*Bull. Austral. Math. Soc.* **78** (2008), 353–355 doi:10.1017/S000497270800066X

## AN ANSWER TO VAN MILL'S QUESTION

# **ER-GUANG YANG<sup>™</sup> and WEI-XUE SHI**

(Received 10 December 2007)

#### Abstract

van Mill *et al.* posed in 'Classes defined by stars and neighborhood assignments', *Topology Appl.* **154** (2007), 2127–2134 the following question: Is a star-compact space metrizable if it has a  $G_{\delta}$ -diagonal? In this paper, we give a negative answer to this question.

2000 *Mathematics subject classification*: 54D20, 54E35. *Keywords and phrases*: star-compact, metrizability,  $G_{\delta}$ -diagonal.

## 1. Introduction

Star-compact spaces are natural generalizations of countably compact spaces (strongly 1-star-compact spaces). van Mill *et al.* gave an example in [4] showing that star-compact spaces are strictly weaker than countably compact spaces. It is known that [2] a countably compact space with a  $G_{\delta}$ -diagonal is compact metrizable. van Mill *et al.* posed the following question in [4].

QUESTION 1.1 [4]. Is a star-compact space metrizable if it has a  $G_{\delta}$ -diagonal?

In this paper, we give a negative answer to the above question.

Throughout, a space will mean a topological space. Let *A* be a subset of a space *X* and  $\mathcal{U}$  a family of subsets of *X*. The star,  $St(A, \mathcal{U})$ , of the set A with respect to  $\mathcal{U}$  is the set  $\bigcup \{ U \in \mathcal{U} \mid U \cap A \neq \emptyset \}$ .

DEFINITION 1.2 [3]. Let  $\mathcal{P}$  be a class (or a property) of a space *X*. *X* is said to be star- $\mathcal{P}$  (or star-determined by  $\mathcal{P}$ ) if for any open cover  $\mathcal{U}$  of the space *X*, there is a subspace  $Y \subset X$  such that  $Y \in \mathcal{P}$  and  $St(Y, \mathcal{U}) = X$ .

By Definition 1.2, a space X is said to be star-compact (respectively, stardetermined by convergent sequences) if, for any open cover  $\mathcal{U}$  of the space X, there is a compact subspace K (respectively, a convergent sequence S) of X such that  $St(K, \mathcal{U}) = X$  (respectively,  $St(S, \mathcal{U}) = X$ ).

This work is supported by NSFC, project 10571081.

<sup>© 2009</sup> Australian Mathematical Society 0004-9727/09 \$A2.00 + 0.00

DEFINITION 1.3 [1]. A space X is said to be strongly 1-star-compact (respectively, 1-star-compact) if, for any open cover  $\mathcal{U}$  of X, there exists a finite subset  $F \subset X$  (respectively, a finite subfamily  $\mathcal{V}$  of  $\mathcal{U}$ ) such that  $St(F, \mathcal{U}) = X$  (respectively,  $St(\cup \mathcal{V}, \mathcal{U}) = X$ ).

It was shown that [1] the notions of strongly 1-star-compact and countably compact are equivalent in a  $T_2$  space.

### 2. An example

In this section, we give an example which presents a negative answer to Question 1.1. The space used here was constructed by van Douwen *et al.* [1]. It was proved that the space is second countable and 1-star-compact. We show that it is also star-compact and has a  $G_{\delta}$ -diagonal but it is not metrizable, which answers Question 1.1 negatively.

EXAMPLE 2.1. There exists a second countable star-compact space X which has a  $G_{\delta}$ -diagonal but X is not metrizable.

**PROOF.** Let  $Y = \bigcup \{[0, 1] \times \{n\} \mid n < \omega\}$  and  $X = Y \cup \{a\}$ , where  $a \notin Y$ . Topologize *X* as follows: basic neighborhoods of the point *a* take the form  $\{a\} \cup \bigcup \{[0, 1] \times \{n\} \mid n > m\}$ , where  $m \in \omega$ ; basic neighborhoods of the other points of *X* are the usual induced metric open neighborhoods. One readily sees that the space *X* with this topology is  $T_2$  second countable and the subspace  $[0, 1] \times \{n\}$  is compact for all  $n \in \omega$  [1].

Since the point *a* and the closed set  $\{(1, n) | n \in \omega\}$  cannot be separated by open sets, *X* is not regular, and hence not metrizable.

Now, we show that X is star-compact. Let  $\mathcal{U}$  be an open cover of X consisting of basic open sets of X. For each  $n \in \omega$ , there exists  $U_n \in \mathcal{U}$  such that  $(1, n) \in U_n$ . For each  $n \in \omega$ ,  $U_n$  can be represented as  $U_n = V_n \times \{n\}$ , where  $V_n$  is an open neighborhood of 1 in [0, 1]. Thus  $V_n \setminus \{1\} \neq \emptyset$ . Pick  $x_n \in V_n \setminus \{1\}$  then  $(x_n, n) \in U_n$ with  $(x_n, n) \neq (1, n)$ . Put  $K_1 = \{(x_n, n) \mid n \in \omega\} \cup \{a\}$  then  $K_1$  is a compact subset of X and  $\{(1, n) \mid n \in \omega\} \subset St(K_1, \mathcal{U})$ . For the point a, choose  $U_a \in \mathcal{U}$  such that  $a \in U_a$ . Then there exists  $m \in \omega$  such that  $U_a = \{a\} \cup \bigcup \{[0, 1) \times \{n\} \mid n > m\}$ . It is obvious that  $U_a \subset St(K_1, \mathcal{U})$  since  $U_a \cap K_1 \neq \emptyset$ . Now, set  $K_2 = \bigcup \{[0, 1] \times \{n\} \mid n \le m\}$ ; then, being a finite union of compact sets,  $K_2$  is compact. Obviously,  $K_2 \subset St(K_2, \mathcal{U})$ . Put  $K = K_1 \cup K_2$ ; then K is a compact subset of X and  $St(K, \mathcal{U}) = X$ , which shows that X is star-compact.

It remains to show that X has a  $G_{\delta}$ -diagonal. From the construction of the topology of X, we see that X has a countable base  $\mathcal{B}$  consisting of basic open sets of X. Then  $\mathcal{B} \times \mathcal{B}$  is a countable base of  $X \times X$ . It is easy to verify that every basic open set of X can be represented as the countable union of closed subsets of X. Thus every member of  $\mathcal{B} \times \mathcal{B}$  can be represented as the countable union of closed subsets of  $X \times X$ . This, together with the fact that  $\mathcal{B} \times \mathcal{B}$  is a countable base of  $X \times X$ , shows that  $X \times X$ is perfect. X being  $T_2$ , we conclude that X has a  $G_{\delta}$ -diagonal.

This completes the proof.

**REMARK 2.2.** Spaces star-determined by convergent sequences which are stronger than star-compact spaces are also generalizations of countably compact spaces (strongly 1-star-compact spaces). van Mill *et al.* showed in [4] that there is a space X star-determined by convergent sequences while X is not countably compact (strongly 1-star-compact spaces). The space X in Example 2.1 is actually star-determined by convergent sequences. From the proof of Example 2.1, we see that  $K_1$  is in fact a convergent sequence with the limit point a. Since  $K_2$  is compact, it is of course strongly 1-star-compact and thus there exists a finite subset  $F \subset X$  such that  $K_2 \subset St(F, U)$ . Put  $S = K_1 \cup F$ ; then S is a convergent sequence and St(S, U) = X, which shows that X is star-determined by convergent sequences. Thus we have the following stronger result: *there exists a second countable space X, star-determined by convergent sequences, which has a*  $G_{\delta}$ -diagonal while X is not metrizable.

**REMARK** 2.3. The subset  $\{(1, n) | n \in \omega\}$  of the space X in Example 2.1 is a closed subset of X, but it is not star-compact (hence not star-determined by convergent sequences). So Example 2.1 also shows that a closed subspace of a star-compact (respectively, star-determined by convergent sequences) space need not be star-compact (respectively star-determined by convergent sequences).

**REMARK** 2.4. van Douwen *et al.* [1] showed that countably compact meta-compact spaces are compact and that the space in Example 2.1 is also meta-compact. From Example 2.1, we see that the condition *countably compact* cannot be replaced by *star-compact (star-determined by convergent sequences)*. That is: *there exists a star-compact (star-determined by convergent sequences) meta-compact space which is not compact (not even countably compact)*.

#### References

- [1] E. K. van Douwen, G. M. Reed and I. J. Tree, 'Star covering properties', *Topology Appl.* **39** (1991), 71–103.
- [2] G. Gruenhage, 'Generalized metric spaces', in: *Handbook of Set-Theoretic Topology* (North-Holland, Amsterdam, 1984), pp. 423–501.
- [3] M. Matveev, 'A survey on star covering properties', *Topology Atlas*, Preprint No. 330, 1998.
- [4] J. van Mill, V. V. Tkachuk and R. G. Wilson, 'Classes defined by stars and neighborhood assignments', *Topology Appl.* 154 (2007), 2127–2134.

ER-GUANG YANG, Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China e-mail: egyang@126.com

WEI-XUE SHI, Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China e-mail: wxshi@nju.edu.cn