excitations, which can significantly benefit researchers in this
field. This is achieved through its construction, which includes explicit expressions
for thermodynamic quantities that account for both particle–particle correlations
and plasma-related effects. For example, while the adiabatic index γ shows a dis-
continuity at moderate coupling (Khrapak & Thomas 2015), this does not impact
the dust solitary structures. The structures are governed by the product γα, which
remains finite, as compressibility vanishes in this regime. A more specific analysis
will be conducted in future work.
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Appendix A. Thermodynamic functions for strongly coupled Yukawa systems
The main objective is to calculate the isothermal compressibility α of a strongly

coupled Yukawa medium. The practical expressions of the thermodynamic quanti-
ties for strongly coupled Yukawa systems has been derived using the ion spherical
model assumptions Khrapak et al. (2014). The expression for the internal energy
parameter is written as

u(κ, �) = 3

2
+ ε +

[
κ(κ + 1)�

(κ + 1) + (κ − 1)e2κ

]

+δ

(
�

�m

)2/5

− 3�

2κ2
− κ�

2
,

(A.1)

where the last two terms correspond to the plasma-related contribution to the inter-
nal energy of the medium. The explicit expression for the compressibility factor is
given as Khrapak & Thomas (2015)

Z(κ, �) =
(

1 + ε

3

)
+ �κ4

6[κ cosh (κ) − sinh (κ)]2

+δ

3

(
�

�m

)2/5

fZ(βκ),

(A.2)

where

fZ(x) = x3 + x2 + 2x + 2

x2 + 2x + 2
. (A.3)

The isothermal compressibility modulus is related to the compressibility factor via

α = Z + �

3

∂Z
∂�

− κ

3

∂Z
∂κ

. (A.4)

This yields

α(κ, �) =
(

1 + ε

3

)
+ �κ6 sinh (κ)

9[κ cosh (κ) − sinh (κ)]3

+ δ

45

(
�

�m

)2/5

fα(βκ),

(A.5)

where

fα(x) = 2x6 + 14x5 + 35x4 + 76x3 + 136x2 + 136x + 68

(x2 + 2x + 2)2
. (A.6)

The pressure of the medium can be expressed in term of the compressibility factor
Z(κ, �) as, p(κ, �) = Z(κ, �) + (

3�/2κ2 − 1
)
. The coupling parameter at fluid–

solid phase transition is �m ∼
[
172 exp (βκ)/

(
1 + βκ + 1

2β2κ2
)]

, and the value of
parameters ε = −0.1, β = 1.614 and δ = 3.2 are considered for the present analysis.

Appendix B. The nonlinear QLCA model for Yukawa fluids
The momentum conservation equation retaining localizations via QLCA basis is

given as Prince Kumar and Devendra Sharma (2023)

∂udx

∂t
+ udx

∂udx

∂x
= μ

∂φ

∂x
− α̃

1

ndx

∂ndx

∂x
, (B.1)
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which is supplemented by the continuity

∂ndx

∂t
+ ∂

∂x
(ndxudx) = 0, (B.2)

and the Poisson equation

∂2φ

∂x2
= 1

μ
[nd + ne − ni] , (B.3)

respectively. Equations (B.1)–(B.3) form a nonlinear QLCA model. The analytical
form of the isothermal compressibility factor within the QLCA basis is given by

α(κ) = −0.0799 − 0.0046κ2 + 0.0016κ4 (B.4)

Furthermore, a more sophisticated form of the D-matrix can be incorporated via
a pseudospectral technique, as discussed in Prince Kumar and Devendra Sharma
(2023)

Appendix C. The KdV equation from the GH model
The GH model was adopted by the dusty plasma community to study the effects

of the viscoelastic nature of the medium on its collective excitations. The viscoelastic
contribution incorporated via the relaxation time (τm) shows the finite effects on
the linear and collective excitations of the medium. The details about the model
equations can be found in Kaw & Sen (1998). As a particular interest here to analysis
the KdV equations derive within the framework of the GH model, can be written as
Sharma, Boruah & Bailung (2014)

∂n(1)

∂τ
+ An(1) ∂n(1)

∂ζ
+ B

∂3n(1)

∂ζ 3
= 0, (C.1)

where the nonlinear coefficient A and the dispersion coefficient B are given by

A = 2αλ + [
β

(
μeσ

2
e − μi

)
λ/β2

] − λ3τm(
α − 2λ2τm + τm

) , (C.2)

B = αλ(
α − 2λ2τm + τm

) , (C.3)

where α = η∗ − λ2τm, β = μeσi + μi. The parameter η∗ is the viscosity coefficient
whose empirical analytical expression can be written as η = a(�m/�) + b(�/�m) +
c, where the table for the unknown coefficients is given in Saigo & Hamaguchi
(2002). The memory relation time τm = 3 η∗�

[
1 − γμ + 0.266u(�)

]−1 follows the
trend of the viscosity parameter η∗ Chakrabarti & Ghosh (2015). The compressibility
μ is calculated from the excess energy for one component plasma (κ =0) for the
range 1 < � < 200. Therefore, the scope of the presented form of the GH model is
limited in describing the relative strong screening regime of the medium.
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