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Abstract

A compartmental model is proposed to predict the coronavirus 2019 (Covid-19) spread. It
considers: detected and undetected infected populations, social sequestration, release from
sequestration, plus reinfection. This model, consisting of seven coupled equations, has eight
coefficients which are evaluated by fitting data for eight US states that make up 43% of the
US population. The evolution of Covid-19 is fairly similar among the states: variations in con-
tact and undetected recovery rates remain below 5%; however, variations are larger in recovery
rate, death rate, reinfection rate, sequestration adherence and release rate from sequestration.
Projections based on the current situation indicate that Covid-19 will become endemic. If
lockdowns had been kept in place, the number of deaths would most likely have been signifi-
cantly lower in states that opened up. Additionally, we predict that decreasing contact rate by
10%, or increasing testing by approximately 15%, or doubling lockdown compliance (from the
current ∼15% to ∼30%) will eradicate infections in Texas within a year. Extending our fits for
all of the US states, we predict about 11 million total infections (including undetected), and
8 million cumulative confirmed cases by 1 November 2020.

Introduction

The first cases of community coronavirus 2019 (Covid-19) transmission in the United States
were reported in California, Oregon, Washington state and New York state in late February
2020 [1]. A Santa Clara, California death on 6 February was deemed the country’s first
Covid-19 fatality after an autopsy was conducted in April [1]. A national emergency was
declared by US President Donald Trump on 13 March 2020, and testing several days later
revealed that Covid-19 had spread to all 50 states [1]. On 20 March, New York City was
declared the US outbreak epicentre [1]. A study, released in April 2020 as a preprint, found
via genetic analysis of Covid-19 cases in New York City that the majority of the viruses origi-
nated in Europe – revealing that transmissions had begun as early as January from countries
with no travel monitoring [2]. As of 29 June 2020, the US had 2 496 628 confirmed Covid-19
cases, and 125 318 Covid-19 deaths [3].

Covid-19 challenges faced by the US include fair allocation of adequate medical resources
[4], minimising mortality, avoiding overwhelming the health-care system and keeping the
effects of lockdown policies on the economy within manageable levels [5]. Epidemiological
analysis of the virus proliferation is needed to assess the impacts of mitigation strategies
including social distancing, sheltering-in-place (voluntary) and quarantines (enforced by
authorities) [5], as well as personal habits including frequent hand washing and wearing
masks. We have developed a new compartmental model, extending the long-standing SIR
(Susceptible, Infected, Removed) model [6–8], to evaluate and compare several states’
responses to Covid-19; with this model we can make estimates, using curve fitting of reported
data, of the impact of contact suppression measures and the lifting of such measures. We find
that, for the current situation where several states have relaxed stay-at-home measures,
Covid-19 will become an endemic virus for at least two years; so it is not surprising that
some states are reinstating the stay-at-home measures [9]. More in-depth projections (made
by varying contact rates, detection rates and sequestration adherence), using Texas as a test
case, suggest that a modest increase in the testing rate, a modest decrease in the contact
rate or a significant increase in lockdown compliance could eradicate the virus within a year.

A new model

Our SQUIDER model incorporates additional processes into the classic SIR model: (i) making
a distinction between known cases (which are publicly reported) and asymptomatic or mild
cases which are not monitored or detected; (ii) including the effects of responses, with varying
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adherence by region, to the pandemic, whether direct, through
quarantine or medical isolation of diagnosed cases, or less direct
such as social distancing efforts and (iii) possible loss of immunity
of recovered individuals, allowing some of them to be reintro-
duced into the Susceptible population. The model thus requires
several new compartments, which we will denote as U
(Undetected infected), E (undetected recovered) and Q
(pseudo-Quarantine, a bin to hold a segment of the susceptible
and undetected infected populations allowing us to model
reduced human interactions due to social distancing).
Furthermore, for modelling/fitting purposes we add a separate
compartment D for known infecteds who die; while undetected
infections, undetected deaths, undetected recoveries and quaran-
tine adherence are not available, deaths from the virus are gener-
ally reported [10]. Figure 1 shows the connections among
different compartments in our model.

The rate equations are as follows:

dS
dt

= −bSUa − q(t)S+ r(E + R) (1)

dU
dt

= bSUa − (q(t)+ e+ d)U (2)

dI
dt

= dU − (g+ a)I (3)

dR
dt

= aI − rR (4)

dD
dt

= gI (5)

dQ
dt

= q(t)(U + S) (6)

dE
dt

= eU − rE (7)

Each compartment is normalised by the total population N;
hence

S + Q + U + I + D + E + R = 1. (8)

Note that the coefficients α, β, δ, ϵ, γ and ρ are constants (to be
evaluated from fits to data). Being normalised, our compartment
variables are non-dimensional, and our rate coefficients have
units of days to the power of −1, so the model could be described
as a one-dimensional continuous dynamical system.

Before we go through the individual equations we should dis-
cuss some of the recurring terms and factors. First, the incidence
rate βSUa, the average normalised new infections in time, is non-
linear when a ≠ 1. Here β is the contact rate, which is the average
number of contacts a person has per day, multiplied by the prob-
ability of transmitting the disease when contact between a
Susceptible and an Undetected infected occurs, i.e. the level of

contagiousness. Detected Infecteds (I ) are not involved since we
assume that, post-diagnosis, the I group are generally in medical
isolation or some other form of quarantine [11]. If a = 1, this term
describes homogenous mixing of the Susceptible and Undetected
infected populations [12], which may not be accurate for states
with isolated populations, low population densities, or many
densely populated areas; the relationship may be sublinear or
superlinear depending on the population being sparse or dense.
Power law incidence rates (such as βSUa) have been shown to
improve the accuracy of SIR models [13, 14].

Second, the factor q(t) models the time dependence of social
distancing and contact suppression, as well as the effects of sub-
sequent lockdown release. Social distancing is modelled by trans-
ferring a proportion of the Susceptible and Undetetected infected
populations at a time t1 into the Q compartment. This does not
imply that some large number of undiagnosed people are put
into any actual physical quarantine, only that the available sub-
groups for infecting (U) and for becoming infected (S ) are
reduced; alternatively, this might possibly be modelled by altering
β or the power law dependency a in a time-dependent way.
Mathematically, this transfer is realised within the ODE model
by having q(t) be time-dependent – that is 0 until close to the
time of sequestration; it then becomes large very quickly and
then subsides quickly to 0 again; in other words, q(t) is a pulse.
This pulse transfers populations between compartments – for
example, from S and U to Q at the start of a lockdown, and
from Q to S when lockdown is released. Note that the transferred
population will stay in the Q compartment until a subsequent,
negatively weighted q2(t) pulse is generated. This pulse form
was chosen, as opposed to a constant value used by some authors
[15–17], because many states went into lockdown on a particular
day with some, but not all, people self-isolating [18, 19]. In par-
ticular, the day t1 where such measures take effect and the max-
imum pulse magnitude q1 are of interest because they reflect
the compliance (or lack thereof) of the state’s population. A con-
stant rate of sequestration, on the other hand, is not only some-
what unnatural in terms of social dynamics, but will result in
the entire population eventually being sequestered unless there
is some opposite movement taking people out of sequestration
as well.

Equation 1 for the Susceptible population is reduced non-
linearly by new infections βSUa due to interactions, and explicitly
reduced in a time-dependent way by sequestration q(t)S (not by
any significant amount until we get close to the activation time
t1), as well as increased again by re-entrance at a rate ρ by the
undetected recovered (E) and Recovered (R) groups. This term
was added due to the WHO revelation that recovered Covid-19
patients may have little or waning immunity after exposure
[20], later confirmed by an antibody study conducted on indivi-
duals who had recovered from Covid-19 infections [21].

Equation 2, for Undetected infecteds, includes the increase due
to contact with S members, and removal by various causes. The
rate ϵ corresponds to the recovery rate in the basic SIR model.
The detection rate δ specifies the proportion of Undetected
infected individuals who are diagnosed with the virus (and are
hence no longer undetected); it is added to the I compartment.
Finally, this population is also effectively reduced due to social
distancing q(t), e.g. residents of many states were encouraged to
shelter at home and not seek testing/diagnosis unless they became
symptomatic, in order to ease pressure on medical resources [22].

Equation 3 for the detected Infected population, describes
increases due to testing at rate δ and decreases due to death
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with rate γ, and recovery with rate α. Since these individuals are
isolated in designated hospital wards or under quarantine at
home [11], hence unlikely to be a source of infection to the com-
munity at large, we felt there was no need for sequestration (i.e.
q(t)) when social distancing went into effect. This is in agreement
with the WHO guidance on quarantines segregating suspected
exposed people [20].

Equation 4 describes the growth of detected Recovered,
balanced by outflux of the Recovered population into the suscep-
tible compartment at rate ρ due to little or waning immunity,
expected for human coronaviruses [23]. Equation 5 describes
the increase in Deceased detected individuals. Equation 6
describes the increase in the pseudo-Quarantine compartment
due to official contact suppression measures q(t), which as stated
above is only significant around the activation times t1 and t2.
Equation 7 describes increases in the undetected recovered popu-
lation at rate ϵ, and decreases in this population due to loss of
immunity of E at rate ρ.

Assumptions

Several simplifying assumptions or idealisations have been made.
To begin with, in our model the detected Infecteds (I ) do not
transmit the disease to the Susceptible (S ) population. It is gener-
ally the case that in all such disease outbreaks (e.g. the 2014–2016
Ebola outbreak), even when strict quarantine measures are in
place, medical service providers and other people rendering direct
aid to victims are themselves vulnerable to infection; when the
outbreak (in the non-healthcare worker population) is contained
they may even make up the substantial proportion of cases [24].
However, in the current situation where the disease circulates
through the general population and safety protocols are rigorously
enforced by frontline health providers [25], the proportion of
such cases relative to the general population is negligible.

Other simplifying assumptions: as mentioned above, we have
opted to keep our contact rate β constant and instead vary the
S and U compartment population levels to mimic social distan-
cing effects (for example staying at home). In future versions of
our model we may incorporate time-dependent β or a in order
to disentangle population-wide transmission suppression (e.g.
face masks and other protective gear for the public) from social
contact suppression (cancellation of concerts and other public
gatherings), but for the sake of simplicity in both coding and

analysis we have opted for now to use only one time-dependent
rate. In the same vein, the q(t) function removes Susceptibles
and Undetected infecteds at the same rate (we have no reason
at this time to differentiate the rates of change of these
populations).

Similarly, people from the E and R compartments lose immun-
ity at the same rate ρ. Indeed, it is possible that people who experi-
enced milder forms of the disease (E) lose immunity faster than
those who experienced more severe symptoms and sought out
treatment (R) [21]; however, we use a single rate ρ for simplicity.
As other authors [16, 26, 27], we did not consider our undetected
recovery rate ϵ to be equivalent to α since it is possible that recov-
ery rates are different for people with mild or no symptoms who
do not seek medical care in comparison with people who do seek
medical care (the I population). We additionally do not expect
such mild or asymptomatic cases to be fatal [28]; therefore, people
are not removed from the U compartment due to death. Note
that, at least in the early days of the pandemic, increased overall
deaths in comparison with the prior three years were not exam-
ined for signs that the virus was active among undiagnosed popu-
lations [29]. Finally, we do not consider the effects of births,
vertical transmissions, immigrants, emigrants or deaths due to
other diseases or trauma. The inclusion of deaths due to diag-
nosed virus cases makes the model not entirely static, but the dis-
ease’s total deaths as a proportion of the total population is low
enough that births and other such aspects can be safely omitted.

Results

Coefficient evaluation

Figure 2 shows fits of the model to data (cumulative confirmed
case counts and deaths due to Covid-19) for Arizona,
California, Florida, Illinois, Louisiana, New Jersey, New York
State and Texas. The fits to cumulative case counts are all
excellent – even for states such as Illinois, New Jersey and
New York that have a distinct inflection in case counts. It is
also apparent that some states, such as Arizona, California,
Florida, Louisiana and Texas, have had rapidly rising case counts
in June – likely due to easing of restrictions. This feature is cap-
tured by our q(t) – where application of a second, possibly nega-
tive pulse moves people from the Q to the S compartments as
described above. Note that model fits to cumulative death counts

Fig. 1. Schematic of the compartments, with the rates
of transfer between the compartments.
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deviate from the data starting in mid-May in some states
(Arizona, California, Florida, Louisiana, New Jersey, New York
and Texas). This may be due to improved medical treatments

(such as dexamethasone [30]), virus mutations resulting in a
less deadly strain, or the postulated lack of reliability in confirm-
ation of US Covid-19 deaths, which may be significantly

Fig. 2. SQUIDER model fits. Fits of our compartment model to recorded data on confirmed cumulative case counts and deaths; all fits have R2≥ 0.996. Data were
obtained from The Johns Hopkins University [34]. The vertical dotted line indicates the last date fitting data was obtained for.
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undercounted [31]. Fit parameters are listed in Table 1. The con-
tact and exclusion rates vary by less than 5%; however, reintroduc-
tion rate varies by 320%, detected recovery rate by 65%, re-release
rate by 268%, stay-at-home effect by 103% and death rate by 59%.
These variations, though large, are not surprising due to different
states having been in different stages of the outbreak. For example,
New York’s and New Jersey’s recovery rates are significantly lower
than other states’. This could be due to the fact that these states
had saturated hospital capacities during their peak outbreak [32,
33], causing slower recoveries due to decreased access to medical
staff and treatments. Figure 3 additionally shows the dynamics of
the U, E and R, as well as I and D (fitted compartments) over the
fit period (22 January to 29 June 2020). Note that the U curves
follow the I curves because individuals are transferred from U
to I at a constant rate δ and out of I at a constant rate α + γ. In
this figure, it appears that U and E cases in New York and New
Jersey have stabilised, similar to the I + R cases in Figure 2.
Presumably this is due to the outbreak occurring earlier in
those states, and possibly because the official response has been
more rigorous.

We compare our fit parameters with the classical SIR model
which, to remind the reader, involves only Susceptible, Infected
and Recovered compartments. The β and parameters correspond
to the contact and recovery rates of the SIR model; the fit
values imply that for unconstrained epidemic situations (with
q(t) = δ = 0) the disease has a reproduction number R0 = β/ϵ of
around 5. The contact and recovery rates we find are consistent
with several prior investigations [17, 35]. See Table 2; for further
discussion of how the basic SIR model fares in comparison with
SQUIDER, see the appendices.

It is surprising that the detection rate δ is so high for all of the
states (≈0.5); however, a recent nationwide coronavirus antibody
study by the Spanish Health Ministry [36] suggests that the num-
ber of unknown infected and unknown recovered in large and
heterogeneous jurisdictions, while significant, is not orders of
magnitude larger than the number of confirmed cases. This
goes against some prior speculation that the asymptomatic and
undiagnosed cases might be as much as 10 times the official
count [37], which would suggest a detection rate 5 times smaller
than our δ values.

Returning back to Figure 2 and Table 1, the death rate from
diagnosed cases γ falls between around 2% and 3.5%, which is
well within the quite wide range of case-fatality rates reported
for earlier phases of the pandemic [38]. The recovery rate α for
diagnosed cases, seems somewhat high (in the 0.45–0.5 range
for New York and New Jersey, and around 0.7–0.8 for the other
states); this could reflect the fact that detection of any disease
would normally occur after that disease has already partly run
its course, but it should be kept in mind as well that this compart-
ment has a minimal effect on the size of the fitted compartments I
and D, so the fitting routine may not be as constrained in select-
ing the α value as the other fit parameters. The re-entry (due to
loss of immunity) rate ρ is fairly low for most of the states,
which indicates that this is not a significant factor for the initi-
ation of the outbreak. Such low ρ values are not unreasonable
since loss of immunity to corona viruses that cause common
colds is typically slow, taking several months in some individuals,
up to a year in others [23]. Indeed, one recent report found that
antibodies in a high proportion of individuals who recovered from
Covid-19 started to decrease by about 10% within 2–3 months
after infection, suggesting a gradual loss of immunity [21].
Surprisingly, Louisiana has a much larger ρ value than other states

(≈0.17). This was selected by the fitting routine to account for the
unexpected rising new cases during that states’ lockdown period.
As we see below, the reintroduction of people to the Susceptible
compartment obviously results in an endemic infection in the
predictions.

Our fitted peak initial sequestration values range over 0.1–0.2
for all states except Illinois (whose value is close to 0.04). The par-
ameter t1 enables prediction of what day self-isolation policies
started having significant effects on case counts – see Table 1.
To compare t1 to states’ directives, stay-at-home orders were
issued in Arizona on 31 March, California on 19 March,
Florida on 1 April, Illinois on 21 March, Louisiana on 23
March, New Jersey on 21 March, New York on 22 March, but
was suggested in Texas on 2 April [39]. There is a one week or
so time lag between announced state action and its measured
effect, which may or may not have a physiological basis [40]. It
is possible that Texas, Arizona and Florida residents were follow-
ing local orders which prescribed sheltering in place sooner than
the state orders: as examples Dallas had a state of emergency
declared on 19 March, and Houston residents were urged to
stay at home on 24 March [41].

Many states partially re-opened in May. Our fit parameter q2
for the various states corresponds to the percentage of people
moving between the Susceptible and Quarantine compartments –
where a negative number indicates the percentage decreasing,
moving from the Quarantine to the Susceptible compartment.
Specifically, Arizona, Florida and Texas had significant numbers
(>30%) exiting from stay-at-home conditions, whereas California
and Louisiana had smaller numbers (<11%), Illinois had 4.5%
additional people enter the Q compartment and New Jersey had
a small Q entry (<0.5%). The date at which this occurred, t2, can
also be compared with the dates stay-at-home orders were lifted
or expired – also in Table 1. Stay-at-home orders were relaxed or
expired on 15 May in Arizona, low-risk businesses and some
restaurants opened in California on 8 May; stay-at-home expired
in Florida on 4 May, in Louisiana on 15 May, in New York on
28 May, and in Texas on 30 April. New Jersey, on the other
hand, did not officially relax social distancing measures within
the time range of our data. The time lag between t2 and official
dates may correspond to the end of the school year and people’s
perception of safety.

The initial values of the undetected infecteds U(0) are all less
than one individual (some significantly), implying that none of
the states we look at had any actual cases on 22 January (the
first day for which we have data). While the ODE results can
be scanned to find an estimate for the arrival of the first case
(or first two, or five cases) in a jurisdiction, some caution should
be exercised in applying this number, since magnitudes at this
point are still too small to make statistically valid comparisons.
Given that the model estimates there to have been at least 10
cases in the states studied (except Arizona, Florida and Illinois)
by the 3rd or 4th week of February (the 1st week of February
for New York) we think it is probable that Covid-19 was spread-
ing considerably sooner in New York, New Jersey, Texas and
Louisiana than previously assumed. This implies that stronger
measures – such as travel bans, cluster identification, contact tra-
cing and quarantine measures – were needed to fully contain the
outbreak [42, 43]. California had reported cases already in late
January, yet both the reported data and our ODE model show
the main outbreak occurred well after New York or New Jersey.
This is likely if the western states were dealing successfully with
cases coming directly from Asia, but lost control of the outbreak
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when infected individuals started arriving from the eastern US or
possibly Europe; possible differences between the Asian and
European Covid-19 strains are not addressed here.

Model predictions

We have generated predictions using the current fits for two years
beyond the first date of recorded US cases. Figure 4a–h show that
the total number of infections increases substantially in most
states from July 2020 to January 2021, except for Illinois, which
apparently experienced its peak case count in May. It is predicted,
however, that all states will have continued Covid-19 infections
for the next two years, some with small secondary peaks occurring
in the spring of 2021. California, Illinois and New Jersey do not
have secondary peaks – this is likely due to these states having
positive q2 values (meaning more people enter Q than leave),
small negative q2 values or very small ρ values. Louisiana also
does not have secondary peaks – most likely due to this state’s
large ρ value where reintroduction of sufficient individuals into
the susceptible population damps out oscillations in the infected
population [44]. For oscillations to be present in compartment
models, cycling of populations has to occur at an intermediate
rate – having a high re-entry rate leads to steady infections; and
having no re-entry results in eradication of the virus. Our pro-
jected daily deaths (Fig. 4i) show that Arizona, Florida,
New York and Texas have secondary peaks in deaths after the
first main peak. New Jersey and Illinois avoid a secondary peak,
presumably because these states haven’t yet reopened. We have
performed fits to all of the states in the US and predict 11 326
089 cumulative cases, and 8 346 433 cumulative confirmed cases
(for all fits R2≥ 0.96), assuming no further interventions (such
as additional lockdowns).

We have also generated counterfactual estimates of case counts
(Fig. 4a–h) for the hypothetical situation of sustained
stay-at-home orders, i.e. hence disallowing transfer between Q
and S. The daily peak total cases is ≈10 times lower for
Arizona, Florida, Louisiana, New York and Texas, in comparison
with trends predicted from current data. Keeping the
stay-at-home orders had weaker effects in Louisiana and

California than the other states – due to only releasing small
numbers of their Q population back to S (≈10% for Louisiana,
<1% for California). Our counterfactual daily deaths (Fig. 4j)
show that maintaining staying-at-home could have significantly
reduced deaths in Arizona, Florida, Louisiana, New York and
Texas. California was not strongly affected because its residents
did not fully re-open, and Illinois and New Jersey’s counterfactual
and factual projections do not differ since these states did not
reopen.

Sensitivity to intervention level

Given our grim prediction (Fig. 4), it is natural to ask if there is
some non-pharmaceutical intervention (i.e. something other
than vaccines) that could improve the situation. We show the
effects of actions such as mandating mask-wearing in public by
reducing the contact rate β in Figure 5a for Texas. Decreasing β
by 10% results in virtual eradication of Covid-19 in Texas within
one year. Increasing the detection rate (i.e. test-and-trace) by
approximately 15% will also eradicate the virus within a year,
shown in Figure 5b, as will also doubling lockdown compliance
q1. These show that β is the most sensitive parameter with respect
to reduction of infection rates, though the most practical approach
in terms of trade-offs and compliance is simply for governments
to increase testing.

Discussion

Several studies have already modelled the growth of Covid-19
infections and deaths in the US or its various states. As expected
for nonlinear systems, some predictions, even if accurate for
a short time, can deviate significantly with increased time.
A SEIR model (Susceptible, Exposed, Infected, Removed) was
implemented on a network to simulate inter-state travel [45].
They predict that, in the absence of countermeasures, the out-
break peaks on day 54 in their simulation (10 May 2020).
Other SEIR-type models with additional compartments [15, 16]
including quarantine, also predict that the US outbreak peaks
near 10 May 2020 [15], or peaks in the general population

Table 1. SQUIDER model fit parameters for selected US states

Parameter Arizona California Florida Illinois Louisiana New Jersey New York Texas

β 0.7497 0.7482 0.7439 0.7329 0.7589 0.7614 0.7644 0.7485

a 0.9942 0.9943 0.9944 0.9841 0.9948 0.9966 0.9970 0.9943

ϵ 0.1548 0.1551 0.1610 0.1916 0.1441 0.1390 0.1361 0.1551

δ 0.5038 0.5035 0.5038 0.5774 0.5009 0.5073 0.5067 0.5036

α 0.7086 0.7324 0.7910 0.8696 0.7115 0.5104 0.4426 0.7404

γ 0.0297 0.0249 0.0229 0.0346 0.0213 0.0243 0.0339 0.0191

ρ 0.0067 0.0162 0.0176 0.0094 0.0750 0.0230 0.0084 0.0144

q1 0.1384 0.1384 0.1547 0.0428 0.1728 0.1561 0.1894 0.1455

t1 (2020) Apr. 01 Apr. 02 Apr. 04 Apr. 15 Apr. 04 Apr. 05 Apr. 02 Apr. 04

q2 −0.5000 −0.0087 −0.5439 0.0451 −0.1051 0.0036 −0.2630 −0.3807

t2 (2020) May 30 May 30 May 24 May 12 May 04 Apr. 10 May 29 Jun. 03

U(0) × N 0.0055 0.0511 0.1416 0.0957 0.0263 0.2099 0.6826 0.0212

All rate parameters have units of days−1, times have units of days, positive qi values denote to proportions of the S and U compartments, negative q2 values denote to proportions of the Q
compartment and the initial condition U0 × N is given in units of individuals.
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Fig. 3. Computed results for the other compartments for different states. Current unknown infected (U), unknown recovered (E), current detected Infected (I),
detected Recovered (R) and detected Deaths (D).
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15 weeks into the outbreak (approximately by the last week of
April) if only 5% of the population practices self-isolation within
a day of symptom onset [16]. A logistic model of Covid-19 growth
in the US predicts that the cumulative number of cases plateaus by
14 May 2020 [46]. Alternatively, a neural network parametric
model was developed, which predicted that the US would reach
the peak number of cases by 8 April 2020 [47]. Additionally, a sig-
moidal Hill-type model predicts that the US will have 735 920
cases within 76 days of the outbreak, with 41 285 deaths [48].

More recent Covid-19 models make more dire predictions for
the US. A simple SIRD (where D denotes deaths) model [49], fit
to data up to 30 May 2020 predicts that there will be 3.8 million
infected and 244 420 deaths by 1 September 2020. A SEIR-type
model with additional compartments including unsusceptible
(to take into account social distancing), hospitalised and critical
populations was proposed by Kennedy et al. [26]. They took
into account social distancing by removing individuals between
the susceptible and unsusceptible compartments at a time-
dependent rate. They predict that, for a relaxed social distancing
scenario where 40% of the US population is unsusceptible and fit-
ting to data up to 4 May 2020, there will be 60 million infections
and 750 000 deaths by December 2020. Li et al. [27] have devel-
oped a new compartmental model (named DELPHI) based on the
SEIR model that also considers additional compartments –
undetected, hospitalised and quarantined. Government interven-
tions are taken into account with a time-dependent contact rate.
Fitting to data up to 19 May 2020, the model predicts approxi-
mately 213 million Covid-19 cases by 15 July 2020, with restric-
tions on mass gatherings, travel and work.

Zou et al. [50] developed a SEIR model that takes unreported/
untested cases into account (named SuEIR). This model, com-
bined with machine learning on data from 22 March to 3 May
and data validation between 4 May to 10 May 2020, predicts
that Covid-19 infections would have peaked on 1 June 2020,
and that there would have been 123 400 total deaths by 30 June
2020. In contrast, after we did our modelling, the IHME
Covid-19 Forecasting Team [51] also used a compartmental
(SEIR) model with inhomogeneous population mixing (as also
ours) to test the impact of non-pharmaceutical interventions on
infections and deaths, where changes in population mobility,
mask use and social distancing mandates were captured with a
time-dependent contact rate. They predict that there will be
430 000 cumulative deaths by 31 December 2020 if social distan-
cing measures are removed, 295 000 deaths if social distancing
mandates are imposed when 8 deaths per million residents is

surpassed in each state, and 192 000 deaths for a scenario where
95% of the population wears masks and social distancing man-
dates are imposed at 8 deaths per million. In contrast, our
model takes into account all of the critical parameters: undetected
infected, possible loss of immunity, sequestration measures, finite
detection rates and inhomogeneous mixing between the
undetected infected and susceptible populations.

Our model predicts significantly more Covid-19 cases and
deaths, with an extended duration past 2 years for the majority
of states examined. We aim to extend our predictions to include
mask use by incorporating a time-dependent β.

A Covid-19 SEIRS model (where recovered become susceptible
again) including co-infection with additional human coronavirus
strains and a periodic basic reproduction number R0 correspond-
ing to seasonal forcing, combined with US data, predicts that
wintertime outbreaks will occur for several years if immunity
wanes – as also occurs with other coronaviruses [52]. This
study also predicts that the number of confirmed Covid-19
cases in the first wave strongly depends on the peak value of
R0. Furthermore, social distancing was tested by reducing R0;
applied once this may push the epidemic peak to the autumn,
whereas intermittent application can reduce the total number of
cases [52].

Delays in transfers between compartments (such as our
pseudo-quarantine), and in transferring between several compart-
ments (effectively causing a delay) prior to re-entry in the suscep-
tible population are known to cause oscillations in SIR-type
models [44] – reintroducing individuals into the susceptible com-
partment de-stabilises the steady rate of infections. Temporary
immunity, modelled by our reintroduction of recovered and
undetected recovered populations into the susceptible compart-
ment, as well as relaxation of shelter-in-place orders, can produce
yearly oscillations such as found in influenza and other human
corona viruses (i.e. ‘common colds’) [23, 53]. It is possible that
without a yearly vaccination program Covid-19 will become
endemic in the United States with annual spikes in cases.

In conclusion, we have developed a compartment model tak-
ing into account social distancing, undetected infecteds and pos-
sible loss of immunity – all issues which are relevant for Covid-19.
The model describes current data very well for the states selected
for study; this more realistic picture of the disease growth is likely
due to both using a larger number of compartments than trad-
itional SIR-type models, and to considering additional nonlinear-
ity in the infectious power of the disease. While projections based
on the model are not wholly optimistic, they do point to the fact
that it is quite possible to avoid more severe outcomes with stron-
ger measures – increased detection, mask mandates and strict
stay-at-home adherence – than have been pursued so far.

Appendices

Methods

All numerical simulation for equations 1–8, fits and data manage-
ment were done in Matlab. Data for cumulative confirmed cases
and deaths were obtained from the Johns Hopkins University
(JHU) Center for Systems Science and Engineering, which has
been making highly credible US and global Covid-19 time-series
statistics available to the public on the GitHub [34] website. Raw
data in the original CSV files were converted to Matlab table data
structures for ease of access; since the US data were broken out by
municipality/county, it was necessary to aggregate this to create

Table 2. Basic R0 and effective Rt reproduction number values for selected US
states

State R0 22 January 2020 Rt 26 April 2020

Arizona 1.2782 0.8511

California 1.2702 0.8472

Florida 1.2367 0.8022

Illinois 1.2629 0.9620

Louisiana 1.2922 0.7865

New Jersey 1.2472 0.7987

New York 1.2490 0.7440

Texas 1.2743 0.8347

8 Z. S. Khan et al.

https://doi.org/10.1017/S0950268820002423 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268820002423


Fig. 4. Model predictions. Total infected (U + I), (I) and confirmed daily deaths (D) for two years beyond the first day of recorded infections generated from our
model fits, and the counterfactual scenario of not having lifted stay-at-home orders. The left vertical dashed line indicates the day ‘shelter-in-place’ orders
were implemented, and the right vertical dashed line marks the day where such orders were lifted. (I) Confirmed daily death counts for each state for model
fits. (J) Confirmed daily death counts for the counterfactual scenario of not lifting orders.
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each state-wide time series. 2019 estimates of state populations
used for normalisation were acquired from the US Census
Bureau [54].

Least-squares fits of numerically generated curves to the data
were obtained with Matlab’s lsqcurvefit using a trust-region-
reflective algorithm; this is a variant of the conjugate gradient
method designed for large-scale bound-constrained minimisation
problems [55]. Hence one of the benefits of this fitting routine is
that fit parameters can be given bounds or fixed values (the latter
being especially useful during model development and testing).
Fit parameters were: all model rate parameters (β, ϵ, δ, α, γ and

ρ), power law exponent a, initial condition for unknown infecteds
U(0), plus two pairs of parameters governing sequestration of
populations due to social distancing – peak qi values and dates
of application ti where i = 1,2. Fits were done in two stages.
When work was begun on this project, we had data from 22
January to 9 May, which allowed us to make initial fits for all
rate parameters, infectious power, initial conditions and lockdown
effects. In the course of writing the results up, we realised we
would need to incorporate the effect of breaking developments
(cessation of state stay-at-home orders and new spikes in cases),
so a second fit was done to determine the time and magnitude
of the release of lockdown (q2, t2) keeping all of the previous par-
ameter values unchanged.

The algorithm used by lsqcurvefit, like other gradient methods,
iteratively navigates through a series of successively better solu-
tions until it finds a local minimum, determined mainly by detec-
tion of apparent convergence of the target value (in this case,
squared error). Since all the rates are bound between 0 and 1,
the ti parameters were rescaled by the total time of the simulation
to fall within the same range (this helps the fitting routine when
determining step sizes while revising the current solution). Fits
were made comparing certain selected and aggregated simulation
results against normalised JHU data for cumulative confirmed
cases and deaths, simultaneously. lsqcurvefit default values were
used for tolerances, iterations and step size, but because the pro-
portions of state populations were so small simulation results and
normalised data were rescaled to increase the magnitude of the
error, preventing the fit routine from prematurely settling for a
solution (the scaling formula was chosen so that the norm of
the rescaled test data was equal to the number of elements in
the test data matrix).

Simulation results were generated using Matlab’s ode45
function, which uses an explicit Runge−Kutta (4, 5) formula.
Like almost all numerical ODE solvers, these work iteratively
by extending a known value yt to t + Δt by evaluating the deri-
vatives of y at t; RK methods use a sophisticated weighting
scheme to correct for the deviations that accumulate using lin-
ear extrapolations to estimate a nonlinear function. Default set-
tings were used for the solver, except that the maximum step
size was constrained to be ≤ 0.5 days (this prevents the solver,
which uses an adaptive step size, from accidentally stepping
over the sequestration date t1). The implementation of the
model itself, coded in a function that is given as an argument
to ode45, is for the most part straightforward; the only aspect
that requires any further comment is the handling of the seques-
tration function q(t).

As mentioned in the model description, the effect of
stay-at-home orders and other social distancing measures is
modelled by shifting a segment of the susceptible and unknown
infected population into the Q bin, where they cannot be
infected or infect others, as the case may be. The interface of
ode45 requires that the user supply a subroutine to evaluate
the derivatives of the target function at time t, but does not
allow direct manipulation of the target function values them-
selves in mid-run; as well, the user has no way to force the solver
to do a derivative evaluation at any particular time. Since the
system of ODEs works by transferring populations at various
rates between compartments, we resolve these issues by using
a timed pulse, i.e. a rate which is generally 0 or close to 0, but
which may change any time the solver calls the model subrou-
tine, being relatively large close to the set activation time. For
this we use the value of a Gaussian curve at x = t with mean

Fig. 5. Predictions for increasing the effect of non-pharmaceutical interventions for
Texas. Total (U + I) case counts for: (a) Decreasing the contact rate β, (b) increasing
the detection date δ and (c) increasing the sequestration compliance via quarantine
rate q1.
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value ti, where the height and width are set so as to achieve
the sequestration we desire (easily calculated using Matlab’s
normpdf function). Since ode45’s adaptive step size decreases
when it detects unexpected movement in the q rate, a well
resolved sampling of different values near the peak ti is obtained.
To make analysis more straightforward, we decided that the qi
values given to the solver would be equal to the total sequestra-
tion effect (e.g. if we set qi to 0.15, then roughly 15% of the S and
U compartments would be moved into the Q compartment
within a day or two of ti). To achieve this, for sequestrations
≤0.625 we normalised the peak rate to the same value, and set
the standard deviation to a value between 0.4 and 0.625 deter-
mined by trial and error and fit to a cubic polynomial. For
sequestrations above 0.625, a much more complicated formula
was needed to achieve the desired effect; since such high seques-
tration never appeared in any of the fits we will omit any further
discussion of this, except to say that to get effective clearance
(99.84%) of the entire relevant compartment(s) we use a
Gaussian with both height and width set to ≈1.6. See Figure 6
for an example of how the S and Q compartments change
over time due to the action of the q pulses.

Lastly, for the purpose of doing counterfactual and hypo-
thetical projections, the model implementation subroutine
accepts an arbitrary number of peak rate/activation date pairs
tacked onto the end of the parameter vector it takes as one
of its arguments. This allows us to test the effect of doing
several interventions of possibly different magnitudes. Also, a
negative peak rate is implemented as returning the specified
proportion of the sequestered population in Q back to S
(since ode45 has no facility for keeping track of the ratio of S
and U populations that were originally sequestered, it was felt
that returning everyone to S was the most sensible approach).
To make this feasible codewise, at any particular time t only
the qi with peak time t∗i closest to t is executed. In practice,
if peaks are set too close to each other (e.g. within half a
week or so) they may interfere with each other’s ability to
achieve full sequestration or release; but since this is essentially
the case in real life as well we thought it not to be a priority to
address this issue.

The basic SIR model and SQUIDER

As mentioned in the model description, a basic SIR model under-
lies the SQUIDER model, so the SIR dynamics given the measured
contact and recovery rates and estimated initial condition can be
computed by setting all other rate parameters to 0 and keeping
the power law exponent a = 1. This can be considered a counterfac-
tual case where no interventions of any kind (medical or social)
were attempted. Figure 7a compares the result with the empirical
cumulative case count. The plotted dynamics show the inevitable
SIR dynamics when the basic reproduction number R0 > 1 (for
our New York fit it was ≈5.5), with the S compartment decreasing
monotonically from 1 to 0, I compartment peaking, and the R
compartment increasing monotonically from 0 to 1.

Is it possible to fit the basic SIR model to the available data
with good results? Figure 7b shows one such attempt (again,
the example is New York). One can see that the fitting routine
has placed its relatively uninflected curve between the various
inflections of the empirical data (so that, in fact, the signed errors
mostly cancel each other), but is incapable of actually capturing
the shape. In this case, for the simple SIR model the error mea-
sured by the fitting routine (norm of the residuals) was more
than 10 times that of the SQUIDER fit to the same data. The
R0 for this fit is 1.018, which matches well for the effective R
obtained for New York and other states once they started taking
measures against the virus (see next section). As mentioned in
the previous section, which of the often multiple local minima
the fitting routine finds is largely dependent on the starting

Fig. 6. Computed results for all the compartments (example: New York State).
Demonstrating the effect of the ODE model’s q pulses timed for 2 April and 29
May on the S (blue) and Q (green) population dynamics. qi values ≈20% and
−25%, respectively. Due to the y-axis scale some compartments are partially
occluded.

Fig. 7. Applicability of basic SIRmodel to COVID dynamics (example: New York State). (a)
Dynamics of underlying SIR model in SQUIDER fit of NY data (i.e. using only β and values
plus initial condition U0 in the ODE simulation). (b) Attempted independent fit of basic
SIR model to empirical data (cumulative cases = combined infected and recovered).
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guess for the parameter set; the one shown is definitely the best of
the several attempts we made, but we admit we did not try all pos-
sible permutations (nor is it necessary). One work [49] made pre-
dictions using fits of a SIRD model (SIR with a separate Deaths
compartment, similar to our detected deaths) to data from various
countries. Their fits were obtained by a deterministic method that
takes advantage of the fact that the basic SIR ODE model has a
closed-form solution. However, the values they obtain for the con-
tact and recovery rates are extremely small (on the order of 10−7),
so seem to lose all basis in whatever physical/social meanings the
rates have. It should be noted that there are no plots in the paper
showing fits against empirical data, and we were not able to make
our own since no initial values are given.

The effective reproduction number Rt

In epidemiology, R0 is ‘the basic reproduction number of a dis-
ease’ and denotes the expected number of cases produced by a
single infected individual in a completely susceptible population.
This number, extensively used in epidemiological modelling,
describes whether an epidemic breaks out or not; if the value is
less than 1 an outbreak does not result in an epidemic, whereas
if it is larger than 1 an epidemic occurs [56]. If R0 is much larger
than 1, then the outbreak will be stronger and faster. In simple
SIR models, it is a direct consequence of, indeed the direct prod-
uct of three factors: transmissibility (a probability or likelihood of
becoming infected), the average number of contacts a person has
per day and duration of infectiousness (time to recover, 1/α),
namely β/α. Our model is indeed more complex than the trad-
itional, prototypical SIR model (due to its having seven distinct,
identified compartments); therefore, the reproduction number
R0 necessarily involves additional factors such as q(t), ρ, ϵ and
δ, as well as their initial values (namely at time = 0, the starting
point of the modelled epidemic, or of the computational predic-
tion). Since q(t) is time dependent, this necessitates having a time-
dependent reproduction number Rt. To compute Rt, we follow the
next-generation matrix method [56].

Let x = (x1,⋅⋅⋅,xn) be the number of individuals in each
compartment, where m<n compartments contain infected
individuals – here the U and I compartments (i.e. m = 2). Consider
the model equations written in the form dxi/dt = F i(x)− Vi(x)
for i = 1,2,…,m. HereF i(x) is the rate of appearance of new infections
in compartment i (i.e. positive terms), and Vi(x) is the rate of transi-
tions between compartment i and other infected compartments (i.e.
negative terms). It is assumed that F i = 0 if i ∈ (m + 1,n); i.e. it is
zero for compartments that do not describe infected populations.
Define matrices F = [∂F i(x(0))/∂xj] and V = [∂Vi(x(0))/∂xj] for
1≤ i, j≤m. Let ψ(0) be the number of infected and undetected
infected at the initial time of detection. Then FV −1ψ(0) gives the
expected number of new infections; i.e. the matrix FV −1 has the (i,j)
item equal to the expected number of secondary infections in com-
partment iproduced by an infected individual introduced in compart-
ment j. ThenR0 is given by the largest positive eigenvalue of FV

−1. For
our model,

F = baS0Ua−1
0 0

d 0

[ ]
(9)

V = d+ 1+ q(0) 0
0 a+ g

[ ]
(10)

which, through taking the product of F and the inverse of V, yields

R0 = baS0Ua−1
0

d+ 1+ q(0)
(11)

Note that F and V are 2 × 2 matrixes because we have only two
compartments of infected populations – Infected (I ) and
Undetected infected (U). At the beginning of the outbreak (i.e.
t = 0) q(0) = 0, S0 = S(0) ≈1 and in equation 10 U0 =U(0) is a fit
parameter. Given this form, we can trivially extend equation 10
for later times by including the time dependence of the S, U
and q parameters (so that we can get Rt for all times) as

Rt = baS(t)U(t)a−1

d+ 1+ q(t)
(12)

We show R0 and Rt values on 26 April 2020 – during the
sequestration period in many states – in Table 2. Note that
while many states face endemic Covid-19 infections (in Fig. 4)
despite surprisingly having Rt < 1; this is due to our Rt not taking
into account reintroduction of recovered people into the
Susceptible compartment, which increases the pool of individuals
available for infection.
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