Bull. Austral. Math. Soc. Vol. 54 (1996) [299-307]

TESTING ON NULL SEQUENCES IS ENOUGH FOR BOCHNER INTEGRABILITY

FERNANDO MAYORAL AND PEDRO J. PAÚL

Dedicated to Paul R. Halmos on the occasion of his eightieth birthday.

Let E be a normed space, a Fréchet space or a complete (DF)-space satisfying the dual density condition. Let Ω be a Radon measure space. We prove that a function $f: \Omega \to E$ is Bochner *p*-integrable if (and only if) f is *p*-integrable with respect to the topology of uniform convergence on the norm-null sequences from E'.

1. INTRODUCTION

Our first question was: Can one deduce that a function with values in a Banach space is Bochner integrable from the fact that it is integrable for a coarser topology? Of course the answer is negative for the weak topology (see [3, II.3.3 on p.53] for a concrete example or use the Dvoretzky-Rogers theorem in general). In this paper, we want to show that the answer is "Yes" for the topology of uniform convergence on the null sequences of the dual.

Let Ω be the measure space, E be the Banach space and τ be the coarser topology. If $f: \Omega \to E$ is the τ -integrable function candidate to be Bochner integrable, two problems are involved here: to prove that absolute integrability with respect to the τ -seminorms implies that $t \to ||f(t)||$ is in L^1 and to show that f is norm-measurable if it is τ -measurable. The aim of this paper is to show that there is a (somehow natural) class of spaces for which these two problems have a solution and that this class includes normed spaces, Fréchet spaces, strict (LF)-spaces and complete (DF)-spaces satisfying the dual density condition of Bierstedt and Bonet.

Received 8th November, 1995

This research has been supported by La Dirección General de Investigación Científica y Técnica, project PB94-1460, and by La Consejería de Educación y Ciencia de la Junta de Andalucía

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

F. Mayoral and P.J. Paúl

2. TERMINOLOGY AND NOTATION

In what follows (Ω, Σ, μ) stands for a σ -finite Radon measure space, where Ω is a locally compact and σ -compact topological space. Let (E, τ) be a locally convex space with a topology defined by a family of continuous seminorms $Q(E, \tau)$. We consider measurability of functions in the sense of Lusin: we say that a function $f: \Omega \to E$ is τ -measurable if there is a sequence (K_n) (that we may take either disjoint or increasing) of compact sets such that the restriction $f|_{K_n}$ is continuous for every $n \in \mathbb{N}$, and $\mu(\Omega \setminus \bigcup_n K_n) = 0$. When (E, τ) is metrisable, the notion of a τ -measurable function in the sense of Lusin coincides with the usual definition of a strongly measurable function as the μ -almost everywhere limit of a sequence of simple functions. If τ_1 and τ_2 are two topologies defined on E, the identity $(E, \tau_1) \to (E, \tau_2)$ is said to be universally measurable if (among several equivalent conditions) every τ_1 -measurable function is also τ_2 -measurable (for arbitrary Ω and μ).

A function $f: \Omega \to E$ is said to be integrable with respect to τ , or simply τ integrable, if it is τ -measurable and the scalar functions $q(f): t \in \Omega \to q(f(t)) \in \mathbb{R}$ are in $L^1(\mu)$ for every $q \in \mathcal{Q}(E,\tau)$. When (E,τ) is a Banach space, τ -integrability equals Bochner integrability. $L^1(E,\tau)$ will denote the space of all (classes of μ -almost everywhere equal) τ -integrable functions endowed with the locally convex topology defined by the family of seminorms $f \to ||q(f)||_1$ as $q \in \mathcal{Q}(E,\tau)$. For 1 , the $space <math>L^p(E,\tau)$ is defined in the analogous way.

We say that a locally convex space (E,τ) has property (B) of Pietsch if for each bounded subset M of the space $\ell^1\{E,\tau\}$ of all absolutely summable sequences in (E,τ) , there exists a disc $B \subset E$ such that for all $(x_n) \in M$ the following hold: $x_n \in E_B$ for each n and $\sum_n p_B(x_n) \leq 1$, where E_B is the linear span of B and p_B is its natural norm, the gauge of B. In other words, each bounded subset of $\ell^1\{E,\tau\}$ is a bounded subset of some $\ell^1\{E_B, p_B\}$. Metrisable and (df)-spaces have property (B), for instance. A locally convex space (E,τ) is said to have property (BM) if it has property (B)and the topology τ is metrisable when restricted to bounded sets. Metrisable or, more generally, strict (LF)-spaces have property (BM). For a quasi-complete locally convex space (E,τ) with property (BM) the identity $(E,\sigma(E,E')) \to (E,\tau)$ is universally measurable [4, 4.13].

We introduced in [4, 3.5] the notion of fundamental L^p -boundedness as an extension of property (B). Let $1 \leq p \leq \infty$. A locally convex space (E, τ) is said to be fundamentally L^p -bounded, with respect to (Ω, Σ, μ) , if each bounded subset M of $L^p\{E, \tau\}$ is contained in a bounded set of the form

 $[U_p,B]:=\{f\in L^p\{E, au\}: f(t)\in E_B ext{ almost everywhere and } p_B(f)\in U_p\}\,,$

where B is a disc in E and U_p stands for the unit ball of $L^p(\mu)$. This definition

applied to the particular case of the counting measure on the power set of \mathbb{N} , tells us that fundamental ℓ^1 -boundedness is just property (B) (this is the terminology of [7], by the way).

The dual density condition was introduced by Bierstedt and Bonet in connection with their solution to the problem of when a Köthe echelon space is distinguished. They proved [1, Theorem 5] that a (DF)-space E satisfies the dual density condition if and only if every bounded subset of E is metrisable, or if and only if $\ell^{\infty}(E,\tau)$ is quasi-barrelled. (DF)-spaces satisfying the dual density condition are quasi-barrelled (but not the opposite!). In particular, for (DF)-spaces property (BM) equals the dual density condition.

We refer the reader to the books by Jarchow [5], Köthe [6], Pérez Carreras and Bonet [7] or Robertson and Robertson [8] for the terminology about locally convex spaces and to the monographs by Bourbaki [2], Diestel and Uhl [3], Schwartz [9] or Thomas [10] for the properties of measurable functions. Our paper [4] contains several results about localisation of bounded sets in $L^{p}(E,\tau)$ and Radon-Nikodym theorems.

3. Results

MAIN THEOREM. Let (E, τ) be a locally convex space. Let τ_0 be another locally convex topology on E coarser that τ and such that

- (1) the identity $(E, \tau_0) \rightarrow (E, \tau)$ is universally measurable,
- (2) every τ_0 -bounded subset of E is also τ -bounded,
- (3) the space (E, τ_0) is fundamentally L^p -bounded for some $p \in [1, \infty)$.

Then a function $f: \Omega \to E$ is p-integrable with respect to τ if (and only if) f is p-integrable with respect to τ_0 , that is

$$L^p(E,\tau) = L^p(E,\tau_0)$$

holds as an equality of vector spaces.

PROOF: Let $f: \Omega \to E$ be τ_0 -integrable. Since the identity $(E, \tau_0) \to (E, \tau)$ is universally measurable, it follows that the function f is τ -measurable. It remains to prove that for every τ -continuous seminorm q the scalar function $t \to q(f(t))$ is in $L^p(\mu)$. The space (E, τ_0) is fundamentally L^p -bounded, therefore there exists a disc B in (E, τ_0) such that the scalar function $t \to p_B(f(t))$ is in $L^p(\mu)$. Since B is also τ -bounded, it is contained in some multiple of the unit ball of q, hence $t \to q(f(t))$ is in $L^p(\mu)$, as desired.

We shall give several applications of this theorem.

COROLLARY 1. Let E be a normed space and let τ_0 be the topology of uniform convergence on the sequences that converge to zero in E'. Let $p \in [1,\infty)$. Then a function $f: \Omega \to E$ is Bochner p-integrable if (and only if) $f \in L^p(E,\tau_0)$. PROOF: We only have to check that conditions (1) and (3) above hold in this case. A consequence of the Grothendieck-Phillips theorem [9, Part II, I.1. Theorem 3 on p.162] or [10, p.50], is that for a Banach space E the identity $(E, \sigma(E, E')) \rightarrow (E, \|\cdot\|)$ is universally measurable. It is easy to see, by passing to its completion, that the same holds when E is a non-complete normed space. This proves (1). To see (3) note that (E, τ_0) is a (df)-space [5, 12.4-5], that is, it has a fundamental sequence of bounded sets (the integer multiples of the unit ball) and every norm-null sequence in E' is equicontinuous. Now [4, 3.10] states that (df)-spaces are fundamentally L^p -bounded for every $p \in [1, \infty)$.

REMARKS. Given $p \in [1, \infty)$, Corollary 1 tells us, in other words, that if E is a normed space and $f: \Omega \to E$ is strongly measurable then f is Bochner *p*-integrable provided that for every null sequence (x'_n) from E', the scalar function

$$t\in\Omega
ightarrow \sup\left\{ \left|\left\langle f(t),x_{n}^{\prime}
ight
angle
ight|:n\in\mathbb{N}
ight\}$$

is *p*-integrable.

The (df)-space (E, τ_0) is not complete if E is not reflexive [5, 12.5.1 and 2]. If A is a measurable set, the integral $\int_A f d\mu$ of a function $f \in L^1(E, \tau_0)$ is obtained as the limit of a net of Riemann sums so that they belong, a priori, to the completion of (E, τ_0) and this completion coincides (as a vector space) with the bidual E'' [5, 12.5.1]. However, it follows from Corollary 1 that these integrals are, indeed, elements of E.

Corollary 1 also holds for every locally convex topology between τ_0 and the norm topology. For all of these topologies E is again a (df)-space.

Let us consider now the situation on the dual E' of a Banach space E. The difficulty is to lift integrability from the topology τ'_0 of uniform convergence on the null sequences on E to the norm topology in E'. The main problem will be that the behaviour of the measurability is not so good; a measurable function with respect the weak*-topology $\sigma(E', E)$ may not be measurable with respect the norm topology on E' as the cases [9, Exercise 1 and 2 on p.168] $E = \ell^1$ or E = C[0, 1] show.

COROLLARY 2. Let E be a Banach space with dual E' and $p \in [1, \infty)$. Then the following hold.

(a) A strongly measurable function $f : \Omega \to E'$ is Bochner p-integrable if and only if for every null sequence (x_n) in E the scalar function

$$t\in\Omega
ightarrow \sup\left\{ \left|\left\langle x_{n},f(t)
ight
angle
ight|:n\in\mathbb{N}
ight\}$$

is in $L^p(\mu)$.

(b) If E' is separable, then a function $f: \Omega \to E'$ is Bochner p-integrable if and only if it is p-integrable with respect to the topology τ'_0 of uniform convergence on the norm-null sequences in E.

PROOF: Part (a) can be proved as in the Main Theorem using the fact that (E', τ'_0) is also a (df)-space and so is fundamentally L^p -bounded. Part (b) follows from a theorem due to Meyer and Schwartz [9, Part I, II.3 Corollary 2 of Theorem 10 on pp.122-124] [10, p.51] stating that if E' is separable then the identity $(E', \sigma(E', E)) \rightarrow (E', \|\cdot\|)$ is universally measurable.

By the Banach-Dieudonné theorem, τ'_0 equals the topology of uniform convergence on the compact subsets of E [5, 9.4.3]. Moreover, (E', τ'_0) is not only a (df)-space; it is also a complete, Schwartz (gDF)-space [5, 9.4.1-3, 11.1.4 and 12.5.2 and 6].

COROLLARY 3. Let $p \in [1, \infty)$ and (E, τ) be a complete (DF)-space with the dual density condition. Let τ_0 be the topology of uniform convergence on the sequences from E' that converge to zero in the strong topology $\beta(E', E)$. Then a function $f: \Omega \to E$ is p-integrable with respect to τ if (and only if) f is p-integrable with respect to τ_0 .

PROOF: Since every (DF)-space with the dual density condition has property (BM), condition (1) is a particular case of [4, 4.13]. On the other hand, it is clear that if (E, τ) is a (DF)-space then (E, τ_0) is a (df)-space and the proof finishes as in the proof of Corollary 1.

Corollary 3 can be also obtained as a consequence of Corollary 4 below — the corresponding result for quasi-complete spaces having property (BM) — but the proof of the latter requires more work.

LEMMA. Let (E, τ) be a quasi-complete locally convex space with property (BM)and let τ_0 be the topology of uniform convergence on the sequences that converge to zero in $(E', \beta(E', E))$. Then (E, τ_0) is fundamentally L^p -bounded for each $p \in [1, \infty)$.

PROOF: We start by proving that (E, τ_0) has property (B). Since (E, τ) has property (B), it will be enough to prove that if M is a bounded subset of $\ell^1\{E, \tau_0\}$ then M is also bounded in $\ell^1\{E, \tau\}$. Let q be any τ -continuous seminorm and assume that

$$\sup\left\{\sum_{n=1}^{\infty}q(\boldsymbol{x}_n):(\boldsymbol{x}_n)\in M\right\}=\infty.$$

Then there exists a sequence $\{(x_n^{(k)})_n : k = 1, 2, ...\} \subset M$ and an increasing sequence of indices (n_k) such that

$$\sum_{n=1+n_k}^{n_{k+1}} q(x_n^{(k)}) > 2^{2k}.$$

Let $V \subset E'$ be the polar of the unit ball associated to q. Then we can find a sequence

1

 $(v_n) \subset V$ such that

$$\sum_{n=1+n_k}^{n_{k+1}} \left\langle x_n^{(k)}, v_n
ight
angle > 2^{2k} \qquad ext{for every } k=1,2,\dots \; .$$

Since V is $\beta(E', E)$ -bounded it follows that the sequence

$$\frac{v_1}{2^0}, \dots, \frac{v_{n_1}}{2^0}, \frac{v_{1+n_1}}{2^1}, \dots, \frac{v_{n_2}}{2^1}, \frac{v_{1+n_2}}{2^2}, \dots, \frac{v_{n_3}}{2^2}, \dots$$

converges to zero in the strong topology $\beta(E', E)$ and satisfies

$$\sum_{n=1+n_k}^{n_{k+1}} \left\langle x_n^{(k)}, \frac{v_n}{2^k} \right\rangle > 2^k \quad \text{for every } k = 1, 2, \dots,$$

contradicting the fact that M is bounded in $\ell^1 \{E, \tau_0\}$.

We now prove that (E, τ_0) is fundamentally $L^1(\mu)$ -bounded. By [4, 4.13] the identity $(E, \sigma(E, E')) \rightarrow (E, \tau)$ is universally measurable so that the identity $(E, \tau_0) \rightarrow$ (E, τ) will also be universally measurable. (This proves, by the way, that condition (1) of the Main Theorem is satisfied.) Therefore, given $f \in L^1(E, \tau_0)$ there is a disjoint sequence (K_n) of compact sets such that the restriction $f|_{K_n}$ is τ -continuous for every $n \in \mathbb{N}$, and $\mu(\Omega \setminus \bigcup_n K_n) = 0$. In particular (see [2]), f will be integrable on every measurable set A contained in some K_n ; that is, there is an element $\int_A f d\mu \in E$ such that

$$\langle \int_A f \, d\mu, \, v
angle = \int_A \langle f(t), v
angle \, d\mu$$
 for every $v \in E'$.

Let $F \subset L^1(E,\tau_0)$ be a bounded set. For each $q \in \mathcal{Q}(E,\tau_0)$ take

$$ho_{m{q}}:=\sup\left\{\int_{\Omega}\,q(f)\,d\mu:f\in F
ight\}<\infty.$$

Let F_0 be the set of all *E*-valued sequences of the form

$$\left(\int_{A_1} f d\mu, \int_{A_2} f d\mu, \ldots\right)$$

where $f \in F$ and A_1, A_2, \ldots is a sequence of pairwise disjoint, measurable sets with positive and finite measure such that each one of them is contained in some compact set where f is τ -continuous. As pointed out above, for each $f \in F$ there is at least one such sequence (A_n) . For each seminorm $q \in \mathcal{Q}(E, \tau)$ and each of these sequences, we have

$$\sum_{n=1}^{\infty} q \left(\int_{A_n} f \, d\mu \right) \leq \sum_{n=1}^{\infty} \int_{A_n} q(f) \, d\mu \leq \int_{\Omega} q(f) \, d\mu \leq \rho_q.$$

This tells us that F_0 is a bounded subset of $\ell^1 \{E, \tau_0\}$. We have proved above that (E, τ_0) has property (B), hence there is a closed disc $B \subset E$ such that for every sequence $(x_n) \in F_0$ we have $x_n \in E_B$ for each $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} p_B(x_n) \leq 1$. We shall prove that for every $f \in F$ we have (i) $f(t) \in E_B$ almost everywhere and (ii) the function $t \to p_B(f(t))$ is in the unit ball of $L^1(\mu)$.

(i) If there is $f \in F$ such that $\mu \{t \in \Omega : f(t) \notin E_B\} > 0$, then there is a compact set $K \subset \Omega$ with positive measure such that $f : K \to E$ is τ -continuous and $f(t) \notin E_B$ for all $t \in K$. By [4, 3.7] for every $n \in \mathbb{N}$ there exists a simple function $z_n : K \to B^\circ \subset$ E' such that Re $\langle f(t), z_n(t) \rangle > n$ for all $t \in K$. If we write $z_n = \sum_{i=1}^k v_i \chi_{A_i}$, where $\{A_1, A_2, \ldots, A_k\}$ is a measurable partition of K and $\{v_1, v_2, \ldots, v_k\} \subset B^\circ$, then the sequence

$$\left(\int_{A_1} f \, d\mu, \, \int_{A_2} f \, d\mu, \, \dots, \int_{A_k} f \, d\mu, \, 0, \, 0, \, \dots\right)$$

is in F_0 . However, we also have

$$\begin{split} \sum_{i=1}^{k} p_B\left(\int_{A_i} f \, d\mu\right) \geqslant \sum_{i=1}^{k} \Big| \operatorname{Re} \left\langle \int_{A_i} f \, d\mu, \, v_i \right\rangle \Big| &= \sum_{i=1}^{k} \Big| \int_{A_i} \operatorname{Re} \left\langle f, v_i \right\rangle \, d\mu \Big| \\ \geqslant n \sum_{i=1}^{k} \mu(A_i) = n \mu(K), \end{split}$$

contradicting the boundedness of F_0 in $\ell^1 \{E_B, p_B\}$.

(ii) Assume that the set of functions $\{p_B(f) : f \in F\}$ is not contained in the unit ball of $L^1(\mu)$. This can happen because this set is not contained in $L^1(\mu)$ at all, or simply because $\|p_B(f)\|_1 > 1$ for some $f \in F$. In either case, we can find a function $f \in F$ and a compact set $K \subset \Omega$, such that the functions $f : K \to E$ and $p_B(f) : K \to \mathbb{R}$ are τ -continuous, and $\|p_B(f) \cdot \chi_K\|_1 > 1 + \delta$, for some positive δ . It is well-known that for $\varphi \in L^1(\mu)$ one has

$$\|\varphi\|_1 = \sup\left\{\left|\int_{\Omega} \varphi \cdot \theta \, d\mu\right| : \theta \text{ a simple function with } \|\theta\|_{\infty} \leqslant 1\right\},$$

so we can find a simple function θ in the unit ball of $L^{\infty}(\mu)$ such that $\int_{K} p_{B}(f) \cdot \theta \, d\mu > 1 + \delta$; note that we may assume that θ is non-negative. Again by [4, 3.7], given $\varepsilon > 0$ there is a simple function $z: K \to B^{\circ} \subset E'$ such that

$$p_B(f(t)) < \operatorname{Re} \langle f(t), z(t) \rangle + \varepsilon$$
 for all $t \in K$.

Write θ and z as

$$\theta = \sum_{i=1}^k \alpha_i \chi_{A_i} \qquad z = \sum_{i=1}^k v_i \chi_{A_i}$$

where the sets (A_i) are pairwise disjoint and have positive finite measure, and each α_i is in [0,1]. Take the sequence $(x_i) \subset E$ defined by $x_i := \int_{A_i} f d\mu$, for i = 1, 2, ..., kand $x_i = 0$ afterwards. Then (x_i) is in F_0 because each A_i is contained in K, where f is τ -continuous. Now, since each α_i is in [0,1] and F_0 is contained in the unit ball of $\ell^1\{E_B, p_B\}$, we have that

$$\begin{split} 1 &\geq \sum_{i=1}^{k} \alpha_{i} p_{B}(x_{i}) = \sum_{i=1}^{k} \alpha_{i} p_{B}(\int_{A_{i}} f \, d\mu) \geq \sum_{i=1}^{k} \alpha_{i} \operatorname{Re} \left\langle \int_{A_{i}} f \, d\mu, \, v_{i} \right\rangle \\ &= \sum_{i=1}^{k} \alpha_{i} \int_{A_{i}} \operatorname{Re} \left\langle f, v_{i} \right\rangle \, d\mu \geq \sum_{i=1}^{k} \alpha_{i} \int_{A_{i}} \left(p_{B}(f) - \varepsilon \right) \, d\mu \\ &= \int_{K} \theta p_{B}(f) \, d\mu - \varepsilon \, \|\theta \chi_{K}\|_{1} > 1 + \delta - \varepsilon \mu(K), \end{split}$$

where the last inequality holds because $\int_{K} p_{B}(f) \cdot \theta \, d\mu > 1 + \delta$, on the one hand, and $\|\theta\chi_{K}\|_{1} \leq \|\theta\|_{\infty} \|\chi_{K}\|_{1} \leq \mu(K)$, on the other. Since ε was arbitrary, we obtain a contradiction.

To finish the proof of the Lemma apply [4, 3.6]; this result tells us that fundamental $L^{1}(\mu)$ -boundedness implies fundamental L^{p} -boundedness for every $p \in [1, \infty]$.

COROLLARY 4. Let $p \in [1,\infty)$ and let (E,τ) be a Fréchet space or, more generally, a strict (LF)-space. Let τ_0 be the topology of uniform convergence on the sequences from E' that converge to zero in the strong topology $\beta(E', E)$. Then a function $f: \Omega \to E$ is p-integrable with respect to τ if (and only if) f is p-integrable with respect to τ_0 .

References

- K.D. Bierstedt and J. Bonet, 'Dual density conditions in (DF)-spaces. I', Results Math. 14 (1988), 242-274.
- [2] N. Bourbaki, Intégration (Hermann, Paris, 1973).
- J. Diestel and J.J. Uhl, Vector measures (American Mathematical Society, Providence, R.I., 1977).
- [4] M. Florencio, F. Mayoral and P.J. Paúl, 'Spaces of vector-valued integrable functions and localization of bounded subsets', Math. Nachr. 174 (1995), 89-111.
- [5] H. Jarchow, Locally convex spaces (B.G. Teubner, Stuttgart, 1981).
- [6] G. Köthe, Topological vector spaces. I, II (Springer-Verlag, Berlin, Heidelberg, New York, 1969, 1979).
- [7] P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces (North-Holland, Amsterdam, New York, Oxford, Tokyo, 1987).
- [8] A.P. Robertson and W.J. Robertson, Topological vector spaces, (second edition) (Oxford University Press, London, 1973).

- Testing on null sequences
- [9] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies (North-Holland, Amsterdam, New York, Oxford, Tokyo, 1987).
- [10] G.E.F. Thomas, 'The Lebesgue-Nikodym theorem for vector valued Radon measures', Mem. Amer. Math. Soc. 139 (1974).

E.S. Ingenieros Industriales Avda. Reina Mercedes s/n 41012-Sevilla Spain email: PITI@CICA.ES

[9]