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1. Introduction

A universal power automorphism (Cooper [1]) of a group is an automorphism
mapping every element x to a power x" for some fixed integer n. It is long known
that a group admitting such an automorphism with n = — 1, 2 or 3 must be
Abelian. Miller [5] showed that for every other non-zero integral value of n
ihere exist non-Abelian groups admitting a non-trivial universal power automor-
phism x -> x".

The problem remained of how large a proportion of elements of a non-
Abelian group can be mapped to their nth power by some automorphism, when
n = — 1, 2 or 3. For the case n = — 1, it is known that if G is a finite non-Abelian
group and if p is the smallest prime dividing its order, then not more than f j G |
or | G\jp of its elements can be inverted by an automorphism according as p = 2
or p is an odd prime. MacHale and the present author ([3] and [4]) classified all
finite non-Abelian groups G that admit an automorphism inverting exactly
£ |G| ( |G | /p) elements when p = 2(p is odd). In a sense such groups are "almost"
Abelian and it is no surprise to find that they either have an Abelian subgroup of
index p or they are nilpotent groups of small nilpotency class.

In this paper we turn to the problem of classifying finite non-Abelian groups
G that admit an automorphism squaring as large a proportion of group elements
as possible. We prove (Theorem 3.5) that if p is the smallest prime dividing G |
then not more than JGJ/p of the elements of G can be squared by an automor-
phism. (This includes the case p = 2.) We then classify all finite non-Abelian
groups G that have an automorphism squaring exactly \G\lp elements. The
classification is given in Theorem 4.1 for fixed-point-free automorphisms and
Theorems 4.5, 4.10 and 4.11 for automorphisms with a non-trivial fixed group,
which turns out to be of order p.
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It must be expected that there is an overlap between groups having an
automorphism inverting many elements and groups having an automorphism
squaring many elements, for in groups of exponent 3 the concepts coincide.
Indeed, the groups of Theorems 4.1 and 4.10 are precisely the groups of [4,
Theorem 4.9]; the groups of Theorem 4.5 resemble those of [4, Theorem 5.1],
and the groups of Theorem 4.11 are those of [4, Theorem 4.13] with p = 3.

The proofs in [4] rested heavily on the fact that the automorphisms concerned
had order 2. This is not necessarily the case here, and new methods of proof had
to be found to settle the present question.

2. Notation

@p The set of all groups with order divisible by the prime p but by no
smaller prime.

a An automorphism of a group G.
Tx {geG\goc = g2}.
Ax A subgroup of G maximal in Tx.
Fx Subgroup of all elements fixed by a.
CA(d) Centralizer in subgroup A of element g e G.
<^S,x1,---,xry Group generated by the elements x^---,*, of G and the elements

of the subset S ^ G.
| S ] Number of elements in set S.
S\T Set of elements in S but not in T.

3. Preliminary results

Let G be a non-Abelian group in @p and let a be an automorphism of G. The
set Tx and subgroup Ax (as defined in section 2) clearly contain elements of odd
order only. Moreover, Ax is Abelian.

We aim to prove that | Tx\ g | G \jp. For the proof we require four lemmas.

LEMMA 3.1. LetfeFx. Then TJr C\TJS is empty whenever fr~s # 1.

PROOF. Suppose tlf = t2f
s where tlt t2eTx. Applying a we obtain

'If = tzf- Hence t1 = t2 and/ ' " 5 = 1.

LEMMA 3.2. (i) Let geG\Ax> and suppose that the set Axg C\TX is not
empty. Then

\AxgnTx\=\CA£g)\ £j\A.\.

(ii) Suppose g eG\Ax and g~xAxg = Ax. Then Axg n Tx is empty.
(iii) Suppose \Tx\>\G\jp. Then Ax is self-normalizing.

PROOF. For convenience of notation put A = Ax.
(i) Suppose teAgHTx. Then t = atg for some a^^eA, and Ag = At.
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Now, given aeA, {ai)a. = {at)2 if and only if a and * commute. So

Ag^Tx = (CA(t))t,

and clearly CA{i) = CA(g).
Finally, CA{g) is a proper subgroup of A, for otherwise (,CA(g), t} is a subgroup

in Tx containing A properly, and this contradicts the definition of A.

(ii) We first show that if t in Tx normalizes A then it centralizes A. For con-
sider a in A such that t~xat eA. Then

r2a2t2 = (t-iatyz = t~la2t,

from which it follows that t commutes with a2 and also with a, since A has odd
order.

Now suppose that g in G\A normalizes A, and that axgsTx for some aj
in A. Then a ^ centralizes 4̂ and hence CA(g) = A. This contradicts (i) and
completes the proof of (ii).

(iii) Suppose g inG\A normalizes A. Then also gr (r = 1,2, • • •,p — 1) norma-
lizes A, and g' $A. By (ii), the set A U Ag U ••• U Ag"'1 has 1//? of its elements
in Ta. It now follows from (i) that J Tx\ cannot exceed | G\/p.

LEMMA 3.3. If a is fixed-point-free (f.p.f.) then for every t in Tx, gsCG{f)

PROOF, [g, Q = 1 => [ga, t2~\ = 1 => [got, t] = l, since ( has odd order. Hence
geCG(t)=>g~l(ga)eCG(i). Since a is f.p.f. the correspondence g*^g~1{ga) is
one-one and the lemma follows.

LEMMA 3.4. / / a is f.p.f. then Tx contains at most one element from any
conjugacy class of G.

PROOF. Suppose gtg~x s Ta, where te Tx. Then

gfg-1 = (gtg-1^ = {ga)t2(goi)-\

So g-1(goi)eCG(t2) = CG(t). By Lemma 3.3, geCG(t) and so gtg'1 = t.

We can now prove the main result of this section, that the non-Abelian group
G in 0 p has | Ta\ g | G\/p. This is an immediate consequence of the following
theorem.

THEOREM 3.5. Let G in CSV have an automorphism a. such that | Tx\ > \ Gjp\.
Then G is Abelian, and Ta = G.

PROOF. The theorem is clearly true for groups of prime order. Let G be a min-
imal counterexample; so G is a non-Abelian group as specified in the theorem, for
some prime p. Then we may suppose that a is fixed-point-free; for consider a
coset decomposition of G relative to the subgroup Ax. If fa = / , / # 1, then by
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Lemma 3.1 none of the cosets Aaf (i = 1, •••,/? — 1) contains an element of Tx; all
other cosets except Ax have not more than 1 jp of their elements in Tx. Thus the
existence of a non-trivial element fixed under a implies that p\ Tx\ ^ | G\.

We next show that G must have non-trivial centre Z. If Z = 1 then each
conjugacy class other than {1} contains at least p elements. By Lemma 3.4, G
has at least \TX\ conjugacy classes, and so | G | k (| Ta| - l)p + 1. But \TX\
> | G \/p, and so \TX\ ^ 1 +1 G | Ip, the last inequality because both | Tx | and | G | Ip
are integers. Hence | G| 2: | G\ + 1, and we have a contradiction.

It remains to consider a group G with non-trivial centre Z and such that a is
f.p.f. Put Z* = Z C\ Tx. This is a subgroup of Z. If Z* is a proper subgroup of Z
then Tx contains at most 1 Ip of the central elements and, by Lemma 3.4, at most
1/p of the remaining elements; thus p\ Tx\ ^ | G\. Next, suppose that Z* = Z.
By Lemma 3.2 (iii) G has a self-normalizing proper subgroup y4a and so G is not
nilpotent. Therefore we may suppose that G /Z is non-Abelian. Now a induces an
automorphism a in G jZ, such that (Zg)d = Z{gu). Furthermore, GjZ belongs to
@q, for some prime q^. p, and since | G /Z | < | G j , we may assume that q | Ts\
^ | G / Z | . But | Tx\ g j Tx\ \Z\, and hence p | T a | ^ | G | . This contradiction
completes the proof.

4 . G r o u p s w i t h | T x | = \G\/p

Having established that an automorphism of a non-Abelian group in ^ p

cannot send more than 1 /p of the elements to their squares, we shall now study
the situation at the upper bound. So let G be a non-Abelian group in @p having an
automorphism a such that p\ Tx\ = | G|. The analysis depends on whether a is
f.p.f. or not, and we treat the two cases separately.

4A. The case tx f.p.f.

In this case Tx cannot be a subgroup. For suppose Tx = A, a subgroup of
index p in G. Then A is Abelian and, because p is the smallest prime divisor of G,
A is normal in G. Now G is assumed non-Abelian, so there exist x£A,aeA such
that a ^x~iax. This contradicts Lemma 3.4.

Next we show that not all of the centre Z of G can belong to Tx. We shall
assume that Z £ Tx and obtain a contradiction. Our argument falls into two
cases, depending on whether (i) every conjugacy class of G contains an element in
Tx, or (ii) some conjugacy class has no element in Tx.

Case (i): by Lemma 3.4, G has | Tx | ( = | G \jp) conjugacy classes. We need
a result of Joseph [2, Proposition 2.6 (iv)] which states that if a group G in @p has
k conjugacy classes then the order of the commutator subgroup G' satisfies the
inequality

k 1 / p 2 - l \
G p2 \ \G'\ J
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The proof runs as follows: consider the absolutely irreducible characters of G.
There are (G:G') linear characters and k — {G:G') characters whose degrees
mu---,mi,--- exceed 1 and divide \G\. Thus mt ^ p. Now \G\ = (G: G') + Zra' ,
and hence | G | ^ (G: G') + (k — (G: G'))p2, which gives the above inequality.

From Joseph's lemma we obtain | G'\ ^ p + 1, when pk — | G |. If p is odd
then J G'\ = p and all non-central conjugacy classes contain p elements. This
contradicts G having \G\/p conjugacy classes. If p = 2 then | G'| = 2 or 3.
Because a is assumed fixed-point-free, the only possibility is that G' is generated
by an element c of order 3 and that ca = c2. Therefore G' £ Ta. By Lemma 3.4,
c and c2 are not conjugate and so G' £ z . Hence G is the direct product of its
unique Sylow 3-group and a central subgroup of even order. But our assumption
that Z £ Tx implies that Z has odd order, and we have a contradiction.

Case (ii): Suppose the element d in G is not conjugate to an element in Tx.
It follows easily that the (p — 1) | Z | elements zdr, z e Z , r = 1, • • •, p — 1, fall
into conjugacy classes with no elements in Tx. In order to satisfy Lemma 3.4 and
the condition p\ Tx | = | G |, all the remaining conjugacy classes have p elements
with exactly one member in Tx. Clearly a permutes these latter classes and so we
may assume that for some zteZ and integer q not divisible by p,

da = Zid".

Moreover, every conjugate of d has the form zdr for some zeZ.
Now d is not central, and since the elements of Tx generate G, there exists

t e Tx, z e Z and integer k such that

Applying the automorphism a, we obtain

r2
Zldn2 = z2zk

1
qkp = z2-*z\rldn.

Hence
dqtd-qeZt<= Ta.

By Lemma 3.4, d1 commutes with t, and hence d commutes with t, a contradiction.
Thus we have proved that Z £ Tx.

The only other case that can arise with a a f.p.f. automorphism such that
p| Ta | = | G| is as follows: the subgroupZ* = Z O Tahas index p in Z and every
conjugacy class containing non-central elements has exactly p elements, and
exactly one of these lies in Tx. Choose z in Z \ Z*. It follows easily that the sets
Txz' (i = 0,1,•••,/>- 1) are pairwise disjoint and, since |T a | = | G | / p , that
G = TXZ. Hence (xZ)x = x2Z for all xeG, and G/Z is Abelian. Now let tu t2 be
non-commuting elements of Tx and put c = [f^f^]- Since G is nilpotent of class 2,
ceZ. Moreover,

cx= [<!,f2]a= [t2
utX\ = c4.
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It follows that c $ Z*, for ca = c2 gives ca = 1, which is false. Thus we have proved
that the centre of G is the direct product Z = Z* x G', where G' is generated by
an element c of order p.

Now G' is characteristic, and so ca = c' for some integer r. Since a is assumed
f.p.f. we require r # 1, and since c £ Tx, the cases p = 2 or 3 are ruled out.

Finally we note that t"eZr\Tx = Z* for all t e Tx, and, since p is odd, that
(f .^.)" = tftfeZ*, for all f;, t} e Tx. Thus Gp is a subgroup of Z*.

We can now state the structure theorem.

THEOREM 4.1. 4̂ necessary and sufficient condition that a non-Abelian
group Ge^p have a f.p.f. automorphism a such that p\ Tx\ = | G\ is that

(i) G be nilpotent of class 2 with \G'\ = p;
(ii) GpnG' = 1; and
(iii) P ̂  5.

PROOF. The necessity of the condition has been established. Conversely,
suppose that G satisfied (i)—(Iii). Let Z denote the centre of G. Then G\Z is an
elementary Abelian p-group, and Z is expressible as a direct product Z = Z*x G',
where Z* is a subgroup containing G". A simple commutator calculation shows
that G jZ can be generated by elements Za1, •••,Zak, Zxl,--,Zxk such that

[ x h x j ] = [ a , , a j ] = 1 f o r i,j = l,--,k,

[a,-,*;] = c (i = 1, • • - ,£) ,

where c generates G'. Put A = <a 1 ; •••,afc,Z*>. Then every element of G is

uniquely expressible in the form g = a c s x f ••• x^fc, where aeA, O^s < p, and

0 ^ qt < p (i = 1, •••, k). The m a p a such that

#a = (ac'xf1 - xf)a = a2c*sxfqi-- x\q*

defines an automorphism of G. Moreover, p\Tx\ = |G | , for, given any a in A
and integers qi,---,qk, there is precisely one s, 0 ^ s < p, such that go. = #2. This
is true for all odd primes p. However, a is f.p.f. if and only if p ^ 5.

4B. The case a not f.p.f.

For the remainder of this section let G be a non-Abelian group in ^ p having
an automorphism a with non-trivial fixed group Fa and such that p\Tx\ =\G\.
It follows from Lemma 3.1 that Fx has order p. Suppose Fx is generated by/ . We
note the decomposition of G into disjoint sets

(4.2) G = Tx U TJKJ - u r j " " * .

We require the following lemmas.
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LEMMA 4.3. The conjugacy class containing f has no element in Tx.

PROOF. If not, then for some t e Tx and integer r,

T1}* = t2ft-2.
Hence f2 = tft~l, and a further application of a yields / = tft~l and the con-
tradiction f2 = / .

LEMMA 4.4. Let Gx = AFX be a subgroup of G such that (i) A is a subgroup
of index p in G1, and (ii) A admits the automorphism a. Then A'—T^ (and so A
is Abelian).

PROOF. Suppose a e A.It follows from (4.2) that exactly one of the elements
af (0 ^ i < p) belongs to Tx. Suppose then that afJe Ta. Then (afJ)2 = (ax)fJ,
that i s , / J ' = a-\aa) a'1 eA. But clearly AnFx=l, and so it follows t h a t ; = 0,
and the proof is complete.

The case where Tx is a subgroup is easily disposed of.

THEOREM 4.5. A group Ge@p has an automorphism a such that Tx is a
subgroup of index p in G if and only if G has an odd order Abelian subgroup A
of index p and an element f$ A of order p .

PROOF. If Tx is a subgroup it must clearly have odd order. Moreover, in this
case a is not f.p.f. and so the genera tor /o f Fx is an element of order p as required.
Conversely, given A a n d / a s stated, the map (af) a = a2f, aeA,r = 0,---,p — 1,
defines an automorphism of G with Tx = A.

Next we consider the case where Tx is not a subgroup (and Fa has order p).

LEMMA 4.6. Let A( = Ax) be a subgroup] of G which is maximal in Ta and
suppose A ^ Tx. Then there exists a coset decomposition

such that
(i) AfJ n Tx is empty (j = l,-,p- 1);
(ii) \ \

PROOF. Result (i) is a consequence of (4.2). Clearly exactly 1 /p of the elements
of A UAf(J ••• U Af'1 belong to Tx. By Lemma 3.2 every other coset must have
exactly 1/p of its elements in Tx, for otherwise the condition p | 7 Ĵ = | G | is
violated. This proves (ii).

LEMMA 4.7. The conjugacy class containing teTx either has exactly one
element in Tx,when [ f , / ] = 1, or has exactly p elements in Tx, when
\ hese elements are f~rtf (r = 0, l,--,P — 1).

PROOF. g~xtg&Tx^ (ga)~ H\ga) = g~1t2g

=> (gcc)g~1 commutes with t2, and with t.
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But g = tif for some ft e Tx and some integer r. It follows that tl commutes
with t, and that g~1tg =f-"tfr.

LEMMA 4.8. Suppose Tx is not a subgroup. Suppose teTx\Z, and denote
by {(} the conjugacy class containing t. Then either \{t}\ = q, a prime ^ p, and

PROOF. Deny the lemma. Put A = CG(t). Then A has index q in G but [t,/] # 1,
that is,f$A. So G = (AJ}. Now at = tao(aa)t2 = t2(aa)o(aa)t = t(aa), and
so A admits the automorphism a.

We show that A is a subgroup in Ta. This follows from (4.2) if we can prove
that A n TJ is empty for every generator/ of Fa. Suppose that ttfeA for some
tt e Tx. Then also (f,/)a = t\fsA, whence ft e^4 and feA, a contradiction.

It is thus clear that A is an Abelian subgroup of index q in G, and that aa = a2

for all aeA. Moreover, since Tx is not a subgroup of G, we must have q > p. By
Lemma 4.6 there exists f*eTa\y4 such that | CA(t*) \ = | A\ /p. Since G = (A,t*}
it follows that CA(t*) = Z, the centre of G. So G/Z is a non-Abelian group of order
pq. It follows that the subgroups A and <Z,/> of order p | z | are conjugate in G.
But this contradicts Lemma 4.3, and the proof is complete.

As an immediate consequence of Lemmas 4.7 and 4.8 we have

COROLLARY 4.9. / / Tx is not a subgroup then at most 1 \p of the elements of a
non-central conjugacy class belong to Ta.

We now consider the structure of G according as its centre Z is a subgroup in
Tx or not. Put Z* = Z (~\TX and suppose Z* is a proper subgroup of Z. In order to
satisfy p\ Tx\ = | G\ we must have (Z: Z*) = p and every non-central conjugacy
class must have exactly \jp of its elements in Tx. By Lemma 4.3, feZ and
Z = <Z*,/>. By (4.2) G = TXFX and hence G/Fa is squared by a and so is Abelian.
Thus G' £ Fx, and since | F a | = p, it follows that G' = fa. Now <Ta> = G, and so
there exist t1,t2e Tx such that [ t i , (2] = / • Applying a we obtain

so that p = 3.
Finally it follows as in Section 4A that Gp is a subgroup of Z*. The following

structure theorem is now clear.

THEOREM 4.10. A necessary and sufficient condition that a non-Abelian
group G e d p have an automorphism a with non-trivial fixed group such that Tx

is not a subgroup and does not contain the centre ofG, and p\Tx\ = \G\, is given
by conditions (i) and (if) of Theorem 4.1 and condition (Hi)': p = 3.

Of course sufficiency is proved as in the proof of Theorem 4.1.
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It remains to consider groups for which the centre Z is contained in Ta. In
this case it follows from Lemma 4.3 that for integer r, 1 ̂ r ^ p — 1, and zeZ,
the conjugacy class containing zfr has no elements in Ta. In order to satisfy
p\Tx\ =\G\ it is necessary that every such conjugacy class lies entirely in
Zf U Z / 2 U • • • u Zfp~1 and that exactly 1 jp of the elements of every other non-
central conjugacy class belong to Tx. The first of these two conditions implies that
given any g eG, there exists zeZ and integer s, such that

gfg-1 = zf

Putting g = tf (according to (4.2)) and applying a, one finds that s = 1. Thus
Zgf = Zfg, and so Zf lies in the centre of G jZ.

However, / is not central in G, and so, by a remark above and Lemma 4.7,
there exists an element teTx whose conjugacy class has p2 elements, exactly p of
which lie in Ta (these are the elements f~rtf).

Put A = CG(t). Then (G: A) = p2. It can be shown, as in the proof of Lemma
4.8, that A admits the automorphism a. Put Gx = </!,/>. Since A contains Z,
I Gt | = p\ A\ and Gt = AFX. By Lemma 4.4, A is an Abelian subgroup contained
in Tx. Indeed, since Tx is assumed not to be a subgroup, A is a subgroup maximal
in Tx. Now Gt has index p in G, so Gt < G. There exists t* e Tx such that
G = <G1;f*> = (A,f,t*y. By Lemma 4.6 both CA(t*) and Cx(/i*) have index p
in A We show that they are equal. For let aeCA(ft*). Then ^at*'1 =f~1af,
and applying a, we find that a e CA(t*). Thus CA(ft*) s C^(£*) and equality
follows because both subgroups have index p in A. It also follows that CA(t*)
= CA(f), and this subgroup therefore is the centre Z of G.

Thus we have proved that GjZ has order p3. This group is non-Abelian. To
see this, put A = <Z, a>. We show that [t*, a] $ Z. Firstly, [f *, a] ^ 1, for otherwise
(A,t*y £ Tx, and this contradicts the maximality of A in Ta. Secondly, if there
exists z ^ l such that 1 ̂  ['*,«] = zeZ, an application of a gives z2 = 1, a
contradiction, since Ta contains no elements of even order.

Next we show that G jZ has exponent p. Clearly apeZ; and t*p e Z also, since
otherwise <Z, f*> has index p in G and is contained in Tx, which by hypothesis is
not a subgroup of G.

Finally, consider the commutator [f*,a]. Since Zf generates the centre of
GjZ we have

for some integer r, 1 ̂  r < p.
Applying a we obtain

[t*,afeZ,

which leads to the contradiction [t*,a]eZ unless p = 3. We can now state OUT
final structure theorem.
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THEOREM 4.11. A necessary and sufficient condition that a non-Abelian

group 6 e f p have an automorphism a with non-trivial fixed group such that Tx

is not a subgroup but contains the centre of G, and jp] T̂  j = | G|, is that p = 3 and

G IZ be the non-Abelian group of order 27 and exponent 3.

PROOF. The necessity has been proved. The converse is established as in [4],

Theorem 4.13.
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