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Abstract

A method for solving problems of the form minJtEH»EJl1/i2(x) is presented. The
approach of Levenberg and Marquardt is used, except that the linear least squares
subproblem arising at each iteration is not solved exactly, but only to within a certain
tolerance. The method is most suited to problems in which the Jacobian matrix is sparse.
Use is made of the iterative algorithm LSQR of Paige and Saunders for sparse linear least
squares.

A global convergence result can be proven, and under certain conditions it can be
shown that the method converges quadratically when the sum of squares at the optimal
point is zero.

Numerical test results for problems of varying residual size are given.

1. Introduction

In this paper we are concerned with the class of large scale nonlinear least squares
problems for which the Jacobian is sparse. Problems of this nature arise in
important practical contexts. One example is the joint inversion of first arrival
times of /?-waves from a set of earthquakes at a network of seismic stations.
Estimates of time and space coordinates of the earthquakes are obtained, together
with an estimate of the velocity structure of the earth through which the waves are
propagated (Lee and Stewart [11]). Another example is the problem of large scale
geodesic adjustment (Golub and Plemmons [8]).

There appears to be a genuine lack of codes specifically for large sparse
nonlinear problems. A recent evaluation of software for nonlinear least squares
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388 S. J. Wright and J. N. Holt [21

problems was presented by Hiebert [9]. Only one of the twelve codes tested by
Hiebert, the NS03A code from Harwell, made use of sparsity in the Jacobian. The
test problems used by Hiebert were small, with no more than 65 functions and 40
variables.

Of the eight codes tested by Hiebert which required the Jacobian to be supplied
analytically, five used the Levenberg-Marquardt method [12, 13], and three used

conclusion of Hiebert's paper is that on the basis of the testing with the specific
implementations of the Levenberg-Marquardt method and the augmented
Gauss-Newton methods, there does not appear to be any superiority of one class
of method over the other. Since about half of the test problems had nonzero
residuals, this observation runs contrary to the view held by some that the
Levenberg-Marquardt method is inferior on such problems.

The method described in this paper is based on the Levenberg-Marquardt
strategy. The main difficulty in applying the standard implementations of this
strategy to large sparse problems is the necessity of computing a decomposiiton of
the Jacobian in order to solve the linearized subproblem at each iteration. In the
more stable recent codes, orthogonal decompositions are used. These are imprac-
tical for our class of problems because they have poor sparsity-preserving
properties and large in-core storage requirements.

There are two approaches to solving the sparse linearized subproblems which
are worthy of consideration. The first is the use of direct methods based on
sparsity-preserving pivoting techniques in the formation of an LU decomposition
of the matrix (see, for example, Bjorck and Duff [2]). The NS03A code from
Harwell, mentioned above, appears to use a direct approach to solve the subprob-
lem exactly at each step. The second approach, adopted by this paper, is the use
of an iterative solution method. We have chosen the algorithm LSQR, devised by
Paige and Saunders [16] for the solution of damped linear least squares problems.
This algorithm, based on the bidiagonalization procedure of Golub and Kahan [7]
is analytically equivalent to the standard method of conjugate gradients, but is
shown to have superior numerical properties.

The approach we adopt is to use LSQR to obtain inexact solutions of the
linearized subproblem at each Levenberg-Marquardt step, by curtailing the LSQR
iterations according to criteria which guaranteed overall convergence of our
method. We hope to achieve a substantial reduction in the sum of squares by
applying only a few iterations of LSQR to the subproblem, and hence to avoid
the extra computation involved in finding an exact solution at each step.

Inexact Newton and quasi-Newton methods have received some attention in
the literature in recent years. A Newton-Kantorovich theorem for damped inexact
Newton methods has been proved by Altman [1]. Dembo, Eisenstat, and Steihaug
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[3], and Dembo and Steihaug [4] have proved convergence results for damped
inexact Newton methods applied to optimization and to the solution of non-linear
systems of equations. They show that the rate of convergence of such methods
can be controlled by imposing bounds on the accuracy of solution of the linear
subproblem at each iteration. Gill, Murray, and Nash [6] have discussed the use
of preconditioned conjugate gradient methods in this context. Steihaug [17]
presents an algorithm for large-scale optimization based on an inexact quasi-
Newton method. He uses a trust region approach and finds approximate solutions
of the linear subproblems by use of a preconditioned conjugate gradient tech-
nique. It is shown that his algorithm has the same convergence properties as the
corresponding exact methods.

In Section 2 of this paper we give an outline of the inexact Levenberg-Marquardt
algorithm. A global convergence result is proved in Section 3. In Section 4, use is
made of a result quoted in Dembo and Steihaug [4] to prove that the method can
be made to converge quadratically when the sum of squares is zero at the
minimum point. Section 4 contains some numerical results for large- and small-re-
sidual problems.

2. Outline of the algorithm

2.1 Statement of the problem
We aim to solve the problem

where/(x) e Rm, m> n, and the Jacobian of f(x), denoted by

is a sparse matrix.
The gradient g of F will thus be given by

g(x) = 2J(x)Tf(x)

and the Hessian G satisfies

i-i

where/, denotes the /th component of/.
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The standard Levenberg-Marquardt approach to solving such problems is to
linearize the vector / about the current point x, and solve the linear least squares
problem

min \\JSx + f\\l + *2IMl2.
SxeR"

The second term is introduced to control the length of Sx by the use of the
damping parameter X, and to ensure global convergence.

We require that / satisfy certain smoothness conditions, to be specified in later
sections. Unless otherwise stated, all vector and matrix norms are 2-norms.

2.2 The inexact Levenberg-Marquardt algorithm
The algorithm we propose may be concisely expressed in the following way:

0: Given x0, find/(x0) and J(x0).
Set k:= 0,\ := 0.

1: Choose 7)k with 0 < rjj. < i)0.
Setr:= ijt | |/

r/ll-
2: Perform iterations of LSQR until \\(JTJ + \2I)y + JTf\\ < T;

Set p = ( / ( * ) - F(x + y))(F(x) - \\f + Jy\\2 - X^yW2)-1

ifp<irl

then go to 3
else go to 4.

3: //A = 0
then\:= X,^
else X := EX;
go to 2.

4: x:= x + y;
if convergence then EXIT;
evaluate J(x);
k:= k + 1;
if p > IT2

 tnen X '.= DX;
ifX<Xmhithen\:= 0;
go to 1.

The parameters must satisfy the following constraints;

0 < mx < IT2 < 1, D < 1,

E>\, 0 < i ) 0 < l , X m i n >0.

2.3 Implementation notes
The choice i)0 = 0 would correspond to a standard Levenberg-Marquardt

implementation (see, for example, Osborne [15]). However we allow inexact
solution of the linear subproblem at each iteration. Strategies for choosing T}k in

https://doi.org/10.1017/S0334270000004604 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004604


is I An inexact Levenberg-Marquardt method 391

step 1 will be discussed in later sections. Following Dembo and Steihaug [4], the
sequence {-qk } is known as the forcing sequence.

Most of the computational effort in each iteration of LSQR lies in the
evaluation of two matrix-vector products of the form

JTp and Jq

where J is the Jacobian at the current point. We can use LSQR to solve damped
linear least squares problems for a number of different values of A at once. Each
additional value of A requires only two additional rotations per iteration, plus an
extra 2n storage locations. Since this is a very small computational price to pay,
we solve the linear subproblem in step 2 not only for A, but also for EX, E2X up
to a user-specified limit. We can thus avoid extra iterations of LSQR should it
become necessary to carry out step 3.

It will be noted that damping is controlled via the damping parameter A, rather
than by a trust region bound (as in Steihaug [17], More [14]). Our approach is
intuitively reasonable for smooth unconstrained problems since, if the step sizes
are not too large, the same value of A should produce a similar damping effect on
consecutive iterations. This is not true for constrained problems where a change
in the active constraint manifold may result in the same value of A producing
markedly different damping effects on consecutive iterations. In such situations, a
trust region approach is more desirable (Holt and Fletcher [10], Wright and Holt
[18]).

3. Convergence properties

In this section we assume that/(x) is twice continuously differentiable in the
set

and hence that the Jacobian of/satisfies

\\J(x)\\<M

for all x G S, and for some constant M > 0. The Hessian G(x) will also be
bounded on S.

In a similar fashion to Osborne [15], we define

'-[//Mo] (»•»
where yx satisfies

= -JTf+t (3.2)
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a n d t is some vector satisfying

"Jf^ (3.3)
where 0 < TJ < TJ0 < 1.

We first show that at a nonstationary point x, the condition

n/ir>ikxir
will hold for sufficiently large \ , and in fact that the condition in step 2, namely
that p > n^ will eventually hold also. We then show that ||/|| = \\rx\\ «=> x is
stationary, provided X is sufficiently large, and that/> -»77>lasX-»oo .

A result like Theorem 2.1 of Osborne [15] is then applied to prove global
convergence of the algorithm.

LEMMA 1. Suppose A is a symmetric positive definite matrix with eigenvalues
ox > a2 > • • • > on > 0. Then if a and b are two vectors with \\b\\ < f)||a||, and
rj2 < a^/aj, then

aTAa - bTAb > 0
with equality holding if and only if a = 0.

PROOF. NOW,

TA LTJIL. -̂  II II lli.ll ^ / 2 V̂11 11 ̂

a Aa — b Ab ^ o
n||all ~ ^llPll ^ \°n ~ V ai/llall

and since TJ2 < On/ox, we have (on — r\2ax) > 0, and the result follows. •
LEMMA 2. Suppose at the current point x that JTJ has largest eigenvalue sx and

smallest eigenvalue sn. Then if\ satisfies

* > £ f ^ (3.4)
where \\t\\^-n\\JTf\\, then

l/Ka-lkxlla>o
with strict inequality holding unless x is a stationary point of F.

PROOF. NOW,

= -yI(JTJ +

\2iyljTf - tT(jTj + A2/rY (3.5)
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Noting that the maximum and minimum eigenvalues of (JTJ + A2/)"1 are
(sn + X2)'1 and (s1 + A2)"1 respectively, the result will apply if

2 ; ( J f + A2)"1 _; sn + A2

( 2 ) - 1
 + X2

which is equivalent to condition (3.4). The result follows from Lemma 1. •
Since we assume that s1 is bounded, condition (3.4) can always be satisfied for

some finite A. The inverse of (JTJ + A2/) will always exist, since if JTJ is singular
{i.e. sn = 0), then A will be strictly positive by (3.4). Also note that if J has full
rank at the solution x* (i.e. sn > 0 in some neighbourhood of JC*) then for i\
sufficiently small, the numerator in (3.4) will be negative and hence we can satisfy
the condition (3.4) by setting A = 0.

The following lemma characterizes a stationary point and is similar to Lemma
2.1 of Osborne [15].

LEMMA 3. Suppose at the current point x that condition (3.4) holds and that A is
bounded above. Also assume that condition (3.3) holds and that rx is determined by
(3.1) and (3.2). Then the following conditions are equivalent:

(i) Eg] = rx,
(ii) 11/II = Ikxll,

(iii) x is a stationary point of the objective function.

PROOF. Clearly (i) => (ii). Also (ii) =» (iii) from Lemma 2. Assume (iii), i.e.
y r / = 0. Then since ||f|| < Tj||yr/ll. we have t = 0 also and hence from (3.2),
yx = 0. Substitution in (3.1) gives (i). •

The next lemma shows that the ratio of actual to predicted reduction in the
objective function approaches a number greater than 1 as A -» oo, and hence that
the condition p > Wj in step 2 must eventually hold.

LEMMA 4. Suppose that the current point x is nonstationary and that rx and yx are
obtained from (3.1) to (3.3). Then the ratio defined by

p = (F(x)-F(x+yx))/(F(x)-\\rx\\
2)

will satisfy p -* IT > 2(1 + TJ)"1 as A -» oo.

PROOF.

I /POM 2 -
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Dropping the subscript onyx, and using (3.5) and Taylor's theorem,

-yTg - \/2yTGy .
P= - ,V7+0 ( 6 )

where G is the Hessian of F evaluated at some point x + ay, 0 < a < 1. Now
from (3.2),

as X —» oo. Thus as G is bounded,

r/ll -Ml

>2lk71 -Ml /71+ 0(x-a)

= 2—M-Ul—+ 0(X-2)
II FT"/II + | | r l |

> 2(1 + ii)"1 + 0(\-2). D
Since 17 < TJ0 < 1, we have

2(1 + 7,)-1 > 2(1 + Voy
l > 1 > Wl

giving the desired result. In fact, we can prove the stronger result that IT -* 2 in
Lemma 4. This can be seen intuitively by noting that the condition number of
(JTJ + \2I) approaches 1 as X -» 00. Hence for sufficiently large X, we can solve
the problem to within an arbitrary tolerance using only one iteration of LSQR. At
a nonstationary point (JTf * 0), we will have t -* 0 as X -* 00 and the result
follows from (3.6).

We now state a result similar to Theorem 2.1 of Osborne:

THEOREM 5. If for any forcing sequence {TJ^}, ~qk < ij0 < 1, we can choose a
bounded sequence {Xk} such that

Pk > "1 > 0

and
xk + l = xk + A,X

where
Fixk) ~ F(xk+i)

Pk = 7~'

H'J-foJ
then the sequence {F(xk)} is convergent, and the limit points of the sequence {xk}
are stationary points ofF(x).
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PROOF. By Lemmas 2 and 4 it is possible to choose such a sequence {Xk}, and
so the proof follows that of Osbome. D

Note that we have introduced iteration subscripts on the quantities x, yx, rx,
and p. These will also be needed in parts of the following section and should not
cause confusion.

4. The zero-residual problem

4.1. Introduction
In this section we prove that the algorithm can be made to converge quadrati-

cally when the minimiser x* satisfies F(x*) = 0. Firstly we adapt a result of
Steihaug [17] which states that for an inexact quasi-Newton method, the sequence
of iterates will converge superlinearly if j\k -* 0. Secondly, we make use of a result
of Dembo and Steihaug [4] in Theorem 11, namely that if the forcing sequence
satisfies

and the approximate Hessian B(xk) satisfies

\\B(xk)-G(xk)\\^C\\g(xk)\(

for all k sufficiently large, then the convergence will have order 1 + s. In our case,
B(xk) = 2J(xk)

TJ(xk) and s = 1.

4.2. The eventual occurrence of Gauss-Newton steps (i.e. X = 0)
We assume as before that/(;t) is twice continuously differentiable on S. If we

denote the components offbyf,, I = 1,... ,m, then since/, e C2, the Hessian of
/, satisfies

|v2/#(*)| |«/&, l=l,...,m, (4.1)

for x G S and some positive constant B.
Since/(**) = 0 at the minimiser, the Hessian at x* will be

G(x*) = 2J(x*)TJ(x*).

For the purpose of the proofs below, we need the additional assumption that
G(x*) is positive definite, that is, J(x*) must have full rank. It can now been seen
that the following property will hold:

PROPERTY 6. There is a convex neighbourhood Lo of x*, and an index Ko and
positive constant ij0 such that

(a) k > Ko => xk e Lo,
(b)x e Lo =» \\J(x)q\\2 > mo\\q\\2 Vq S R".
The following lemma can be used to show that the damping parameter is

eventually always zero.
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LEMMA 7. Suppose x* is a minimiser ofF(x) with F(x*) = 0, and that Property 6
holds. Suppose further that y = ykX is determined as in (3.2) and that \\i\\ < ^H-/7/!!
with t] = O(\\JTf\\s) for some 0 < s < 1. Then p -» 2 - £ as x -> x* for some
0 < £ < 1.

PROOF. From (3.6) and (3.2),

(-7^7 - yTt) + 2yTt - l/2yTGy

-yT(JTf+<)

= 2 2^r l/lyGy
2yTt-yT(JTJ + X2I) K '

where, again, G is the Hessian evaluated at x + ay, for some a e [0,1].
But from (3.2),

and since

we have

yTt<0(pTff+')-
Since the second terms in both numerator and denominator are O(\\JTf\\2), we
can ignore yTt as x -* x* and \\JTf\\ -* 0. Also G -* J(x*)TJ(x*) as x -» x* and
so from (4.2),

, _ 2 . p . 2 £ ,

Pyf + VH
where clearly £ < 1, and | > 0 by boundedness of X. •

From the above lemma, we can see that eventually the condition p > m2 will
hold in step 4 of the algorithm at each iteration. Hence the damping parameter A
will be reduced at each iteration, until eventually it will be set to zero. Using this
observation, and the positive definiteness of the Hessian at the solution, we can
quote the following property:

PROPERTY 8. There is a convex neighbourhood Lx of x*, positive constants
fi, mv and m2, and an index Kl such that

(a) k>Kx**xke Lv

(b) k > Kx =» \ k = 0,
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(c) k>Kt=> \\ykiX\\ = \\ykfi\\ < li\\J(xk)
Tf(xk)\[,

(d) nijWtW2 < tTG(x)t < w2||/||2 for x e Lx and all t e R".

4.3 Quadratic convergence
We define

= 2J(x)TJ(x)

so that Bk = B(xk) is effectively our approximate Hessian when k ^ Kx in
Property 8. If we define the sequence {yk) by

J
then

Urn yk = Um {\\BkykX - GykJ/\\ykj) for someO < o < 1,
* - • oo A : - • o o

< lim | |5 , - G||
i-»oo

= 0, since fi(x*) = G(x*)

and hence since yk > 0,

Um yk = 0. (4.3)
&-«oo

Making use of this result and of Property 8, we can prove the following lemma.

LEMMA 9. / / the forcing sequence {rik} satisfies r\k -* 0 then {xk} converges
superlinearly.

PROOF. The proof is similar to Theorem 4.2 of Steihaug [17], but simpler
because we assume that the condition

holds on every iteration. We can show that for k > Kly

\\g(xk)\\

and hence

giving the result. •
We now find an error bound for the approximate Hessian B(xk).
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LEMMA 10. / / xk -» x* with F(x*) = 0 and G(x*) positive definite, there is a
constant C such that

k>K^ \\Bk - G(xk)\\ < C||g(*J|| = 2C\\j(xk)
Tf(xk)\\

PROOF. Since each component of f(x) is twice continuously differentiable,
condition (4.1) applies for some /8 > 0. Hence

2 II m

\\Bk-G(xk)\\ = |

- l

< 4^2
w||/(x,)||2 (4.4)

since Eri/iK^II/ll-
Now F is convex in the neighbourhood Lx of x* and so for k > Kv

0 = F(x*)>F(xk)+gT(x*-xk).

Thus

II/(**)H2 = ^(**) < 11**11 I I * * - * J - (4-5)
Also

gk = g(x*) + Gk(xk - x*)
and so

xk~ x* = Gllgk

where Gk is G(x) evaluated at some point between xk and x*. Using Property
8(d),

||xfc - **|| < mrigtll (4.6)
for k > Kv Combining (4.4), (4.5), and (4.6) we obtain

IK - G(xk)\\
2 < A^mm^Wgf

and so the result holds with C = 2)3(w/w1)1/2.

THEOREM 11. If the conditions of Lemma 10 hold, and the forcing sequence {rjfc}
satisfies

iJ*<ll*(**)|| fork>K2,Ku

then the sequence {xk} converges quadratically.
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PROOF. The result follows directly from Dembo and Steihaug [4, page 197] and
Lemma 10, page 197. •

5. Discussion and numerical results

5.1 Numerical convergence criteria
Three types of convergence are recognised: x-convergence, function conver-

gence, and gradient convergence. These require three user-supplied
parameters—tolx, tolf, and tolg respectively. Termination of the routine also
occurs when X exceeds some given maximum.

The jc-convergence criterion is

+IW
tolx (5.1)

where Hxll̂  = maxlay<s.n \x
U)\, xU) being theyth component of the vector x.

Function convergence is signalled if either

F(x + y)^to\f (5.2)
or

The gradient convergence criterion is

Ilf(*)ll < tolg (5.4)
The criteria (5.1), (5.2) and (5.3) are due to Dennis, Gay, and Welsch [5].

5.2 Test problems and results
We give results for three test problems.

EXAMPLE I (see Gill, Murray, and Nash [6]).
/ , = a(Xj- 1), i = !,...,«,

where a and b are constants. We use a = 1 and b = 10 ~3/2. The Jacobian matrix
is (n + 1) X n and has 2« nonzero elements. This problem has a small residual at
the optimal point.

EXAMPLE II.
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400 S. J. Wright and J. N. Holt [ 141

where

z'i = / m o d - + 1,

n
' 2 = 'l + j '

fl for/<y,

bi, = 5 - i div —,

c, = / mod 5 + 1.

The Jacobian matrix is double-banded with 2 m nonzero elements. This is a
zero-residual problem.

EXAMPLE III.

where

/! = / mod — + 1,

n
h = h + j>
at = /div p + 1,
bt = i div q + 1,

c, = i mod( p + q),
and /» and 4r are integer constants. We use m = 60, n = 12, p = 15, q = 20 for this
problem. The Jacobian has the same structure as in Example II, but this is a
large-residual problem.

Two different forcing sequences were tried:
/ \ _ ĵ

(b) i,k = rain{\,k-1}, if A > 0,

Values used for other numerical parameters are \min = 10 ~5, E = 4, .D = .4.
The choice of values for £ and £> can greatly affect the performance of the
algorithm. Convergence can be very slow if they are either too close to 1, or too
extreme. The descent ratio parameters -nx and IT2

 aie s e t t o -01 a n d -75 respec-
tively.

Values used for the convergence parameters were tolg = 10 "5, tolx = 10 "6,
tolf = 10 ~6.
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Test results are summarised in Table 1. Acceptable convergence was achieved
on all problems. Problem III was also solved using a standard Levenberg-
Marquardt code, which did not take account of sparsity, and required more than
twice as much CPU time. In order to experimentally verify rates of convergence,
we allowed problems II and III to run on after the numerical convergence criteria
had been satisfied. The use of forcing sequence (b) indeed produced quadratic
convercTence in both versions of ^roblem II. Linear convergence was noted in
problem III when forcing sequence (b) was used, with

B m

In many cases, the value of X = 0 sufficed throughout the computation. For the
other problems, a significant number of function evaluations were wasted in
raising X to an acceptable level. This difficulty could be helped by making E and
D variable, and dependent on the decrease ratio p. However, overall improvement
in performance would probably not be very great.

Since the Jacobian matrices in problem I were well-conditioned, only one or
two LSQR iterations were required to solve the linear subproblem at each step.
For the other problems, an average of only three or four LSQR iterations were
required, except for the last few steps of the 100-variable version of problem II,
when the use of forcing sequence (b) caused t}k to become very small.

It can be seen from the results that forcing sequence (a) tends to need more
function and Jacobian evaluations, and fewer LSQR iterations, than sequence (b).
Since the evaluations were relatively cheap for our test problems, sequence (a)
produces better results than sequence (b). In real-life applications, however, we
would expect the reverse to be the case. In problems where function and Jacobian
evaluations dominate the computation, a trust region approach could be used,
although this would probably mean using LSQR more than once on each step.

Further testing will include application of the program to the earthquake
inversion problem mentioned in the introduction.
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