EXISTENCE OF FINITE GROUPS WITH CLASSICAL COMMUTATOR SUBGROUP

MICHAEL D. MILLER (Received 28 June 1976; revised 3 May 1977) Communicated by M. F. Newman

Abstract

Given a group G, we may ask whether it is the commutator subgroup of some group \mathscr{G} . For example, every abelian group G is the commutator subgroup of a semi-direct product of $G \times G$ by a cyclic group of order 2. On the other hand, no symmetric group S_n (n > 2) is the commutator subgroup of any group \mathscr{G} . In this paper we examine the classical linear groups over finite fields K of characteristic not equal to 2, and determine which can be commutator subgroups of other groups. In particular, we settle the question for all normal subgroups of the general linear groups $GL_n(K)$, the unitary groups $U_n(K)$ $(n \neq 4)$, and the orthogonal groups $O_n(K)$ $(n \ge 7)$.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20F35, 20G40.

1. Preliminaries

If x and y are elements of a group G, the commutator of x and y, written [x, y], is the element $x^{-1}y^{-1}xy$. The commutator subgroup of G is denoted by G'. We call G a C-group if it is the commutator subgroup of some group \mathscr{G} . We denote by o(x) the order of x, by x^* the inner automorphism of G induced by x, and by $\langle x \rangle$ the subgroup generated by x.

We now give three theorems which are needed later.

THEOREM 1. Let H be a characteristic subgroup of G, $x \in G$. Suppose that there is no element $\varphi \in (\operatorname{Aut} H)'$ such that $x^*|_H = \varphi$. Then G is not a C-group.

PROOF. Suppose $\mathscr{G}' = G$. As *H* is characteristic in *G*, and *G* is characteristic in \mathscr{G} , *H* is characteristic in \mathscr{G} . Now *x* is a product of commutators in \mathscr{G} , each of which acts on *H* (via conjugation) as an element of (Aut *H*)'. Hence $x^*|_H = \varphi$ for some $\varphi \in (\text{Aut } H)'$, and the result follows.

THEOREM 2. Suppose $\varphi \in \operatorname{Aut} G$ has order s. Extend G by the cyclic group $\langle \varphi \rangle$ of order s to obtain a group $\overline{G} = \langle G, \varphi \rangle$ with relations

those of G, $\varphi^s = 1$, $\varphi^{-1}g\varphi = g^{\varphi}$ $(g \in G)$.

Then $\overline{G}' = \langle G', g^{\varphi - 1} | g \in G \rangle$.

Michael D. Miller

The proof is straightforward and is omitted. Clearly $\tilde{G}' \subseteq G$, and if equality holds, we have constructed a group of which G is the commutator. If $x \in G$, we define the x-order of φ , denoted by $o(\varphi, x)$, to be the order of the element φx in \tilde{G} . It is easy to see that $o(\varphi, x)$ is a multiple of s.

THEOREM 3. Let G be a group, $x \in G$, $\varphi, \psi \in \operatorname{Aut} G$ with $[\varphi, \psi] = x^*$. Then there exists a group \mathscr{G} with $\mathscr{G}' \subseteq G \subseteq \mathscr{G}$ and $x \in \mathscr{G}'$.

PROOF. We construct \mathscr{G} by consecutive cyclic extensions of G. Suppose that $o(\varphi) = s$, $o(\psi) = t$, and let $o(\varphi, x) = n$. Extend G by the cyclic group $\langle \bar{\varphi} \rangle$ of order n to obtain a group \bar{G} with relations

those of G,
$$\bar{\varphi}^n = 1$$
, $\bar{\varphi}^{-1}g\bar{\varphi} = g^{\varphi}$ $(g \in G)$.

We now extend ψ to the generators of \bar{G} by defining

$$\psi: \frac{g \to g^{\psi} \quad (g \in G)}{\bar{\varphi} \to \bar{\varphi} x.}$$

Using the fact that $[\varphi, \psi] = x^*$, it is easily checked that this indeed defines an automorphism of \vec{G} . We can now extend \vec{G} by the cyclic group $\langle \vec{\psi} \rangle$ of order \vec{i} , where \vec{i} is the order of ψ in Aut \vec{G} . We obtain a group \mathscr{G} with relations

those of G, $\tilde{\varphi}^n = 1$, $\bar{\varphi}^{-1}g\bar{\varphi} = g^{\varphi}$, $\bar{\psi}^{\bar{t}} = 1$, $\bar{\psi}^{-1}g\bar{\psi} = g^{\psi}$, $\bar{\psi}^{-1}\bar{\varphi}\bar{\psi} = \bar{\varphi}x$.

A simple calculation shows that

$$\mathscr{G}' = \langle G', x, g^{\varphi-1}, g^{\psi-1} | g \in G \rangle.$$

Hence \mathcal{G} has the desired properties.

2. General linear groups

Let $GL = GL_n(K)$ be the group of non-singular $n \times n$ matrices (n > 1) over the finite field $K = \mathbf{F}_q$ of $q = p^k$ elements (p > 2), and let

$$SL = SL_n(K) = \{X \in GL \mid \det X = 1\}.$$

It is known (Dieudonné, 1951) that Aut SL is generated by automorphisms of the following types:

(i) $A \rightarrow X^{-1}AX$, where $X \in GL$.

(ii)
$$A \rightarrow A^{\sigma}$$
, where $\sigma \in \text{Aut } K$.

(iii)
$$A \rightarrow (A^{-1})^{l}$$
.

We denote automorphisms of these three types by φ , χ , ψ respectively.

We wish to determine (Aut SL)'. A simple calculation shows that (Aut SL)' is generated by the elements $[w_1, w_2]$, where w_1, w_2 run through the three types φ , χ , ψ . As GL' = SL, any commutator $[\varphi_1, \varphi_2]$ is clearly an inner automorphism of SL. Since Aut K is abelian, we have $[\chi_1, \chi_2] = 1$.

Suppose $\varphi: A \to X^{-1}AX$ and $\chi: A \to A^{\sigma}$. Then $[\varphi, \chi]: A \to X^{-\sigma}XAX^{-1}X^{\sigma}$. Now det $(X^{-1+\sigma}) = (\det X)^{p^{r}-1}$, where $\sigma: K \to K$ is given by $y^{\sigma} = y^{p^{r}}$ for all $y \in K$. As $p^{r}-1$ is even, det $(X^{-1+\sigma})$ is a square in K. Thus $[\varphi, \chi]$ is an automorphism of type (i), induced by an element of GL with square determinant.

Now suppose $\varphi: A \to X^{-1}AX$, and $\psi: A \to (A^{-1})^{l}$. Then

$$[\varphi, \psi]: A \to X^{t} X A X^{-1} (X^{-1})^{t}.$$

Since det $(X^i X)$ is a square, $[\varphi, \psi]$ is of type (i), induced by an element of GL with square determinant. Finally, $[\chi, \psi] = 1$. We conclude that

$$(\operatorname{Aut} SL)' \subseteq \{X^* \mid X \in GL, \det X \text{ is a square}\}.$$

Except for $GL_2(\mathbf{F}_3)$, every non-central normal subgroup of GL contains SL. So let S be such a subgroup, $SL \subseteq S \subseteq GL$. Then S' = SL and so SL is characteristic in S. Furthermore, $C_S(SL) = Z(S)$ and so by Theorem 1, a necessary condition for S to be a C-group is that $S/Z(S) \subseteq (\operatorname{Aut} SL)'$.

Let α be a generator of K^* , and let [GL: S] = r, so that $S = \{X \in GL | \det X \text{ is an } r\text{th power}\}$. If $Q = \operatorname{diag}(\alpha, 1, 1, ..., 1)$, then $S = \langle SL, Q^r \rangle$. Assume $\mathscr{G}' = S$. Since $Q^r \in \mathscr{G}'$, the above analysis implies that $(Q^r)^*|_{SL} = A^*|_{SL}$, where $A \in GL$, and det A is a square. As $C_{GL}(SL)$ consists of the scalar matrices, there is a $\lambda \in K$ such that det $(\lambda Q^r) = \alpha^r \lambda^n$ is a square. If n is even and r is odd, we clearly have a contradiction. Hence in such cases, S is not a C-group.

Suppose now that r is even. Let $B = \text{diag}(\alpha^{r/2}, 1, 1, ..., 1)$, and consider the following two automorphisms of S:

$$\varphi \colon A \to B^{-1} AB,$$

$$\psi \colon A \to (A^{-1})^{\sharp}.$$

We find that $[\varphi^{-1}, \psi^{-1}] = (BB^{l})^{*}$. But $BB^{l} = Q^{r}$. Define $\mathscr{G} = \langle S, \varphi, \psi \rangle$, with relations as defined in Theorem 3. Then $\mathscr{G}' = S$ and so S is a C-group.

Finally, assume that both n and r are odd. Let $C = \text{diag}(\alpha^{(n+r)/2}, 1, 1, ..., 1)$, and consider the following two automorphisms of S:

$$\varphi \colon A \to C^{-1}AC,$$

$$\psi \colon A \to (A^{-1})^{t}.$$

We have $[\varphi^{-1}, \psi^{-1}] = (CC^{t})^{*} = (CC^{t}Z)^{*}$, where $Z = \alpha^{-1}I$. But
 $CC^{t}Z = \text{diag}(\alpha^{n+r-1}, \alpha^{-1}, \alpha^{-1}, \dots, \alpha^{-1})$

has determinant α^r and so is in S. In fact, $S = \langle SL, CC^i Z \rangle$ since α is a generator of K^* . If we define $\mathscr{G} = \langle S, \varphi, \psi \rangle$ with relations as in Theorem 3, then $\mathscr{G}' = S$.

We may summarize the above results as follows:

THEOREM 4. Let S be a subgroup of $GL_n(K)$, char $K \neq 2$, with $SL_n(K) \subseteq S \subseteq GL_n(K)$, and $[GL_n(K): S] = r$. Then S is a C-group except when n is even and r is odd.

It is easily checked that every proper normal subgroup of $GL_2(\mathbf{F}_3)$ is a C-group and so the theorem is true for any normal subgroup S of $GL_n(K)$.

3. Orthogonal and unitary groups

Let K be the finite field of p^h elements (p>2), and suppose that f is a nondegenerate symmetric bilinear form on a K-vector space V with index $v(f) \ge 1$. Denote by $O_n(K,f)$ the corresponding orthogonal group. If $\{e_i\}$, i = 1, 2, ..., n, is an orthogonal basis for V, and R is the (diagonal) matrix of f with respect to this basis, then $O_n(K,f)$ is realized as the set of all $A \in GL_n(K)$ with $ARA^i = R$. Let $\Omega_n(K,f)$ denote the commutator subgroup $O_n(K,f)'$ and set

$$O_n^+(K,f) = \{A \in O_n(K,f) \mid \det A = 1\}.$$

Suppose now that h is even, so that K has a unique non-trivial involution σ , where $y^{\sigma} = y^{p^{h/2}}$ for all $y \in K$. Let g be a reflexive σ -linear form on V, and denote by $U_n(K,g)$ the corresponding unitary group. With respect to a suitable basis, $U_n(K,g)$ is realized as the set of all $A \in GL_n(K)$ with $A\tilde{A} = I$, where $\tilde{A} = (A^{\sigma})^t$. Finally, set $U_n^+(K,g) = \{A \in U_n(K,g) | \det A = 1\}$.

Using arguments similar to those used in the general linear case, we obtain the following:

THEOREM 5. Suppose $n \ge 7$. If n is odd, the only non-central normal subgroups of $O_n(K,f)$ which are C-groups are $\Omega_n(K,f)$ and $\langle \Omega_n(K,f), -I \rangle$. If n is even, the only such C-groups are $\Omega_n(K,f)$ and $O_n^+(K,f)$.

THEOREM 6. Let S be a subgroup of $U_n(K,g)$, char $K \neq 2$, $n \neq 4$, with

$$U_n^+(K,g) \subseteq S \subseteq U_n(K,g)$$

and $[U_n(K,g): S] = r$. Then S is a C-group except when n is even and r is odd.

References

- E. Artin (1957), Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics, 3 (Interscience, New York, London).
- J. Dieudonné (1951), On the Automorphisms of the Classical Groups, Memoirs Amer. Math. Soc. 2 (Amer. Math. Soc., New York).
- J. Dieudonné (1958), Sur les Groupes Classiques, Actualités scientifiques et industrielles, 1040 (Publications de l'Institut de Mathématique de l'Université de Strasbourg, VI. Hermann, Paris).
- J. Dieudonné (1971), La Géométrie des Groupes Classiques, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 5 (Springer-Verlag, Berlin, Heidelberg, New York).
- R. Lipschitz (1959), "Correspondence", Ann. of Math. (2) 69, 247-251.
- O. T. O'Meara (1968), "The automorphisms of the orthogonal groups $\Omega(V_n)$ over fields", *Amer. J. Math.* 90, 1260-1306.
- F. D. Veldkamp (1965), Classical Groups (Yale Notes, New Haven, Conn.).

Department of Mathematics University of California, Los Angeles California 90024, USA