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Abstract. We construct a set of reference frames for description of the orbital and rotational
motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of
the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic
resolutions on reference frames adopted by the International Astronomical Union in 2000. We
assume that the solar system is isolated and space-time is asymptotically flat. The primary
reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to
infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference
frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its
spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the
sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving
with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF)
and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and
Moon respectively. They are both introduced in order to connect the coordinate description of
the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable
quantities which are the proper time and the laser-ranging distance. We solve the gravity field
equations and find the metric tensor and the scalar field in all frames. We also derive the
post-Newtonian coordinate transformations between the frames and analyze the residual gauge
freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the
barycentric equations of the motion of the Moon and argue that they are beyond the current
accuracy of lunar laser ranging (LLR) observations.
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The tremendous progress in technology, which we have witnessed during the last 30
years, has led to enormous improvement of precision in measuring time and distances
within the boundaries of the solar system. Observational techniques like lunar and satel-
lite laser ranging, radar and Doppler ranging, very long baseline interferometry, high-
precision atomic clocks, gyroscopes, etc. have made it possible to start probing the
kinematic and dynamic effects in motion of celestial bodies to unprecedented level of
fundamental interest. Current accuracy requirements make it inevitable to formulate the
most critical astronomical data-processing procedures in the framework of Einstein’s gen-
eral theory of relativity. This is because major relativistic effects are several orders of
magnitude larger than the technical threshold of practical observations and in order to
interpret the results of such observations, one has to build physically-adequate relativistic
models. The future projects will require introduction of higher-order relativistic models
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supplemented with the corresponding parametrization of the relativistic effects, which
will affect the observations.

The dynamical modeling for the solar system (major and minor planets), for deep
space navigation, and for the dynamics of Earth’s satellites and the Moon must be
consistent with general relativity. LLR measurements are particularly crucial for testing
general relativistic predictions and advanced exploration of other laws of fundamental
gravitational physics. Current LLR technologies allow us to arrange the measurement of
the distance from a laser on the Earth to a corner-cube reflector (CCR) on the Moon
with a precision approaching 1 millimeter (Battat et al. 2007 and Murphy et al. 2008).

At this precision, the LLR model must take into account all the classical and relativistic
effects in the orbital and rotational motion of the Moon and Earth. Although a lot of
effort has been made in constructing this model, there are still many controversial issues,
which obscure the progress in better understanding of the fundamental principles of the
relativistic model of the Earth-Moon system.

The theoretical approach used for construction of the JPL ephemeris accepts that the
post-Newtonian description of the planetary motions can be achieved with the Einstein-
Infeld-Hoffmann (EIH) equations of motion of point-like masses (Einstein et al. 1938),
which have been independently derived by Petrova (1949) and Fock (1959) for massive
fluid balls as well as by Lorentz & Droste (1917) under assumptions that the bodies are
spherical, homogeneous and consist of incompressible fluid. These relativistic equations
are valid in the barycentric frame of the solar system with time coordinate t and spatial
coordinates xi ≡ x.

However, due to the covariant nature of the general theory of relativity the barycen-
tric coordinates are not unique and are defined up to the space-time transformation
(Brumberg 1972, Brumberg 1991, and Soffel 1989)

t �→ t − 1
c2

∑
B

νB
GMB

RB
(RB · vB ), (1)

x �→ x − 1
c2

∑
B

λB
GMB

RB
RB , (2)

where summation goes over all the massive bodies of the solar system (B = 1, 2, ..., N);
G is the universal gravitational constant; c is the fundamental speed in the Minkowskian
space-time; a dot between any spatial vectors, a ·b denotes an Euclidean dot product of
two vectors a and b; MB is mass of body B; xB = xB (t) and vB = vB (t) are coordinates
and velocity of the center of mass of the body B; RB = x−xB ; νB and λB are constant,
but otherwise free parameters being responsible for a particular choice of the barycentric
coordinates. These parameters can be chosen arbitrary for each body B of the solar sys-
tem. Standard textbooks (Brumberg 1972, Brumberg 1991, Soffel 1989, and section 4.2
in Will 1993) assume that the coordinate parameters are equal for all bodies. This sim-
plifies the choice of coordinates and their transformations, and allows one to identify the
coordinates used by different authors. For instance, ν = λ = 0 corresponds to harmonic
or isotropic coordinates (Fock 1959), λ = 0 and ν = 1/2 realizes the standard coordinates
used in the book of Landau & Lifshitz (1975) and in PPN formalism (Will 1993). The
case of ν = 0, λ = 2 corresponds to the Gullstrand-Painlevé coordinates (Painlevé 1921,
Gullstrand 1922), but they have not been used so far in relativistic celestial mechanics
of the solar system. We prefer to have more freedom in transforming EIH equations of
motion and do not equate the coordinate parameters νB , λB for different massive bodies.

If the bodies in the N-body problem are numbered by indices B, C, D, etc., and the
coordinate freedom is described by equations (1), (2), EIH equations have the following
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form (equation 88 in Brumberg 1972)

ai
B = F i

N +
1
c2 F i

EIH , (3)

where the Newtonian force

F i
N = −

∑
C �=B

GMC Ri
BC

R3
BC

, (4)

the post-Newtonian perturbation

F i
EIH = −

∑
C �=B

GMC Ri
BC

R3
BC

{
(1 + λC )v2

B − (4 + 2λC )(vB · vC ) + (2 + λC )v2
C

−3
2
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RBC · vC

RBC

)2

− 3λC

[
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RBC
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− (5 − 2λB )
GMB

RBC
− (4 − 2λC )

GMC

RBC

−
∑

D �=B,C

GMD

[
1

RC D
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C D
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−
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[
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]
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+
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R3
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+
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RC D R2
BC

− λD

RBD R2
BC

)}
, (5)

and vB = vB (t) is velocity of the body B, aB = v̇B (t) is its acceleration, RBC = xB −xC ,
RC D = xC − xD are relative distances between the bodies, and vC B = vC − vB is a
relative velocity.

Barycentric coordinates xB and velocities vB of the center of mass of body B are
adequate theoretical quantities for description of the world-line of the body with respect
to the center of mass of the solar system. However, the barycentric coordinates are
global coordinates covering the entire solar system. Therefore, they have little help for
efficient physical decoupling of the post-Newtonian effects existing in the description
of the local dynamics of the orbital motion of the Moon around Earth (Brumberg &
Kopeikin 1989). The problem originates from the covariant nature of EIH equations and
the gauge freedom of the general relativity theory. Its resolution requires a novel approach
based on introduction of a set of local coordinates associated with the barycenter of the
Earth-Moon system, the Earth and the Moon (Kopeikin & Xie 2009).

The gauge freedom is already seen in the post-Newtonian EIH force (5) as it explic-
itly depends on the choice of spatial coordinates through the gauge-fixing parameters
λC , λD . Each term, depending explicitly on λC and λD in equation (5), has no direct
physical meaning because it can be eliminated after making a specific choice of these
parameters. In many works on experimental gravity and applied astronomy (including
JPL ephemerides) researches fix parameters λC = λD = 0, which corresponds to working
in harmonic coordinates. Harmonic coordinates simplify EIH equations to large extent
but one has to keep in mind that they have no physical privilege anyway, and that a
separate term or a limited number of terms from EIH equations of motion can not be
measured if they are gauge-dependent (Brumberg 1991).
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This opinion was recently confronted in publications by Murphy et al. (2007a,b), Soffel
et al. (2008), Williams et al. (2004), who followed Nordtvedt (1988). They separated EIH
equations (3)-(5) to the form being similar to the Lorentz force in electrodynamics

ai
B =

∑
C �=B

[
Ei

BC +
4 − 2λC

c
(vB × HBC )i − 3 − 2λC

c
(vC × HBC )i

]
(6)

where Ei
BC is called the “gravitoelectric” force, and the terms associated with the cross

products (vB × HBC )i and (vC × HBC )i are referred to as the “gravitomagnetic” force
(Nordtvedt 1988). The “gravitomagnetic” field is given by equation

Hi
BC = −1

c
(vBC × EBC )i =

GMC

c

(vBC × RBC )i

R3
BC

, (7)

and is proportional to the Newtonian force multiplied by the factor of vBC /c, where vBC

is the relative velocity between two gravitating bodies.
The gravitomagnetic field is of paramount importance for theoretical foundation of

general relativity (Ciufolini & Wheeler 1995). Therefore, it is not surprising that the acute
discussion has started about whether LLR can really measure the “gravitomagnetic”
field Hi

BC (Murphy et al. 2007a, Kopeikin 2007, Murphy et al. 2007b, Ciufolini 2007,
Soffel et al. 2008). It is evident that equation (6) demonstrates a strong dependence of
the “gravitomagnetic” force of each body on the choice of the barycentric coordinates.
For this reason, by changing the coordinate parameter λC one can eliminate either the
term (vB × HBC )i or (vC × HBC )i from EIH equations of motion (6). In particular,
the term (vB × HBC )i vanishes in the Painlevé coordinates, making the statement of
Murphy et al. (2007a,b) about its “measurement” unsupported, because the strength of
the factual “gravitomagnetic” force is coordinate-dependent. Notice that the barycentric
(SSB) frame remains the same. We eliminate the “gravitomagnetic” force by changing the
spatial coordinate only. In particular, the Lorentz transformation does not play any role.
Hence a great care should be taken in order to properly interpret the LLR “measurement”
of such gravitomagnetic terms in consistency with the covariant nature of the general
theory of relativity and the theory of astronomical measurements in curved space-time.
We keep up the point that the “gravitomagnetic” field (7) is unmeasurable with LLR due
to its gauge-dependence that is not associated with the transformation from one frame
to another but with the coordinate transformation (2).

Nevertheless, the observable LLR time delay is gauge invariant. This is because the
gauge transformation changes not only the gravitational force but the solution of the
equation describing the light ray propagation. For this reason, the gauge parameter λC

appears in the time delay explicitly

t2 − t1 =
R12

c
+ 2

∑
C

GMC

c3 ln
[
R1C + R2C + R12

R1C + R2C − R12

]

+
∑
C

λC
GMC

c3

(R1C − R2C )2 − R2
12

2R1C R2C R12
(R1C + R2C ). (8)

At the same time the “Newtonian” distance R12 depends on the parameter λC implicitly
through the solution of EIH equations (3)-(5). This implicit dependence of the right side
of (8) is exactly compensated by the explicit dependence of (8) on λC , making the time
delay gauge-invariant.

Papers (Murphy et al. 2007a,b, Williams et al. 2004, Soffel et al. 2008) do not take
into account the explicit gauge-dependence of the light time delay on λC . If the last term
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in (8) is omitted but EIH force is taken in form (6), the equations (6) and (8) become
theoretically incompatible. In this setting LLR “measures” only the consistency of the
EIH equations with the expression for time delay of the laser pulse. However, this is not
a test of gravitomagnetism, which actual detection requires more precise measurement of
the gauge-invariant components of the Riemann tensor associated directly either with the
spin multipoles of the gravitational field of the Earth (Ciufolini 2008, Ciufolini & Pavlis
2004) or with the current-type multipoles of the tidal gravitational field of external bodies
(Kopeikin 2008).

In order to disentangle physical effects from numerous gauge dependent terms in the
equations of motion of the Moon we need a precise analytic theory of reference frames in
the lunar motion that includes several reference frames: SSB, GRF, SRF and EMB. This
gauge-invariant approach to the lunar motion has been initiated in our paper (Kopeikin
& Xie 2009) to which we refer the reader for further particular details.
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