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ABSTRACT

Outlier observations caused by big claims or by an event producing a series of
claims are a special problem in ratemaking and in tariff calculation. The
authors believe that combining credibility and robust statistics is the right
answer to this problem. The main idea is to robustify the individual claims
experience by using a robust estimator 7} instead of the individual mean Xt

and to look at the credibility estimator based on the robust statistics
{7}: « = 1, 2, . . .}. Choosing a particular influence function leads to data-
trimming with an observation-dependent trimming point.
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1. INTRODUCTION AND MOTIVATION

The data in Figure 1 represent observed loss ratios (claims amount divided by
sum insured) of a given risk group in industrial fire over a ten year period.
Figure 1 is an example of the following situation often encountered in practice:
most of the observations are lying randomly within a band depending on the
size of the group and on the line of business, but a few observations are far
away and much bigger. The smaller the group the more likely are such ' outlier
observations'. They are cause by individual big claims or by events producing a
series of claims (e.g. storm).

Assuming you want to estimate the pure risk premium for the given risk
group of Figure 1 based on a ten year observation period, the first obvious idea
would be to take the mean over the observation period as an estimator, which
would give an estimated value of 0.66%o. But if you do the same calculation
one year later, then the ' outlier' observation of year 1 is probably replaced by
an ordinary observation in year 11, and the ten year average decreases by
about 20%. Of course such random fluctuations have to be avoided in a
professional tariff-calculation. The simple mean is not a suitable estimator and
there is a real need for more sophistication. The main problem to be solved is
how to treat outlier observations in rate making and in tariff calculation.
1 A first version of the paper was presented at the ASTIN Colloquium 1990 in Switzerland.

ASTIN BULLETIN, Vol. 23, No. 1, 1993

https://doi.org/10.2143/AST.23.1.2005104 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005104


118 ALOIS GISLER AND PETER REINHARD

%0

r
a
t
i
o

0,0
8 9 102 3 4 5 6 7

r year

FIGURE 1. Observed loss ratios of a risk group in industrial fire.

Before trying to give a theoretical answer it is interesting to see how this
problem was tackled in actuarial practice. For this purpose let us have a look
at the methods used for the calculation of the pure risk premium in industrial
fire in Germany and in Switzerland.

A short description of the German calculation system is given in J. STRAUSS

(1984). The annual statistics are built up in a hierarchical way. On the lowest,
level there are the data (sum insured, loss ratios, etc.) of so-called risk types,
which are taken together into risk groups, which again are combined to risk
categories. At the top level, we have the data of the total industrial fire business
as a whole. The tariff is calculated by some kind of hierarchical procedure from
top down. The Buhlmann-Straub credibility model is successively applied at the
different levels. By doing so the total claim amount is first spread among the
risk categories, then within the risk categories among the risk groups and
finally within the risk groups among the risk types. Thus the claims load of
each claim (for instance a big claim) hitting a particular risk type is successively
divided up at the different levels. The higher the level on the hierarchical tree
the bigger will be the credibility weight, and the larger will be the portion of the
claims load that will remain within the corresponding group or category.

The Swiss calculation is based on a method developed by H. AMMETER

(1982). In each position of a hierarchical tree (risk group, risk type etc.) he
makes a distinction between ordinary and extraordinary loss ratios. The
extraordinary loss ratios are trimmed in an appropriate way. By doing so the
corresponding aggregate claim amount is divided up into an 'ordinary part'
and an 'xs-part'. But how to distinguish between the two types of loss ratios
and where to fix the trimming point? Ammeter's idea was to look at the
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influence of an annual observation on the loss ratio taken over the whole
observation period. The trimming point is calculated in such a way that the
influence of each observation is limited to the influence of a zero-observation.
This calculation is carried out at different levels of a hierarchical structure from
bottom up. At each level the xs-part of the aggregate claim amount is equally
distributed over the neighbouring group at the next hierarchical level.

Both methods—although quite different—were successfully applied in the
tariff calculation and led obviously to reasonable results (otherwise they would
have been rejected by the practitioners). From both methods we can learn
something.

The German system is based on credibility theory. Indeed credibility theory
in its standard form makes a first step in the right direction, how to charge
outlier observations. It explains to us that claims should not be fully charged,
but only with their respective credibility weight. However, it turned out in
practical applications that outliers might still have distorting effects. On the
one hand they cause a substantial reduction of the credibility weights. As a
consequence the credibility premiums of 'risks' without large claims are
smoothed too much towards the overall mean. On the other hand the
credibility premium of a risk might increase tremendously by the occurrence of
one single large claim. To overcome this GISLER (1980) combined credibility
procedures and data trimming. This method has successfully been used in
actuarial applications. However, it is not applicable to situations where only
claims rates are given and where the corresponding volume measures are
different in size. The use of hierarchical procedures and the introduction of
hierarchical credibility models was certainly a further step on the credibility
staircase, which is of great importance for practice. As already mentioned, the
German system is based on such an approach.

At first sight the Swiss method introduced by Ammeter seems to be an
original, rather pragmatic approach. However, looking a little closer, one
observes that it is also related to a famous theory. The idea of Ammeter is to
limit the influence of single observations. But this is the basic concept behind
robust statistics. Indeed Ammeter introduced—perhaps without being aware of
it—a robust estimator. We shall come back to this estimator later on.

The first to have the idea of combining credibility theory with robust
statistics was H. R. KONSCH (1992). He already presented some main ideas at a
lecture given in February 1990 at the ETH in Zurich. The diploma work of
REINHARD (1989) had also been written under his guidance. At the 1990
ASTIN colloquium at Montreux the present authors then presented an early
version of this paper. At the 1991 ASTIN colloquium in Stockholm there was
another paper by Kremer on the same subject, which has been published in the
meantime in the German actuarial journal (KREMER (1991)). The main
objection of the present authors against Kremer's approach is that his
estimators are globally (expectation over the whole portfolio) biased.

The present authors believe that combining credibility with robust statistics is
the right answer for dealing with outlier-observations and that this idea has a
great potential for practical applications. In Section 2 some basic definitions
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and findings from the theory of robust statistics will be given. To make this
paper self-contained, some well-known results of standard credibility are
summarized in Section 3. Specific robust credibility estimators as well as the
corresponding estimates of the structural parameters are presented in Section 4.
A simulation study carried through in Section 5 illustrates the functioning of
the robust credibility estimators presented in Section 4.

2. RESULTS FROM THE THEORY OF ROBUST STATISTICS

In this chapter we introduce some basic concepts and summarize some main
results out of the theory of robust statistics, which we will need later on. We
rely on the presentation in HAMPEL and alii (1986), which we can recommend
as an excellent introduction. All results are given without proofs and the
interested reader is again referred to HAMPEL and alii (1986).

Robust statistics is an extension of classial parametric statistics, taking into
account that parametric models are only an idealized approximation to reality.
It studies the behavior of statistical procedures not only under strict parametric
models, but also in the neighbourhood of such models. The idea is to construct
statistical procedures which still behave fairly well under slight deviations from
the assumed model. In a formal sense we might say that robust statistics is the
statistics of approximate parametric models. The main aim is to describe what the
bulk of the data is telling us. However in insurance we cannot forget about the
deviating observations. A big loss ratio for instance is not simply an 'error
noise' in our data, but rather caused by rare events like storms, big fires etc.
which make a substantial part of the total claims costs. A 'second' aim of
robust statistics is to identify deviating data points for further treatment. In
insurance this is often as important as the description of the bulk of the
data.

Suppose we have one-dimensional observations Xx,..., Xn, which are
assumed to, be i.i.d. and distributed according to F9 (density f9) out of a
parametric family {Fs;3e0}. To be more precise, we know that this is an
idealization of reality and we assume that the true distribution lies in the
neighbourhood of our model. We want to estimate the expectation of Xt. For
simplicity's sake we further assume that the parametrization is chosen in such a
way that 9 = E9 [Xj]. We denote by Gn the empirical cdf (cumulative distribu-
tion function) of a sample with n observations. As estimators of ,9 we consider
real-valued statistics Tn = T(Gn), where T are functionals. The simplest idea to
look at the influence of a single observation is the so called empirical influence
function. Given a sample (xi,..., xn-\) it is the plot of Tn(xx, . . . , xn-vx) as a
function of x.

By translating and rescaling one obtains the sensitivity curve

(1) SCn(x) = n[Tn(Xl, ..., xn-ux)- 7;_ , ( * ! , . . . , *„_ , ) ] .

Letting n -* oo yields the influence function invented by HAMPEL (1968,
1974).
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Definition 1

The influence function (IF) of T at F is given by

m ™ T ^ r T((l-t)F+tJx)-T(F)
(2) IF(x; T, F) = lim

where Ax is the probability measure putting mass 1 at the point x.

The IF is mainly a heuristic tool with an easy heuristic interpretation: it
describes the effect of an infinitesimal contamination at the point x on the
estimate, standardized by the mass of contamination.

Definition 2

The gross-error sensitivity of T at F is defined by

(3) y*= sup \IF(x; T,F)\.
X

The gross-error sensitivity measures the worst influence which a small
amount of contamination of fixed size can have on the value of the estimator.
It is desirable that y*(T,F) be finite. Robustifying an estimator is typically
putting a bound on y*(T, F).

If the r.v. Xj(i = 1,2,...) are i.i.d. according to G, then Gn will tend to G by
the Glivenko-Cantelli theorem. As a consequence

whenever T is continuous with respect to the sup-norm, which will normally be
the case.

In most cases

Jn (Tn-T(G))^^^(0, V(T, G))

i.e. Tn is asymptotically normal distributed with expectation T(G) and variance
V(T, G)jn. V(T, G) is called the asymptotic variance.

In regular cases, the following important relations hold true:

(4) f l¥(x;T,G)dG(x) = 0

(5) V(T, G) = [ IF(x; T, G)2 dG{x).
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Our aim is to find a functional T resp. an estimator Tn with bounded
gross-error sensitivity. For this purpose let us first have a look at the maximum
likelihood estimator (MLE), which is defined as the value

n

•9 = Tn(Xx, ..., Xn) which maximizes Y\

or, what is equivalent, by

(6)

HUBER (1964) proposed to generalize this to
n

(7) / p(Xj, Tn) = min !

where p is some function on Rx 0.

Suppose that p has a derivative yi (x, 0) = (d/dff) p (x, 9), then the estimate Tn

satisfies the implicit equation

(8)
1=1

Definition 3

An estimator defined by (7) or (8) is called an M-estimator.

If Gn is the empirical cdf generated by the sample, then the solution Tn of (8)
can be written as T(Gn), where T is the functional given by

(9) f ¥(x, T(G))dG(x) = 0.

As already said, Tn will normally tend to T(G). Or looked at the other way
round, T(G) is the asymptotic expectation of Tn, which can be calculated by
formula (9).

Theorem 1

Let Tn be an M-estimator defined by (8), and IF(x; y/, F) the influence
function of T at F, then

n m JX7, „ v(x, T(F))
(10) lF(x;y/,F) = -j(d/d0)[W(y,9)]nF)dF(y)'
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Remark

Theorem 1 states that the influence function is proportional to the ^-function.
Hence using (8) with a bounded ^-function automatically results in an estimator
Tn with bounded gross-error sensitivity.

From (5) we obtain for the asymptotic variance of the M-estimator

(ii) w o - JrJfer<e»«W

3. STANDARD CREDIBILITY

To make this paper self-contained we summarize in this subsection the
assumptions and estimators in the Biihlmann and Straub model (1970), which
is well known and presumably the most frequently applied credibility model in
insurance practice.

Consider a portfolio of risk ('risk' = synonym for things like individual
policies, risk classes, risk types etc.) numbered i = 1,2, ..., N. Assume that
each risk i is characterized by a hidden risk parameter 0t. Xt = (Xn, ..., Xin)'
is the observation vector of risk i (e.g. Xy = loss ratio of risk / in year j).

Assumptions

BS1: The random variables Xy (j = 1, 2, . . . , n) are conditionally, given 6>,,
independent with

E[Xy\0 ,]=/!(&,)

where Vy are known volume measures.

BS2: The pairs (6>,, I , ) , (02,X2),... are independent, and 0X,&2,... are
i.i.d.

The aim is to estimate for each risk i the risk premium

An estimator /2(6>,) is said to be better than p(0,) if

that is we use quadratic loss.

The best possible estimator based on 3 = {Xy : / = 1 , . . . , N; j = 1, . . . , n) is

fl(0j) = E[/x(0,)\f^] which is called the exact Bayesian estimator. The credibil-

ity estimator, i.e. the best estimator of the form /2(6>,) = a0 + 2_, ayXij, is

(12)
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where p = E[XV] =

7=1 7=1

ViV

<Xj = with v = Var
v

In insurance practice the structural parameters fx, u, v are mostly unknown.
But they can be estimated from the data. By replacing the unknown parameters
in (12) by the corresponding estimators one arrives at the empirical credibility
estimator.

4. ROBUST CREDIBILITY

The individual claims experience enters into the credibility estimator (12) by
means of Xt. It is well known that the credibility estimator is exact Bayesian
for various specific models. But it is also known that the credibility estimator
might behave rather poorly if such a specific model is disturbed by a process
producing only a few outliers (see for instance BUHLMANN, GISLER, JEWELL

(1982)). The idea of Kiinsch was to robustify the individual claims experience
by using a robust estimator 7] = 7]- (Xa , ..., Xin) instead of the Xt. The hope is
to get estimators which also perform reasonably well in the neighbourhood of
models, where the credibility estimator is exact Bayesian. REINHARD (1989)
and KUNSCH (1992) considered semilinear credibility estimators (see for
instance GISLER (1990)) based on the statistics {Ti:i= I, ..., N). We suggest a
slightly different approach. We propose to divide the pure risk premium itself
into an 'ordinary part' and an 'xs-part', and to estimate each component
separately.

Formally we write

(13)

where Vx(0,) = E[Xy\0,].

The 'ordinary part' fio(0i) should be interpreted as the expected loss ratio
generated by the claims load of'ordinary losses', whereas the 'xy-part' /ixs(0j)
is the additional expected claims load generated mainly by extraordinary events
(e.g. big fires), whose occurence usually lead to an outlier observation of the
affected loss ratio.

To estimate the 'ordinary part'' no{0^ we combine credibility and robust
statistics, that is we estimate /u0 (0,) by a credibility estimator based on a robust
statistics {7}: / = 1, . . . , N}. Since it is the very nature of a robust statistics to
describe what the bulk of the data is telling us, we put by definition:

(14)
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As to the 'xs-part' fixs(0,) to be interpreted as the additional expected claims
load mainly generated by extraordinary events, the present authors believe that
the actuary should reflect upon how much the risks in the portfolio are exposed
to such 'outlier-events' and to use this knowledge for ratemaking. In mathe-
matical terms this means to put more a priori structure into the model. An
often encountered situation will be that all risks in the portfolio can be
considered as equally exposed to outlier events. Then the a priori structure is
identical with the

(15) assumption: [ixs (0,) = fixs.

It might happen that for instance risk 1 is considered to be twice exposed to
'outlier-events' than risk 2, or generally, that the a priori structure is given by
!*xs(®i) ~ dfixs where A is a known N* 1 matrix. If no such a priori knowledge
is available then there still remains the possibility to estimate fixs(0,) by a
credibility estimator. But on what statistics should this credibility estimator be
based on? One possibility would be to base the estimation of ftxs(0j) also on
the robust statistics Tt. Then the resulting estimator (13) of nx(@i) would be
identical to the one considered by REINHARD (1989) and KUNSCH (1992) in the
case of identical volumes. But this makes only sense if it is natural to believe
that the bulk of the data reflected by the robust statistics Tt does also tell us
something with respect to the 'xs-part'. However, in most practical situations
this is hardly the case. The usual situation will be that the bulk of the data
contains very little information with respect to 'outlier-events'. Hence if using
a credibility estimator for nxs (0,), it will be more natural and more appropriate
in most cases to base it on the statistics of the observed x?-loss ratios
XSy = Xjj— Tj. Very often the resulting credibility-weights will be near to zero,
such that the resulting estimators will be similar to the ones obtained on the
basis of assumption (15).

In the following we shall work on the hypothesis of assumption (15).
However it should be no difficulty for the skilled reader to adapt the results to
the other situations mentioned above. With assumption (15) the robust
credibility estimator of fix(0i) equals

(16) fix(@d = Mxs + fio(&i)

where /2O(0,) is a credibility estimator of //o(<9,) based on a
robust statistics {Tt:i= l,...,N}.

By standard techniques we find that

Vai[/tTl(ed]
where a,- =

HT.m =
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Remark on the notation

The careful reader will have noted that fiTj{©^ is identical to fio(O,) by
definition (14). However, we have here and in the following deliberately chosen
this notation to indicate explicitly the dependence on the choice of the robust
statistics Tt.

(17) is the general formula of a whole class of robust credibility estimators,
since we have by now not specified the robust estimators Tt. Indeed, there are a
lot of robust estimators proposed in the literature on robust statistics. Instead
of going through this palette we prefer to present a specific estimator, which is
feasible in practice and which performed well in the simulation study carried
through in Section 5. By feasible we mean that there is a simple algorithm to
calculate 7j and that there are explicit formulae to estimate the structural
parameters.

4.1. Robust credibility in the Biihlmann and Straub model
with identical volumes

In this subsection we assume that the volume measures in the Buhlmann and
Straub model are identical, i.e. Vy= V (i = 1, 2, . . . , N; j = 1,2,..., «). In this
case an M-estimator 7) is implicitly defined by

(18)
7 = 1

If we assume a scale model, i.e. F$(x) = P(Xjj < x\@t - 3) = F(x/S>), then it
is natural to put

(19) ¥(x,S) = ¥(x/9).

A typical example of a scale model is model I of Section 5, where the Xtj are
supposed to be /"-distributed with shape parameter y and scale parameter 0t.
The standard credibility estimator is exact Bayesian in this model. However, as
soon as the true underlying model deviates only slightly from the assumed
model, then the standard credibility estimator might be rather poor. For
instance, in model II of Section 5, it is assumed that the bulk of the data is well
described by model I, but that some few observations are taken from another
'xs-urn'. In this model II one can show that the influence function of the exact
Bayesian estimator is limited and has the following shape: it is first linearly
growing, takes somewhere its maximum and tends then to zero for x -* oo. This
and the fact that robustifying an estimator means to use a limited influence
function, motivates us to choose

(20) y{x) = m\n(x-\, 1).

This is equivalent to the influence function drawn in Figure 2.
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FIGURE 2. Influence function of the estimator 7} given by (18) and (20).

Inserting (19) and (20) into (18) yields

X,,
(21) min

7=1
- 1, 1 = 0.

„. . , x \ min (x, 2 0
Since min [ — — 1, 1 = - 1, we obtain

t t

(22)
1

min

Remarks
— Note that 7} is a weighted mean of trimmed data with a data-dependent

trimming point.
— The robust estimator 7] is given by an implicit equation.
— By the choice of the ^-function and by (10) it becomes obvious that the

influence of a yearly observation is limited to the influence of a zero-
observation. Hence it is not surprising that the estimator (22) is identical to
the one used by AMMETER (1982) in the case of identical volume mea-
sures.

For finding an algorithm to solve this implicit equation, we consider the
function

(23) /(/) = -
n ,
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Denoting by {Xi(j):j = 1, . . . , « } the order statistics of {Xtj :j= 1 , . . . , ri) and
by /, the number of zero-observations of risk i we obtain

- ( « - / , ) for
n

/

s I-^'Ci+i)

f o r ^ , ( y ) < ? <

for \Xi(n)<t.

f(t)

- • t
T:

FIGURE 3. Two possible graphes of function/(0 given by (23).
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Thus 7] can be calculated by the following procedure:

Calculate r,-O):=/(X,O)/2) for j= n, n- 1, ... until Tfj) > Xi(j)/2 and let kt

be the first index, for which this inequality is fulfilled. If such a ki > 1 exists
then

(24)
7 = 1

2k,-n
otherwise 7} = 0.

Remarks

— If *,-(„)< 2 J,then 7] = *,.
— If half or more of the observations Xtj are zero then 7] = 0. To be more

precise, if exactly half of the observations are zero, then every point in the
interval [0, 0.5 • Xu n/2] would be a solution of (21). The algorithm (24) takes
the zero-solution in this case.

Figure 4 illustrates the effect of applying the estimator 7] on the data of
Figure 1. The observations in year 1 and in year 7 are trimmed down to 1.16 %o
with the effect that the arithmetic mean X,, = 0.66%> is reduced by 12% to
7; = 0.58%o.

To find the empirical credibility estimator we have to estimate the structural
parameters occurring in (16) and (17). As there exists in general no explicit

o
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FIGURE 4. Loss ratios as in Figure 1.
Xj = 0.66 T, = 0.58 Truncation Point = 1.16
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formula for fiTi(@d a n d Var [7]-|0J, we replace nTl{@i) by the asymptotic
expectation Tt{Fe) given by (9) and Var[7j|6>,] by n~l times the asymptotic
variance V(Tt, F0.) given by (11). Then we get

(25) //0(6>,) s n/ 0 ( , ) nT
nvT+uT

where vT = Var

To estimate the unknown structural parameters fixs, fiT, uT, vT out of the
data, we write (22) as

1 ^
(26) 7) = - 2^ Ty with Ty = min (Xtj, 2 T,).

n j=\

For convenience we call

Ty the ordinary claim amount and
XSy = Xy— Ty the xs-claim amount.

The situation for estimating \xT and vT is identical to the one in the
Buhlmann and Straub model. It is slightly different for uT, since the r.v. Ty
(j = 1, ...,ri) are not conditionally independent, given 0 , . Therefore we
estimate Var[7]|0,] by n~lut, where w, is an estimate of the asymptotic
variance V(Tt, Fe.). By replacing Fe. in (11) by the empirical distribution of the
{Xv;j= 1, . . . ,«} we obtain after some straightforward calculations and after
changing the norming constant from n~x to («— I )" 1

i "
V IT T^

(27) fl, = - ' | - l y - 1

~ n 2

« ;=1

where 1[ ] is the indicator function.

Remark

Note that the denominator of (27) is equal to 1 in the case where all Xy < 2 7],
i.e. in the case where Tt = Xt.

Thus we finally arrive at the following estimators, which are the analogue of
the estimators in the Buhlmann and Straub model:

(28.1) fiT = N~l £ T,
N

- A f - 1
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(28

(28

•2)

•3)

fixs

UT

= AT 1

= A ^ 1

N

1=1

N

y

XSi

u,

where

where \

XSt

dj is

i
i

n

given

n

7=1

by

XSy

(27)

(28.4) »r = (JV-l)- ]

1=1

By inserting (28) into (16) and into (25) we get the empirical robust credibility
estimator

(29) v

where a =
ni>r+uT

4.2. Robust credibility in the general Biihlmann and Straub model

Contrary to subsection 4.1 we shall now allow the volume measures Vy to be
different. Then we have to generalize (18)-(20).

Assume for the moment that the volume measures are natural numbers.
Then we arrive at the general Biihlmann and Straub model by looking at the
Xy as being averages of Vy independent (unobservable) random variables Yip,

i.e. Xo;= Vy1 YJ Y}?\ where the YJjv) fulfill the conditions of the Buhlmann
v = l

and Straub model with identical volumes Vy=\. By replacing the unobservable
Y}p (v = 1,2,..., Vy) by the 'observed' average Xtj and inserting them into (18)
we get

(30)

It is an obvious and natural idea to give more weight to an observation
belonging to a cell (i,j) with a big volume measure and to use the volume
measures as weights. But we also have to modify the ^-function (20). With the
idea of the Xy being observed averages it becomes obvious that the observed
loss ratios will be the more smoothed the bigger the corresponding volumes Vy.
If we simply used (20), then a risk / with small volumes Vy would be favoured
compared to a risk k with big volumes Vy, since the corresponding yearly
observations Xy of risk i would have a bigger 'chance' of being truncated than
the yearly observations Xkj of risk k. (20) leads to the estimator (22), where
observations Xy belonging to the interval [0, 2 T,] are not truncated and are
considered as 'ordinary' observations. Hence we might look at the interval
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[0, 2 Tj] as something like a confidence interval. The generalization to a model
with different volumes is to make this interval dependent on the volume Vy, i.e.
to consider intervals of the form [0, (1 +f(Vy)) 7]]. This is identical to making
the ^-function dependent on the volume Vy and to replacing (20) by

(31) w(x,Vv)

Since JVzr[Xy\0~Vy] = Vy^i&d, we put

(32) f(Vy) = c-Vy-*

where c is a suitably chosen constant.

(31) should be about the same as (20) for a risk i with average volume. Thus
natural candidates for the choice of c are

, N n

Vwith v = —x,Lv« or

nN 1=1 7=1

c2 = ^median (Vy) (i = 1, 2, ..., N;j = 1, 2, ..., ri)

The authors suggest to use normally c{ and to give preference to c2 in cases,
where the volumes of the different risks in the portfolio have a distribution,
which is very skew.

By putting y/ (x, 9) = y/ (x/<9) as in Subsection 4.1 and the inserting (32) and
(31) into (30) we obtain

(33) X Vymmi^L- \,cVyA =0

with c = cx (or c = c2).

Note that (33) is a generalization of (21) to the case of different volume
measures. Another derivation and justification of (33) and the resulting
estimator (34) are given in the appendix.

By the same arguments as used in the derivation of (22) we easily find that
(33) leads to

(34) r;= £ *1 mm {Xy,Cijn

where Cy = 1 + c Vy *
n

v• = y v
7 = 1

Note that Tt is the solution of the implicit equation

(35) 7];=/(JD
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where/(0 = £ - ^ cvmin (Z(>,, i)

'7 = C'7 ( / '

Denoting by Z,(7) the order statistics of Zy and by Vi(j) and c,(j) the
corresponding Vy and c,y, we find by using the same arguments as in Subsection
4.1 the following algorithm to solve (35):

Calculate TfJ)-=f(ZiU)) for j = n, n- 1, ... until TJ-n > Z,O) and let kt be
the first index, for which this inequality is fulfilled. If such a kt > 1 exists
then

, otherwise Tt; = 0.(36)

Remarks

If Zjln)

T,

I
7 = 1

v t -

then T,

Vi(J)d(j)ZiU)

7 = *,-+l

n

' — Y — V~l Y VHXV•

— If /, denotes the number of zero-observations and if 2_, ^i(j)ciU) — ^>
7=/,+ l

then Tj = 0. To be more precise, if we have strict equality in the above
equation, then every point in the interval [0, Z,-(//+1)] would be a solution of
(33). The algorithm (36) takes the zero-solution in this case.

To find the empirical credibility estimator we have again to estimate the
structural parameters occurring in (16) and (17) from the data. Because
F»,M = P(Xij ̂  x\®i) a s weH a s the (^-function itself depend on the volume
measure Vy, a strict mathematical treatment becomes unfeasible. With the
modification made in the ^/-function (see (31) and (32)) we can assume that
E[Tj\0,] is approximately independent of the underlying volumes. We approx-
imate it by T(F0), where T(F9) is the asymptotic expectation for a risk with
volumes Vy=\. The variance Var[7]|<9,] clearly depends on the underlying
volumes. The variation of the volume measures over time within a risk, i.e. the
variation of Vy (j = 1,2, . . . ,n) , is in most practical situations rather small.
But there might be substantial differences of volumes between risks. Assume
for the moment, that the volumes Vy (j = 1, 2, ..., n) within a risk are fixed
and identical to Vh Since Var [A'yl©,, V,] = G2(0,)/Vi, we might assume that
Var [Ti\0i, Vt] S V(T, F0i)/nVi, where V(T, F0.) is the asymptotic variance of
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a risk with volume 1. Hence a natural straightforward generalization of (25) to
the case of different volume measures is

(37) fio
 V'VT

VtvT+uT

where Vt• =

T(Fe) = asymptotic expectation for a risk with volumes Vv-=l

uT=E[V(T,F0)]

V(T, Fe) = asymptotic variance for a risk with volumes Vy=l.

To estimate the structural parameters fixs, (iT, uT, vT write (34) as

(38) T, = X ^ Tv with Ty = min (Xv, cv T,).
7=1 Vi

For convenience we call

Ty the observed ordinary loss ratio

XSy = Xy— Ty the observed xs-loss ratio

and

VyTy the ordinary claim amount

VyXSy the xs-claim amount.

Inserting the empirical distribution function G, of the Xv- {j = 1, 2, . . . , n)
into (10), we find after some straightforward calculations

(39) IF (Xij; y, Gd = ^ ^ •
A Vy

7=1

= Vl-o2Since Var[^|0,-, Vy] = Vyl-o2(0i) we can assume that Var[7],|<9,, Vy] S
Vy1- V(T, F0.). Hence we suggest to estimate V(T, Fe.) by

(40)

L
7=1

vv
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Of course (40) should be considered as the generalization of (27) to the case
of different volume measures. Then by using the analogue estimators as usually
used in the Buhlmann and Straub model (for a discussion see DUBEY and
GISLER (1981)) we obtain

N

(41.1) uT=N~l Z "'
1=1

v Vi •, uT

) ~(Tj-T)2-(N-l) —
1=1 V V

where V = Z ̂
i=i

N

T= V~l Z V,T,
i = i

N

C = Z - i -

(4i.3) fiT= n&,

where a, =

(41.4) fixs = V-1 Y ^ ^ , - i Z
Thus the empirical robust credibility formula in the case of different volume

measures is given by

(42) fi

V-Vr

where a, = and
V

where the estimators of the structural parameters are
given by (41).

Remarks
N N

i) Z VifixW = Z VIXI-
1=1

By replacing for each risk i the observed claim amount VtXi by the
corresponding pure risk premium Vifix(@j), we get a mathematical
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allocation of the total claims amount. Thus our formula provides us with a
tariff, which is fair for the portfolio as a whole.

ii) The authors would like to emphasize once more that a strict mathematical
treatment in the case of different volume measures becomes unfeasible.
But they believe that the proposed estimators are reasonable and useful for
practical purposes. This is also confirmed by the simulation study
presented in Section 5. It should also be noted that a suboptimal
estimation of the credibility weight a, is not very sensitive to the quality of
the credibility estimator with respect to quadratic loss.

5. A SIMULATION STUDY

In order to test the proposed method and to illustrate its functioning we have
carried through a simulation study. We have simulated data of two different
models. In both models we consider portfolios of N risks numbered
i = 1,2, ..., N. We assume that each risk i is characterized by a hidden risk
parameter <9,. To each risk / belongs an observation vector Xt = (Xn , ..., Xin)',
where Xtj might be interpreted as the loss ratio of risk i in year / To each cell
(z, j) is given a volume measure Vtj (a natural number) and it is assumed that Xtj

is the mean of (unobservable) r.v. YJf\ i.e.

i
v = l

Model I

Assumptions

Mil: Given <9,, the random variables Yyv) (j = 1, 2, ..., n; v = 1, ..., Vv) are
independent and Gamma (y, @,~') distributed.

MI2: The pairs {6X, JSf[), ..., (0N, XN) are independent and &[',..., 0^' are
Gamma (a, P) distributed.

Remarks

— Note that given ©,-, the Xy are Gamma (Vyy, Vtj©^x) distributed.
— The unconditional distribution of the Y]f^ is, in the terminology of HOGG

and KLUGMAN (1984), a generalized Pareto distribution with density
function

r ( a + y) / fi \x I y \M

r()r() \p+y) \P+y) y
It is well known that in model I the credibility estimator is exact Bayesian
and that

(43)
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with n = E[Xiji =
a - 1

Now assume that model I is a good description for the bulk of the data. But
some of the data (the outliers) are generated by another law. This is formalized
by assuming that occasionally, i.e. with probability n, Y^ is drawn from the
'xs-urn' with density fe(x). This leads to

Model II

Assumptions

M i l l : Given <9,, the random variables y|v ) (j= 1, 2 , . . . , « ; v = 1, . . . , Vtj) are
independent with density function

where f(y\0,) is the density of the Gamma (y, 0, ') distribution and

where fe(y) =
r(a)r(c) b+y b+yj y

is the density of a generalized Pareto distribution with a, b, c fixed
constants.

MII2: The pairs (6>,, XJ, ..., (0N, XN) are independent and <9f \ ..., 0 ^ '
are Gamma (a, /?) distributed.

MID: a < a.

Remark
The assumption MII3 means that large Y}p are more likely to come from the
'xs-urn' than from the 'ordinary' urn.

The observation period in our simulation was 6 years. The portfolio
contained 100 risks with volume J^= 1 (small volumes), 100 risks with volume
Vjj=3 (medium volumes) and 100 risks with volume Vy=5 (great volumes).

In model I we have chosen y = 2, a = 5, /? = 2. This means, that

ux =E\VSLX [Xy 6>,; Vy = 1]] = 0.667
vx : = Var [^f^ 0,]] = 0.333 .

The simulation gave the following results:

- standard credibility estimator :
structural parameters:

(LX= 1.017, u^ = 0.618, ^ = 0.356
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credibility weights (for volumes 1, 3, 5):

a, = 0.775, a101 = 0.912, a201 = 0.945

mean quadratic loss:

MQL = 0.0352 ^/MQL = 0.188.

— robust credibility estimator:

structural parameters:

fixs = 0.003, fiT = 1.013, uT = 0.666, vT = 0.353

credibility weights (for volumes 1,3,5):

«i = 0.761, a101 = 0.905, a20, = 0.941

mean quadratic loss:

MQL = 0.0358 ,/MQL = 0.189.

Remember that the standard credibility estimator is exact Bayesian in this
model. It is therefore not surprising that the mean quadratic loss of the robust
estimator is greater than the one of the standard credibility estimator. However
the difference is only 2%. Hence the loss of efficiency by using the robust
credibility estimator instead of the 'optimal estimator' is very small. This was
confirmed by three other simulations. We refrain from listing the simulated loss
ratios of the risk in the portfolio. The differences between the robust and the
standard empirical credibility estimators were very small.

In model II we have chosen a probability n of 5 % for Y^ being an 'outlier'.
The parameters of the 'outlier density' fe(y) were a — 3, b = 10, c = l , which
gives an expectation of 5 and a variance of 50. Of course the parameters of the
'ordinary density' were the same as in the simulation of model I. Thus the
structural parameter of the standard credibility estimator were

^ = 1 . 2 0

ux = 3.893

vx = 0.301.

The simulation gave the following results:

— standard credibility estimator:

structural parameters:

fix = 1.246, ux = 4.308, vx = 0.218

credibility weights (for volumes 1, 3, 5):

a, = 0.233, a101 = 0.476, a201 = 0.602

mean quadratic loss:

MQL = 0.1390 VMQL = 0.373 .
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— robust credibility estimator:

structural parameters:

/*„ = 0.108, fiT= 1.113, « r = 1.759, vT= 0.243
credibility weights (for volumes 1,3,5):

aY = 0.453, a101 = 0.713, a201 = 0.806
mean quadratic loss:

MQL = 0.0843 ^/MQL = 0.290.

Using the robust credibility estimator instead of the standard credibility
estimator reduces the mean quadratic loss by 40%. This order of magnitude
was obtained in several simulation runs. Thus the robust credibility estimator
performs substantially better than the standard credibility estimator. Note that
the credibility weights are much bigger for the robust estimator. Table 1 shows
the simulated figures of the first fifteen risks of each volume group. Risk Nr. 1
has a big outlier. The standard credibility estimator increases drastically
whereas the robust estimator reacts reasonably. But there are also differences
in cases where no outliers were observed (see for instance risk Nr. 5). The
robust estimator is usually nearer to the true value also in this case, due to the
greater credibility weight.

Further remark

It would also be interesting to compare the results obtained by the robust
credibility estimator with the ones which would be obtained by the method of
optimum trimming in credibility proposed by GISLER (1980). The authors have
renounced it in order not to overload this paper. The main difference between
optimum trimming in credibility and the robust credibility presented in this
paper is that in the first case the individual claim amounts YJjv) are trimmed at
a trimming point which is the same for all risks in the portfolio, whereas in the
robust credibility approach the observed loss ratios XtJ are trimmed with a
trimming point depending on the claims experience of the particular contract.
In the first case the individual claim amounts have to be known, whereas in the
second case only the knowledge of the loss ratios is necessary.
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TABLE 1

FIGURES OF A SIMULATION OF MODEL II

risk
number

'<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

72.3
77.7

37.8

11.4
34.9

3.4

3.3

12.2
10.9

58.3

75.7
57.7

39.7
20.0
40.0

41.7

16.8

103.8
26.7
70.3

42.9
35.4

18.7
49.7

132.3

26.5
43.2

32.4
71.7

43.2

108.4

112.8

40.4

86.7

39.8
91.7

101.5
24.7

137.1
29.6

58.6
40.2

37.0

71.6

97.1

89.4
115.6
74.1

28.3
37.2

41.8
18.3
33.0
24.1

58.9

120.7
156.3
79.0

65.3
64 8

41.8
33.0

116.7
42.3
90.4

83.5
39.3

20.3
70.7

188.2
31.8
83.4

45.4
82.8

45.1

112.6

120.8
40.5

121.1

41.0
95.8

101.6
26.5

208.8

40.4
82.4

50.8
48.5

80.1

111.8

order statistics

96.7
133.8
175.2

36.0
118.9
48.2
21.8
36.2

79.7
82.9

146.9
176.3

89.8
93.8
75.9

44.6

33.6

117.3
43.3

100.0
85 3

41.9

34.8
77.9

191.5

35.9
114.1

52.3
86.7

64.6

134.8

177.5
45.0

150.4

48.8
98.8

117.5
28.5

212.0
43.4

97.0
50.9

51.8

93.6

142.4

235.7
201.4
223.7

45.2

296.1
71.1
30.8
36.7

131.4
111.5

183.4
178.0

158.0
95.2

147.8

65.5

51.2

127.3
50.9

125.1
111.8
44.0

40.8

86.1
211.5

44.9

117.7

67.5
91.0

66.0

134.9

213.6

46.1

163.7

58.8
137.1

119.2
39.1

216.2
52.4

117.4

52.5

55.8

110.6

143.5

286.0
201.6

332.3
118.5
312.6
160.8
84.2

59.5

133.8
112.2

228.7
254.6

164.3

112.5
179.7

81.7
109.9

136.6
51.7

131.4

120.4
81.9

67.2
104.5

256.3
63.1

128.5

97.1
113.8

118.7

160.8

229.4
80.0

227.6

70.5
164.0

133.4
66.7

245.1
57.6

118.7
55.3

56.0

116.1
159.0

4 798.0
667.3
335.6
653.0
313.2
179.4

183.2
71.5

150.3
141.0

523.8
384.2
354.6

121.2
298.9

85.6

310.5
732.0

88.6

160.1
124.2

125.0
433.8
105.4

744.1

233.6
532.0

110.2
303.1

528.2

192.8

281.4
148.2

508.0

234.8
179.1

144.8
122.7

323.4
77.1

141.9

816.9

117.1

135.9

198.2

individual experience

X,

929.7
232.9
196.5

148.7
185.5

84.1
56.9
41.5

88.4
94.1

213.2
201.2

147.6
84.7

134.5

60.2

92.5

222.3
50.6

112.9

94.7
61.3

102.6
82.4

287.3

72.6
169.8

67.5

124.9
144.3

140.7

189.2

66.7

209.6

82.3
127.8
119.7

51.4
223.8

50.1

102.7
177.8

61.0

101.3

142.0

T,

238.7
223.4
196.5

73.3
185.5
84.1
48.5
41.5

88.4
94.1

213.2
201.2

147.6
84.7

134.5

60.2

61.1

150.4
50.6

112.9

94.7
60.6

45.4
82.4

244.9
50.6

121.7

67.5
111.5

84.4

140.7

189.2
59.6

177.4

61.3
127.8

119.7
43.9

223.8
50.1

102.7
59.1

59.0

101.3
142.0

credibility estimator

standard

311.8
149.8
141.3

130.2
138.7
115.2
108.8
105.3

116.2

117.5

145.2
142.4

129.9

115.3
126.9

93.9
109.3

171.1
89.3

119.0

110.3
94.4

114.1
104.5

202.1
99.8

146.1

97.4
124.7

134.0

134.3

163.5
89.7

175.8

99.1
126.5

121.6
80.5

184.3
79.7

111.4

156.6

86.3

110.6

135.1

robust

238.7
223.4

196.5
73.3

185.5
84.1
48.5

41.5

88.4
94.1

213.2
201.2
147.6

84.7
134.5

86.0

86.7

150.4

79.2
123.6
110.7
86.4

75.6
101.9

217.8
79.2

129.9

91.3
122.7

103.3

146.1

185.2

80.8

175.6

82.1
135.6
129.1
68.1

213.0
73.1

115.4

80.3

80.2

114.3

147.1

true
value

Px(ty

159.0
232.4
261.1

65.4
210.4

87.8
83.5
93.9

119.5
87.9

276.6
167.2

99.8
89.1

134.0

97.8
72.2

121.0
74.1

112.6

115.6
88.6

69.0
106.5
188.2

69.5
142.0

87.4
98.0

114.6

154.1

178.2
78.0

117.0

66.9
146.0

140.2
60.3

235.5
76.6

138.2
80.8

92.3

118.0

153.0
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APPENDIX: DERIVATION OF THE ESTIMATOR (33)

a) Derivation based on Huber's estimator

HUBER (1964) (see also HAMPEL and alii (1986), p. 172) studied robust
estimation of location by determining M-estimators that are optimal in a
minimax sense. The model framework was the following:

The distribution of A} (j - 1, 2, ..., n) is F, a symmetric distribution with
location parameter 3. Let Pe = {G : G = (1 —s)F+sH, H symmetric} be a set of
distributions in the neighbourhood of F.

Huber was looking for the M-estimator ip minimizing the maximal asymp-
totic variance over Pe, that is

(44) V(T(ip), G) = min sup V(T(y/), G)

where T{y/) is the M-estimator defined by (8).

The solutions of (44) for F = <P (normal distribution) are

(45) \j/ (x, 9) = y/c{x, 8>) = sign (x-9) min (\x-9\, c) (Huber estimator)

In the case of different of = Var [Xj], the Huber estimator T is obtained by
applying (45) on the normalized data. Using (7) yields, that T is given by

(46)
X.-T

= mm
9

»,
tr

where pc(x) = "*

c\ \x\ - -

(note,

or equivalently

(47)
X.-T

= 0.

\x\ <c

\x\ >c

Since y/c(ax) = a y/c/a(x)> (47) is also equivalent to

(48)

In the case of the Biihlmann and Straub model we have

In a scale model a2(&,) is proportional to ©2.
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Hence applying (48) to the data of risk i in the Buhlmann and Straub case
yields

= 0(49) X Vt] s i g n (Xy- T d m i p
\ I Tt s/ij

or equivalently

(50) T,= X — max ((1 -rv) T,, min (Xu,(l+ rv) 7]))

where Vt =
7=1

r = cV~112

I IJ t-V ,j

Since Xy > 0 we obtain in the case where rj} > 1 (j = 1, 2, . . . , n)

(51) T, = X -^ min (^,(1+^)7})

which is exactly the same as formula (34).
In the robust credibility approach we use (51) also in the case where some of

the rtj are smaller than 1. One reason is that (50) implies also truncation from
below, which would be less accepted in practice than truncation from above.
Another reason is that (51) is easy to calculate and has, except in the very
special case mentioned in Section 4.1, a unique solution which is not the case
for (50). Moreover in most cases the differences between (50) and (51) will be
pretty small. However, from a pure mathematical point of view, there would be
no reason to prefer (51) to (50). On the contrary, when considering the limiting
case cVyl->0 for j = 1,2, ..., n, then Tt defined by (51) converges to
min (Xjj-J = -1, 2 , . . . , n), whereas 7} defined by (50) converges to median
(Xy;j= 1,2, . . . , « ) .

b) Different argument

In a) we started with the symmetric location case and then suddenly switched
to the asymmetric scale case. This is somewhat questionable, as pointed out by
one of the referees, who mentioned the following different argument for the
case where Vy= Vt for j = 1, 2, . . . , « .

Let Xx, X2, ... be i.i.d. ~ dG(x/S) and consider the M-estimator Tn defined
by

sign ( J O - r j min 1 = 0
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Then b determines the gross-error sensitivity and the problem is how this
should depend on G. One reasonable requirement is that the ratio gross-error
sensitivity to asymptotic standard deviation of Tn should be independent of G,
i.e. we compare the maximal influence of outliers to the precision of the
estimator. This is the self-standardized sensitivity of HAMPEL and alii (1986). It
means that

b2/E mm = const.
T(G)

If G is the Gamma (y, y)-distribution, then this implies at least for y -» oo

b(y) ~ const. -y~1/2

because Gamma (y, y) x .yf\\, y~x) as y-» oo. For Vy= Vi this gives (49). For
the Gamma-distribution it follows from Section 2.4 of HAMPEL and alii (1986)
that the above Tn is optimal in the sense defined there.
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