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Abstract We introduce two measures of weak non-compactness JaE and Ja that quantify, via distances,
the idea of boundary that lies behind James’s Compactness Theorem. These measures tell us, for a
bounded subset C of a Banach space E and for given x∗ ∈ E∗, how far from E or C one needs to go
to find x∗∗ ∈ C

w∗
⊂ E∗∗ with x∗∗(x∗) = sup x∗(C). A quantitative version of James’s Compactness

Theorem is proved using JaE and Ja, and in particular it yields the following result. Let C be a closed
convex bounded subset of a Banach space E and r > 0. If there is an element x∗∗

0 in C
w∗

whose
distance to C is greater than r, then there is x∗ ∈ E∗ such that each x∗∗ ∈ C

w∗
at which sup x∗(C)

is attained has distance to E greater than 1
2 r. We indeed establish that JaE and Ja are equivalent to

other measures of weak non-compactness studied in the literature. We also collect particular cases and
examples showing when the inequalities between the different measures of weak non-compactness can
be equalities and when the inequalities are sharp.
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1. Introduction

The celebrated James Compactness Theorem says that a closed convex subset C of
a Banach space E is weakly compact whenever each x∗ ∈ E∗ attains its supremum on
C [11]. In particular, E is reflexive whenever each x∗ ∈ E∗ attains its norm at some point
of the closed unit ball BE of E. In the present paper we prove a quantitative version of
this theorem. Such a result not only fits into the recent research on quantitative versions
of various famous theorems on compactness presented in, for example, [2, 5, 7–10], to
which we relate our results here, but also yields a strengthening of James’s Theorem
itself. In particular, we get the following result.

Theorem 1.1. Let E be a Banach space and let C ⊂ E be a closed convex bounded
set that is not weakly compact. Let 0 � c < 1

2 d̂(C
w∗

, C) be arbitrary. Then there is
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some x∗ ∈ E∗ such that for any x∗∗ ∈ C
w∗

satisfying x∗∗(x∗) = supx∗(C) we have
dist(x∗∗, E) > c.

We use the following notation: if A and B are non-empty subsets of a Banach space E,
then d(A, B) denotes the usual inf distance between A and B, and the Hausdorff non-
symmetrized distance from A to B is defined by

d̂(A, B) = sup{d(a, B) : a ∈ A}.

Notice that d̂(A, B) can be different from d̂(B, A) and that max{d̂(A, B), d̂(B, A)} is the
Hausdorff distance between A and B. Notice further that d̂(A, B) = 0 if and only if
A ⊂ B̄ and that

d̂(A, B) = inf{ε > 0: A ⊂ B + εBE}.

Let us remark that we consider the space E canonically embedded into its bidual E∗∗

and that by C
w∗

we mean the weak∗ closure of C in the bidual E∗∗.
When applying Theorem 1.1 for c = 0, we obtain the classical James Compactness

Theorem. Our results in this paper go beyond Theorem 1.1. We should stress that what
we really do in this paper is introduce several measures of weak non-compactness in
Banach spaces related to distances to boundaries and then study their relationship with
other well-known measures of weak non-compactness previously studied. Our main result
is Theorem 3.1. Combination with known or easy results gives Corollary 3.5. Theorem 1.1
is then an immediate consequence.

The quantities that we introduce are the following.

Definition 1.2. Given a bounded subset H of a Banach space E we define

JaE(H) = inf{ε > 0: for every x∗ ∈ E∗, there is x∗∗ ∈ H
w∗

such that x∗∗(x∗) = supx∗(H) and d(x∗∗, E) � ε}

and

Ja(H) = inf{ε > 0: for every x∗ ∈ E∗, there is x∗∗ ∈ H
w∗

such that x∗∗(x∗) = supx∗(H) and d(x∗∗, H) � ε}.

Note that the definition of Ja(H) is clearly inspired by the notion of a boundary that is
hidden in James’s Theorem. Recall that if Y is a Banach space and K ⊂ Y ∗ is a convex
weak∗-compact set, then a subset B ⊂ K is called a boundary of K if, for each y ∈ Y ,
there is b∗ ∈ B such that

b∗(y) = sup
k∗∈K

k∗(y).

James’s Compactness Theorem can now be rephrased in the following way.

Theorem. Let E be a Banach space and let C ⊂ E be a bounded closed convex set.
If C is a boundary of C

w∗

, then C is weakly compact.
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We will study the relationship of JaE(C) and Ja(C) to other quantities measuring
weak non-compactness of C. The two most obvious quantities of this kind are d̂(C

w∗

, C)
and d̂(C

w∗

, E). We stress that these two quantities can be different (see the examples
in § 5). The first one can be called ‘measure of weak non-compactness’ of C; the other
one can be called ‘measure of relative weak non-compactness’ of C.

Using the notation introduced above, Theorem 1.1 says that JaE(C) � 1
2 d̂(C

w∗

, C)
holds for any closed convex bounded subset C of a Banach space E.

In the following section we introduce several other quantities measuring weak non-
compactness and summarize easy inequalities among them. In § 3 we formulate and prove
our main result. As a corollary we obtain that all considered quantities measuring weak
non-compactness are equivalent.

In § 4 we discuss the relationship to the quantitative version of Krein’s Theorem.
Section 5 contains examples showing that most of the inequalities are sharp. In the
final section we study some particular cases in which some of the inequalities become
equalities.

2. Measures of weak non-compactness

In this section we define and relate several quantities measuring weak non-compactness
of a bounded set in a Banach space. Such quantities are called measures of weak
non-compactness. Measures of non-compactness or weak non-compactness have been
successfully applied to the study of compactness in operator theory, differential equations
and integral equations (see, for example, [2,3,5–10,12,13]). An axiomatic approach to
measures of weak non-compactness may be found in [4, 13]. But many of the natural
quantities do not satisfy all the axioms, so we will not adopt this approach. Anyway,
there is one property which should be pointed out: a measure of weak non-compactness
should have value zero if and only if the respective set is relatively weakly compact.

Let (xn) be a bounded sequence in a Banach space E. We define clustE∗∗((xn)) to be
the set of all cluster points of this sequence in (E∗∗, w∗), i.e.

clustE∗∗((xn)) =
⋂
n∈N

{xm : m > n}w∗

.

Given a bounded subset H of a Banach space E we define

γ(H) = sup
{∣∣∣lim

n
lim
m

x∗
m(xn) − lim

m
lim
n

x∗
m(xn)

∣∣∣ : (x∗
m) ⊂ BE∗ , (xn) ⊂ H

}
,

assuming the limits involved exist:

ckE(H) = sup
(xn)⊂H

d(clustE∗∗((xn)), E), ck(H) = sup
(xn)⊂H

d(clustE∗∗((xn)), H).

Properties of γ can be found in [2,3,5,7,13], whereas ckE can be found in [2] (note
that ckE is denoted as ck in that paper; do not mistake it for ck above).
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So for a bounded set H ⊂ E we have the following quantities measuring weak non-
compactness:

d̂(H
w∗

, H), d̂(H
w∗

, E), ck(H), ckE(H), γ(H), Ja(H), JaE(H).

Let us stress the different nature of these quantities.
First, the quantities d̂(H

w∗

, H), ck(H), γ(H) and Ja(H) do not depend directly on
the space E. More exactly, if F is a Banach space and H ⊂ E ⊂ F , where E is a closed
linear subspace of F and H a bounded subset of E, then these quantities are the same,
no matter whether we consider H as a subset of E or as a subset of F . This is trivial for
d̂(H

w∗

, H), and ck(H) and follows from the Hahn–Banach Extension Theorem for γ(H)
and Ja(H).

On the other hand, the quantities d̂(H
w∗

, E), ckE(H) and JaE(H) may decrease if
the space E is enlarged. More exactly, if H ⊂ E ⊂ F are as above, then it may be that
d̂(H

w∗

, F ) < d̂(H
w∗

, E) and similarly for the other quantities (see examples in § 5).
Since we are interested in James’s Compactness Theorem, the most important case for

us is the case of a closed convex bounded set H. Nonetheless, we define the quantities for
an arbitrary bounded set and formulate results as generally as possible. Anyway, such
generalizations do not yield new results in view of the following proposition.

Proposition 2.1. Let E be a Banach space and let H ⊂ E be a bounded subset.

(i) All the above defined quantities have the same value for H and for H̄.

(ii) The quantities d̂(H
w∗

, E), JaE(H) and γ(H) have the same value for H and for
the weak closure of H.

(iii) JaE(co H) � JaE(H) and γ(co H) = γ(H).

Proof. Assertion (i) is obvious.
Let us proceed with assertion (iii). The first inequality is trivial. The second equality

is not easy at all; it is proved in [7, Theorem 13] (see [5, Theorem 3.3] for a different
proof).

Finally, let us show (ii). The case of γ(H) follows from (i) and (iii). The other cases
are trivial. �

As for the quantities not covered by this proposition, it does not seem to be clear
whether ckE(H) has the same value for H and for the weak closure of H. The quantities
ckE(H) and d̂(H

w∗

, E) may increase when passing to co H: this follows from the results
of [8,10] (see Example 5.6).

We do not know whether the quantity JaE(H) may really decrease when passing to
co H. This question seems not to be easy. Indeed, in view of the obvious inequalities
JaE(co H) � JaE(H), ckE(H) � ckE(co H) and taking into account JaE(H) � ckE(H)
(see Proposition 2.2), if we had JaE(co H) < JaE(H), then we would conclude that
JaE(co H) < ckE(co H). The only example of a convex set C satisfying JaE(C) < ckE(C)
known to us is given in Example 5.6 and it seems that it cannot easily be improved.
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As for the quantities d̂(H
w∗

, H), ck(H) and Ja(H), they are natural in the case of a
convex set H. If H is not convex, they are not measures of weak non-compactness in the
above sense, since they may be strictly positive even if H is relatively weakly compact.
This is demonstrated by Example 2.3.

The following proposition summarizes the easy inequalities.

Proposition 2.2. Let E be a Banach space.

(i) Let H ⊂ E be a bounded set. Then the following inequalities hold true:

JaE(H) � ckE(H) � d̂(H
w∗

, E) � γ(H).

(ii) Let C ⊂ E be a convex bounded set. Then the following inequalities hold true:

ckE(C) � d̂(C
w∗

, E)

� � �

JaE(C) � Ja(C) � ck(C) � d̂(C
w∗

, C) � γ(C)

Proof. Let us start with (i). The inequality ckE(H) � d̂(H
w∗

, E) is trivial. The
inequality d̂(H

w∗

, E) � γ(H) is proved in [7, Proposition 8(ii)] (see also [5, Corol-
lary 4.3]). Let us show that JaE(H) � ckE(H).

Note first that if JaE(H) = 0, then inequality 0 � ckE(H) trivially holds. Assume that
0 < JaE(H) and take an arbitrary 0 < ε < JaE(H). By definition there exists x∗ ∈ E∗

such that for any x∗∗ ∈ H
w∗

with x∗∗(x∗) = supx∗(H) we have that ε < d(x∗∗, E). Fix
a sequence (xn) in H satisfying supx∗(H) = limn x∗(xn). Then each weak∗ cluster point
x∗∗ of (xn) satisfies x∗∗(x∗) = supx∗(H); hence ε � d(clustE∗∗((xn)), E) and therefore
ε � ckE(H). This finishes the proof for JaE(H) � ckE(H).

Now let us proceed with part (ii). All inequalities are obvious except JaE(C) � ckE(C),
Ja(C) � ck(C) and d̂(C

w∗

, C) � γ(C). The former follows from (i). The latter can be
proved in the same way.

Now we prove that d̂(C
w∗

, C) � γ(C). Suppose that r > 0 is such that d̂(C
w∗

, C) > r.
Fix x∗∗ ∈ C

w∗

such that d(x∗∗, C) > r. By the Hahn–Banach Separation Theorem there
exist x∗∗∗ ∈ X∗∗∗ with ‖x∗∗∗‖ = 1 and s ∈ R such that

x∗∗∗(x∗∗) > s + r > s > sup
x∈C

x∗∗∗(x). (2.1)

We will construct by induction two sequences (xn) in C and (x∗
n) in BE∗ such that the

following conditions are satisfied for each n ∈ N:

(i) x∗∗(x∗
n) > s + r;

(ii) x∗
n(xm) < s for m < n;

(iii) x∗
m(xn) > s + r for m � n.
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By (2.1) and the Goldstine Theorem we can choose x∗
1 satisfying (i). Now suppose

that n ∈ N is such that x∗
m for m � n and xm for m < n satisfy (i)–(iii). Using that (i)

holds for x∗
1, . . . , x

∗
n and that x∗∗ ∈ C

w∗

, we can choose xn ∈ C satisfying (iii). Further,
by (2.1) and the Goldstine Theorem we can find x∗

n+1 ∈ BE∗ satisfying (i) and (ii). This
completes the construction.

By passing to subsequences we may assume that limn x∗
n(xm) exists for all m ∈ N and

that limm x∗
n(xm) exists for all n ∈ N and (ii) and (iii) are satisfied. By taking further

subsequences we may assume also that the limits limn limm x∗
n(xm) and limm limn x∗

n(xm)
exist and that again (ii) and (iii) are satisfied. By the construction we get

lim
n

lim
m

x∗
n(xm) � s + r and lim

m
lim
n

x∗
n(xm) � s,

hence γ(C) � r. This completes the proof. �

We note that in the second part of the proposition above we only have to use the
convexity of C to prove the inequality d̂(C

w∗

, C) � γ(C); the rest of the inequalities hold
for an arbitrary bounded set. But for non-convex sets only the first part is interesting.
This is witnessed by the following example which shows in particular the failure of the
inequality d̂(C

w∗

, C) � γ(C) if C is not convex.

Example 2.3. Let E = c0 or E = �p for some p ∈ (1,∞). Let H = {en : n ∈ N},
where en is the canonical nth basic vector. Then H is relatively weakly compact; hence,
d̂(H

w∗

, E) = ckE(H) = JaE(H) = γ(H) = 0. However,

Ja(H) = ck(H) = d̂(H
w∗

, H) = 1.

Proof. As the sequence (en) weakly converges to 0, H is relatively weakly compact.
This finishes the proof of the first part. Moreover, H

w∗

is in fact the weak closure of
H in E and is equal to H ∪ {0}. Thus, clearly d̂(H

w∗

, H) = ck(H) = 1. Finally, to
show Ja(H) � 1, consider x∗ ∈ E∗ represented by the sequence (−1/2n)∞

n=1 in the
respective sequence space. Then sup x∗(H) = 0 and the only point in H

w∗

at which the
supremum is attained is 0. The observation that d(0, H) = 1 completes the proof. �

We remark that for non-convex H it is more natural to consider the quantity
d̂(H

w∗

, co H) instead of using d̂(H
w∗

, H) (see § 4). Similar versions of other quantities
can be studied as well.

3. Quantitative versions of James’s Theorem

This section is devoted to the proof of the main results of this paper. In the course of
the proof we use a proof of James’s Compactness Theorem due to Pryce in [14].

Theorem 3.1. Let E be a Banach space and H ⊂ E a bounded subset. Then

1
2γ(H) � JaE(H).
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Proof. Assume that γ(H) > r for some r > 0. We denote by

(i) F the space of all norm continuous positive homogenous real-valued functions on
E, i.e. continuous functions f : E → R satisfying f(αx) = αf(x), α � 0 and x ∈ E,

(ii) p(f) = sup f(H), f ∈ F ,

(iii) P (f) = sup |f |(H), f ∈ F .

Then p is a sublinear functional and P is a seminorm on F .
Let (fi) ⊂ BE∗ and (zj) ⊂ H be sequences such that

lim
i

lim
j

fi(zj) − lim
j

lim
i

fi(zj) > r

and all the limits involved exist. By omitting finitely many elements of (fi) we may
assume that

lim
j

fi(zj) − lim
j

lim
i

fi(zj) > r, i ∈ N. (3.1)

Hence, for every i ∈ N there exists j0 ∈ N such that

fi(zj) − lim
i

fi(zj) > r, j � j0.

Let X stand for the linear span of {fi : i ∈ N}. As X is separable in the seminorm P and
the functionals fi are equicontinuous for the norm on E, it follows from [14, Lemma 2]
that we can suppose without loss of generality that

p
(
f − lim inf

i
fi

)
= p

(
f − lim sup

i
fi

)
for all f ∈ X. (3.2)

We denote
Kn = conv{fi : i � n}, n ∈ N,

and thus we obtain
F ⊃ E∗ ⊃ X ⊃ K1 ⊃ K2 ⊃ · · · .

By the proof of [14, Lemma 3] and bearing in mind the inequality (3.1), we obtain

p
(
f − lim inf

i
fi

)
> r, f ∈ K1. (3.3)

Next we quote [14, Lemma 4].

Claim 3.2. Let Y be a linear space, let ρ, β, β′ be strictly positive numbers, let p be
a sublinear functional on Y , let A ⊂ Y be a convex set and let u ∈ Y satisfy

inf
a∈A

p(u + βa) > βρ + p(u).

Then there exists a0 ∈ A such that

inf
a∈A

p(u + βa0 + β′a) > β′ρ + p(u + βa0).
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This claim will be used to prove the following one, which is a mild strengthening
of [14, Lemma 5]. Let us fix an arbitrary r′ ∈ (0, r).

Claim 3.3. Let (βn) be a sequence of strictly positive numbers. Then there exists a
sequence (gn) in F such that gn ∈ Kn for n ∈ N and

p

( n∑
i=1

βi

(
gi − lim inf

j
fj

))
> βnr′ + p

( n−1∑
i=1

βi

(
gi − lim inf

j
fj

))
, n ∈ N. (3.4)

Proof. The construction proceeds by induction. Let f0 = lim infj fj .
If n = 1, we use Claim 3.2 for u = 0, β = β1, β′ = β2, ρ = r′ and A = K1 − f0.

By (3.3),

inf
g∈A

p(u + βg) = inf
g∈A

βp(g)

= β1 inf
f∈K1

p
(
f − lim inf

j
fj

)
> β1r

′

= β1r
′ + p(u),

and hence Claim 3.2 gives the existence of g1 ∈ K1 satisfying

inf
f∈K1

p(β1(g1 − f0) + β2(f − f0)) > β2r
′ + p(β1(g1 − f0)).

This finishes the first step of the construction.
Assume now that we have found gi ∈ Ki, i = 1, . . . , n− 1, for some n ∈ N, n � 2, such

that

inf
f∈Kn−1−f0

p

( n−1∑
i=1

βi(gi − f0) + βnf

)
> βnr′ + p

( n−1∑
i=1

βi(gi − f0)
)

.

We use Claim 3.2 with u =
∑n−1

i=1 βi(gi − f0), β = βn, β′ = βn+1, ρ = r′ and A = Kn−f0.
Since Kn ⊂ Kn−1, inductive hypothesis gives

inf
f∈A

p(u + βf) � inf
f∈Kn−1−f0

p(u + βf) > βnr′ + p(u).

By Claim 3.2, there exists gn ∈ Kn such that

inf
f∈A

p

( n∑
i=1

βi(gi − f0) + βn+1f

)
> βn+1r

′ + p

( n−1∑
i=1

βi(gi − f0) + βn(gn − f0)
)

.

This completes the inductive construction.
We have obtained elements gn ∈ Kn, n ∈ N, such that

inf
g∈Kn

p

( n∑
i=1

βi(gi − f0) + βn+1(g − f0)
)

> βn+1r
′ + p

( n∑
i=1

βi(gi − f0)
)

.
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Since gn+1 ∈ Kn+1 ⊂ Kn, this yields

p

( n∑
i=1

βi(gi − f0) + βn+1(gn+1 − f0)
)

> βn+1r
′ + p

( n∑
i=1

βi(gi − f0)
)

.

This finishes the proof. �

Let βi > 0, i ∈ N, be chosen such that

lim
n

1
βn

∞∑
i=n+1

βi = 0.

Let (gn) be a sequence provided by Claim 3.3. Since for every n ∈ N we have that
gn ∈ Kn ⊂ BE∗ , we can select a weak∗-cluster point g0 ∈ BE∗ of (gn). By [14, Lemma 6],
we have the following observation.

Claim 3.4. For any f ∈ X, p(f − g0) = p(f − lim infn fn).

By Claim 3.4, we can replace lim infj fj by g0 in (3.4) and get the following inequalities

p

( n∑
i=1

βi(gi − g0)
)

> βnr′ + p

( n−1∑
i=1

βi(gi − g0)
)

, n ∈ N. (3.5)

We set M = sup{‖x‖ : x ∈ H} and remark that ‖gi − g0‖ � 2, i ∈ N.
We set g =

∑∞
i=1 βi(gi − g0). Let u ∈ H

w∗

be an arbitrary point satisfying g(u) =
sup g(H). Then, for any n ∈ N, from (3.5) we get

n∑
i=1

βi(gi − g0)(u) = g(u) −
∞∑

i=n+1

βi(gi − g0)(u)

� p(g) − 2M

∞∑
i=n+1

βi

� p

( n∑
i=1

βi(gi − g0)
)

− p

( n∑
i=1

βi(gi − g0) − g

)
− 2M

∞∑
i=n+1

βi

� p

( n∑
i=1

βi(gi − g0)
)

− 4M

∞∑
i=n+1

βi

> βnr′ + p

( n−1∑
i=1

βi(gi − g0)
)

− 4M

∞∑
i=n+1

βi

� βnr′ +
n−1∑
i=1

βi(gi − g0)(u) − 4M

∞∑
i=n+1

βi.

Hence,

(gn − g0)(u) � r′ − 4M
1
βn

∞∑
i=n+1

βi, n ∈ N,

https://doi.org/10.1017/S0013091510000842 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000842


378 B. Cascales, O. F. K. Kalenda and J. Spurný

which gives

lim inf
n

(gn − g0)(u) � r′. (3.6)

Let v ∈ E be arbitrary. Then g0(v) � lim infn gn(v), which along with (3.6) gives

r′ � lim inf
n

gn(u) − lim inf
n

gn(v) + g0(v − u)

� − lim inf
n

(gn(v) − gn(u)) + g0(v − u) � 2‖v − u‖.

By the definition of JaE(H) it follows that JaE(H) � 1
2r′. Since r satisfying γ(H) > r

and r′ ∈ (0, r) are arbitrary, we conclude that JaE(H) � 1
2γ(H). �

As a consequence of Theorem 3.1 we obtain that all measures of non-compactness that
we have considered in this paper are equivalent. In other words, all classical approaches
used to study weak compactness in Banach spaces (Tychonoff’s Theorem, Eberlein’s The-
orem, Grothendieck’s Theorem and James’s Theorem) are qualitatively and quantitatively
equivalent.

Corollary 3.5. Let E be a Banach space.

(i) Let H ⊂ E be a bounded set. Then the following inequalities hold true:

1
2γ(H) � JaE(H) � ckE(H) � d̂(H

w∗

, E) � γ(H).

(ii) Let C ⊂ E be a bounded convex set. Then the following inequalities hold true:

ckE(C) � d̂(C
w∗

, E)

� � �
1
2γ(C) � JaE(C) � Ja(C) � ck(C) � d̂(C

w∗

, C) � γ(C).

Proof. This result follows from Proposition 2.2 and Theorem 3.1. �

The fact that the measures of weak non-compactness H �→ d̂(H
w∗

, E), γ and ckE are
equivalent can be found in [2,7] with very different approaches.

In § 5 we offer several examples showing that in the corollary above any of the inequal-
ities may become equalities and that most of them may become strict.

Corollary 3.6. Let E be a Banach space and let C ⊂ E be a closed convex bounded
subset. Then C is weakly compact provided JaE(C) = 0 (i.e. if for every ε > 0 and every
x∗ ∈ X∗ there is x∗∗ ∈ C

w∗

such that x∗∗(x∗) = supx∗(C) and d(x∗∗, E) � ε).
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4. Relationship to the quantitative version of Krein’s Theorem

Let E be a Banach space and let C ⊂ E be a bounded convex set. Then extC
w∗

, the set
of extreme points of C

w∗

, is a boundary for C
w∗

. Therefore, the following inequalities
are obvious:

d̂(ext C
w∗ w∗

, C) � d̂(ext C
w∗

, C) � Ja(C),

d̂(ext C
w∗ w∗

, E) � d̂(ext C
w∗

, E) � JaE(C).

⎫⎪⎬
⎪⎭ (4.1)

These inequalities enable us to prove the following statement.

Corollary 4.1. Let E be a Banach space and let H ⊂ E be a bounded set. Then the
following inequalities hold:

(i) d̂(co H
w∗

, E) � 2d̂(H
w∗

, E);

(ii) d̂(co H
w∗

, co H) � 2d̂(H
w∗

, co H).

Proof. Set C = co H. Then ext C
w∗

⊂ H
w∗

, so the inequalities follow from (4.1) and
Corollary 3.5. �

We remark that assertion (i) was proved in [7] and independently in [8] and [5].
In [8, 10] some examples are given which show that the inequality is optimal, i.e. the
equality can take place if the quantities are non-zero. However, these examples do not
work for assertion (ii). Hence, the following problem seems to be natural.

Question 4.2. Let E be a Banach space and let H ⊂ E be a bounded set. Is it true
that

d̂(co H
w∗

, co H) = d̂(H
w∗

, co H)?

In [7], Corollary 4.1 (i) is called a quantitative version of Krein’s Theorem. Krein’s
Theorem asserts that a closed convex hull of a weakly compact set is again weakly
compact. This is the case when the quantities are 0. In view of this assertion (ii) may
also be called a quantitative version of Krein’s Theorem. An interesting phenomenon
is that there are examples showing that the inequality (i) is sharp but we do not know
whether the inequality (ii) is sharp. Both examples showing sharpness of (i) are of similar
nature: a set H is constructed in a space E0 such that

d̂(co H
w∗

, co H) = d̂(H
w∗

, co H) = 1.

Then the space E0 is enlarged in a clever way to E such that d̂(co H
w∗

, E) equals 1
but d̂(H

w∗

, E) decreases to 1
2 . If the space E is enlarged even further, the quantity

d̂(co H
w∗

, E) will also decrease to 1
2 and it will no longer be a counter-example. Hence, a

possible counter-example showing sharpness of (ii) should be of a quite different nature.
Moreover, one can show (although it is not obvious) that the answer to the above

question is positive if H is norm-separable. This is another indication of a great difference
between (i) and (ii) as the example from [10] is norm-separable (see Example 5.6).
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5. Examples

In this section we collect examples showing the sharpness of some of the inequalities that
are collected in Corollary 3.5. We remark that unless all the quantities are zero, at least
one of the inequalities must be strict. We stress again that the examples in this section
show in particular that any of the inequalities may become equalities and that most of
them may become strict.

Example 5.1. Let E = c0 and C = BE . Then γ(C) = 1 and JaE(C) = 1. Hence, all
other quantities are also equal to 1.

Proof. The equality γ(C) = 1 follows from [13, Example 2.7 and Theorem 2.8].
To show that JaE(C) � 1, take x∗ ∈ E∗ represented by the sequence (1/2n)∞

n=1 in
�1. The only element of C

w∗

= B�∞ at which x∗ attains its supremum on C is the
constant sequence (1)∞

n=1 whose distance from E is clearly 1. The rest now follows from
Corollary 3.5. �

Example 5.2. Let E = �1 and C = BE . Then γ(C) = 2 and d̂(C
w∗

, C) = 1. Hence,
all other quantities are equal to 1.

Proof. It is clear that d̂(C
w∗

, C) � 1. Further, the inequality γ(C) � 2 is witnessed by
sequences (xn) and (x∗

n), where xn is the nth canonical basic vector of �1 and x∗
n ∈ B�∞

is defined by

x∗
n(m) =

{
1, m � n,

−1, m > n.

The rest follows from Corollary 3.5. �

Example 5.3. Let E = C([0, ω]) and C = {x ∈ E : 0 � x � 1 and x(ω) = 0}. Then
d̂(C

w∗

, E) = 1
2 and Ja(C) = 1. Hence, JaE(C) = ckE(C) = 1

2 and ck(C) = d̂(C
w∗

, C) =
γ(C) = 1.

Proof. Note that E∗ is canonically identified with �1([0, ω]) and E∗∗ with �∞([0, ω]).
To show that d̂(C

w∗

, E) � 1
2 we observe that the constant function 1

2 belongs to E

and that C ⊂ 1
2 + 1

2BE . Thus, C
w∗

⊂ 1
2 + 1

2BE∗∗ .
Further, consider the element x∗ ∈ E∗ = �1([0, ω]) given by x∗(n) = 1/2n for n < ω

and x∗(ω) = 0. Then the only element of C
w∗

at which x∗ attains its supremum on C is
χ[0,ω), whose distance to C is clearly equal to 1. Thus, Ja(C) � 1.

The rest follows from Corollary 3.5. �

Example 5.4. Let E = C0([0, ω1)) and C = {x ∈ E : 0 � x � 1}. Then d̂(C
w∗

, E) = 1
and ck(C) = 1

2 . Hence, JaE(C) = Ja(C) = ckE(C) = 1
2 and d̂(C

w∗

, C) = γ(C) = 1.

Proof. First note that the dual E∗ can be identified with �1([0, ω1)) and the second
dual E∗∗ with �∞([0, ω1)).

To show that d̂(C
w∗

, E) � 1 we note that the constant function 1 belongs to C
w∗

and
its distance to E is 1.
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Next we will show that ck(C) � 1
2 . Let (xn) be any sequence in C. There is some

α < ω1 such that xn|(α,ω1) = 0 for each n ∈ N. As the interval [0, α] is countable, there
is a subsequence (xnk

) which converges pointwise on [0, ω1). The limit is an element of
�∞([0, ω1)) = E∗∗. Denote the limit by x∗∗. Then the sequence (xnk

) weak∗ converges
to x∗∗. Thus, in particular, x∗∗ ∈ clustE∗∗((xn)). Set x = 1

2χ[0,α]. Then x ∈ C and
‖x∗∗ − x‖ � 1

2 (as 0 � x∗∗ � 1 and x∗∗|(α,ω1) = 0). The inequality ck(C) � 1
2 now

follows.
The rest follows from Corollary 3.5. �

Example 5.5. Let E = C([0, ω1]) and C = {x ∈ E : 0 � x � 1 and x(ω1) = 0}.
Then d̂(C

w∗

, E) = ck(C) = 1
2 and d̂(C

w∗

, C) = 1. Hence, JaE(C) = Ja(C) = ckE(C) = 1
2

and γ(C) = 1.

Proof. We start similarly to the proof of Example 5.3; note that E∗ is canonically
identified with �1([0, ω1]), and E∗∗ with �∞([0, ω1]).

To show that d̂(C
w∗

, E) � 1
2 , notice that the constant function 1

2 belongs to E and
that C ⊂ 1

2 + 1
2BE . Thus, C

w∗

⊂ 1
2 + 1

2BE∗∗ .
The inequality ck(C) � 1

2 can be proved in the same way as in Example 5.4. In fact,
it follows from that example, since C0([0, ω1)) is isometric to {x ∈ E : x(ω1) = 0}, and
hence our set C coincides with the set C from Example 5.4.

Finally, d̂(C
w∗

, C) � 1 as χ[0,ω1) ∈ C
w∗

and its distance from C is equal to 1.
The rest follows from Corollary 3.5. �

Example 5.6. There is a Banach space E and a closed convex bounded subset C ⊂ E

such that JaE(C) = 1
2 and ckE(C) = Ja(C) = 1. Hence,

ck(C) = d̂(C
w∗

, E) = d̂(C
w∗

, C) = γ(C) = 1.

Proof. We use the example from [10]. Therein a set K0 ⊂ [0, 1]N and a free ultrafilter
u over N are constructed such that (in particular) the following assertions are satisfied:

(a) K0 consists of finitely supported vectors and is closed in the topology of uniform
convergence on N but not in the pointwise convergence topology;

(b) for each x ∈ K̄0 (the closure taken in the pointwise convergence topology) we have
limu x(n) = 0;

(c) for each x ∈ K̄0 \ K0 there are infinitely many n ∈ N such that x(n) = 1.

Let E = {x ∈ C(βN) : x(u) = 0}. We remark that βN is canonically identified with the
space of ultrafilters over N, and hence we have u ∈ βN. Let us consider the embedding
κ : K̄0 → E defined by

κ(x)(p) = lim
p

x(n), p ∈ βN, x ∈ K̄0.

By (b) it is a well-defined mapping with values in E. Let B = κ(K0). Then B is a
bounded norm-closed subset of E. Set C = conv B.
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It is proved in [10] that d̂(B
w∗

, E) � 1
2 . As B

w∗

contains extreme points of C
w∗

,
by (4.1) we get JaE(C) � 1

2 .
In [10] it is proved that d̂(C

w∗

, E) � 1. We will show that even ckE(C) � 1. To do
this it is enough to observe that C ⊂ {x ∈ E : x|βN\N = 0} (this follows from (a)). The
latter space is isometric to c0. As c∗

0 is separable, each element of C
w∗

is a weak∗ limit
of a sequence from C. It follows that ckE(C) = d̂(C

w∗

, E) � 1.
By Corollary 3.5 it remains to prove that Ja(C) � 1. To do that let us first recall that

the dual to E can be canonically identified with the space of all signed Radon measures
on βN \ {u}. This space can be decomposed as

E∗ = �1 ⊕1 M(βN \ (N ∪ {u})).

The second dual is then represented as

E∗∗ = �∞ ⊕∞ M(βN \ (N ∪ {u}))∗.

Denote by j the canonical embedding of E into E∗∗ and by ρ the embedding ρ : �∞ → E∗∗

given by ρ(x) = (x, 0) using the above representation. Now,

ρ(�∞) = {x∗∗ ∈ E∗∗ : x∗∗(µ) = 0 whenever µ ∈ M(βN \ {u}) is such that µ|N = 0}.

So ρ(�∞) is weak∗ closed and, moreover, ρ is a weak∗-to-weak∗ homeomorphism (�∞
being considered as the dual to �1).

Finally, ρ|K0 = (j ◦ κ)|K0 and hence B
w∗

= ρ(K̄0). Fix some x ∈ K̄0\K0 and let A ⊂ N

be infinite such that x|A = 1. Such a set A exists due to (c). Enumerate A = {an : n ∈ N}
and define an element u ∈ �1 by

u(k) =

⎧⎪⎨
⎪⎩

1
2n+1 , k = an,

0, k ∈ N \ A.

Furthermore, define the element x∗ ∈ E∗ by x∗ = (u, 0) (using the above representation).
Then ‖x∗‖ = 1, so sup x∗(C) � 1. Moreover, ρ(x)(x∗) = 1; hence, supx∗(C) = 1.
Let x∗∗ ∈ C

w∗

be such that x∗∗(x∗) = 1. Then x∗∗ = (ρ(y), 0) for some y ∈ �∞. As
‖y‖ � 1, we get y|A = 1. But then d(y, c0) = 1; hence, d(x∗∗, C) � 1. So Ja(C) � 1 and
the proof is completed. �

The above examples show that any of the inequalities from Corollary 3.5 can be strict,
with one possible exception which is described in the following problem.

Question 5.7. Let E be a Banach space and let C ⊂ E be a bounded convex set. Is
Ja(C) then equal to ck(C)?

6. The case of a weak∗ angelic dual unit ball

In this section we collect several results saying that under some additional conditions
some of the inequalities from Corollary 3.5 become equalities. The basic assumption
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will be that the dual unit ball BE∗ is weak∗ angelic, i.e. that whenever A ⊂ BE∗ and
x∗ ∈ A

w∗

, there is a sequence in A which weak∗ converges to x∗. Inspired by [7] we
introduce the following quantity. If E is a Banach space and H ⊂ E is a bounded subset,
we set

γ0(H) = sup
{∣∣∣lim

i
lim

j
x∗

i (xj)
∣∣∣ : (xj) ⊂ H, (x∗

i ) ⊂ BE∗ , x∗
i

w∗
−−→ 0

}
,

assuming the limits involved exist. It is clear that γ0(H) � γ(H). In general γ0 is not
an equivalent quantity to the others. Indeed, if E = �∞ and C = BE , then γ0(C) = 0
by the Grothendieck property of E. But, in the case when BE∗ is angelic, we have the
following.

Theorem 6.1. Let E be a Banach space such that BE∗ is weak∗ angelic.

(i) Let H ⊂ E be any bounded subset. Then we have

1
2γ(H) � γ0(H) = JaE(H) = ckE(H) = d̂(H

w∗

, E) � γ(H).

(ii) Let C ⊂ E be any bounded convex subset. Then the following inequalities hold
true:

1
2γ(C) � γ0(C) = JaE(C) = ckE(C) = d̂(C

w∗

, E)

� Ja(C) � ck(C) � d̂(C
w∗

, C) � γ(C).

Proof. Part (ii) follows from (i) and Corollary 3.5. As for part (i), in view of Corol-
lary 3.5 it is enough to prove that JaE(H) � γ0(H) and d̂(H

w∗

, E) � γ0(H). The second
inequality follows from [7, Proposition 14 (ii)].

The first inequality follows from the proof of Theorem 3.1. In fact, the angelicity
assumption is not needed here. Let us indicate the necessary changes, as follows.

Suppose that γ0(H) > r. The space F is not needed, but we define the sublinear
functional p on E∗ by p(f) = sup f(H) for f ∈ E∗. Fix a sequence (zj) in H and (fi) in
BE∗ such that fi weak∗ converge to 0 and limi limj fi(zj) > r and all the limits involved
exist. Without loss of generality suppose that for every i ∈ N, there exists j0 ∈ N such
that for all j � j0 we have fi(zj) > r.

As lim supi fi = lim infi fi = 0, we get the assertion (3.2) without any calculation. We
define Kn for n ∈ N in the same way. The assertion (3.3) then says that p(f) > r for all
f ∈ K1. Fix any r′ < r and a sequence (βn) of strictly positive numbers. Claim 3.3 now
yields a sequence (gn) with gn ∈ Kn such that

p

( n∑
i=1

βigi

)
> βnr′ + p

( n−1∑
i=1

βigi

)
.

As the fn weak∗ converge to 0, gn weak∗ converge to 0 as well. Thus, g0 = 0. Now, if the
sequence (βn) quickly converges to 0 (i.e. satisfies the same condition as in the original
proof), we set g =

∑∞
i=1 βigi. Let u ∈ H

w∗

be an arbitrary point with g(u) = sup g(H).
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By the final calculation we get lim infn gn(u) � r′. If v ∈ E is arbitrary, then gn(v) → 0,
and thus

r′ � lim inf gn(u) − lim gn(v) = lim inf gn(u − v) � ‖u − v‖.

Thus, JaE(H) � r′, so JaE(H) � γ0(H). �

We remark that the spaces from Examples 5.1–5.3 are separable and therefore they have
weak∗ angelic unit ball. It follows that in Theorem 6.1 all the inequalities, with a possible
exception of Ja(C) � ck(C), may be strict. Note also that, under the weaker assumption
of the Banach space E having Corson property C, it has been proved in [2, Proposition 2.6]
that for any bounded set H ⊂ E we have ckE(H) = d̂(H

w∗

, E).
The following theorem shows that all the quantities are equal in the very special case

E = c0(Γ ).

Theorem 6.2. Let Γ be an arbitrary set and let E = c0(Γ ).

(i) Let H ⊂ E be a bounded set. Then we have

γ0(H) = JaE(H) = ckE(H) = d̂(H
w∗

, E) = γ(H).

(ii) Let C ⊂ E be a convex bounded subset. Then we have

γ0(C) = JaE(C) = ckE(C) = d̂(C
w∗

, E) = Ja(C) = ck(C) = d̂(C
w∗

, C) = γ(C).

Proof. It is enough to prove γ0(H) � γ(H). If γ(H) = 0, this inequality is trivial. So,
suppose that γ(H) > 0. Fix an arbitrary r > 0 such that γ(H) > 0. We find sequences
(xi) ⊂ H, (x∗

j ) ⊂ BE∗ and η > 0 such that

lim
i

lim
j

x∗
i (xj) − lim

j
lim

i
x∗

i (xj) > r(1 + η),

where all the limits involved exist. As BE∗ is weak∗ sequentially compact, by passing to a
subsequence we may suppose that the sequence (x∗

i ) weak∗ converges to some x∗ ∈ BE∗ .
Then

lim
i

lim
j

(x∗
i − x∗)(xj) > r(1 + η).

We claim that
lim sup ‖x∗

i − x∗‖ � 1.

Suppose this is not the case. Then, up to passing to a subsequence, we may suppose that
there is δ > 0 such that ‖x∗

i −x∗‖ � 1+ δ for each i ∈ N. To continue the proof we recall
that E∗ is canonically identified with �1(Γ ) and that the weak∗ topology on bounded
sets coincides with the pointwise convergence topology. Using this identification we can
find a finite set F ⊂ Γ such that ∑

γ∈Γ\F

|x∗(γ)| < 1
3δ.
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Further, as x∗
i weak∗ converges to x∗, there is i0 ∈ N such that for each i � i0 we have∑

γ∈F

|x∗
i (γ) − x∗(γ)| < 1

3δ.

Fix any i � i0. Then we have

‖x∗
i ‖ �

∑
γ∈Γ\F

|x∗
i (γ)|

�
∑

γ∈Γ\F

|x∗
i (γ) − x∗(γ)| −

∑
γ∈Γ\F

|x∗(γ)|

= ‖x∗
i − x∗‖ −

∑
γ∈F

|x∗
i (γ) − x∗(γ)| −

∑
γ∈Γ\F

|x∗(γ)|

> 1 + δ − 1
3δ − 1

3δ

= 1 + 1
3δ.

This is a contradiction.
So, omitting a finite number of elements, we can suppose that ‖x∗

i − x∗‖ < 1 + η for
all i ∈ N. Set y∗

i = (x∗
i − x∗)/(1 + η). Then y∗

i ∈ BE∗ , the sequence (y∗
i ) weak∗ converges

to 0 and
lim

i
lim

j
y∗

i (xi) > r.

Thus, γ0(H) � r and the proof is completed. �

The equalities ckE(H) = d̂(H
w∗

, E) = γ(H) in the case when E = c0 and H ⊂ E is a
bounded subset also follow easily from [13, Theorem 2.8] (see also [1, Corollary 3.4.3]).
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(2006), 93–110.

9. A. S. Granero and M. Sánchez, Convexity, compactness and distances, in Methods
in Banach space theory, London Mathematical Society Lecture Note Series, Volume 337,
pp. 215–237 (Cambridge University Press, 2006).

10. A. S. Granero, P. Hájek and V. Montesinos Santalućıa, Convexity and w∗-com-
pactness in Banach spaces, Math. Annalen 328 (2004), 625–631.

11. R. C. James, Weakly compact sets, Trans. Am. Math. Soc. 113 (1964), 129–140.
12. A. Kryczka, Quantitative approach to weak noncompactness in the polygon interpola-

tion method, Bull. Austral. Math. Soc. 69 (2004), 49–62.
13. A. Kryczka, S. Prus, and M. Szczepanik, Measure of weak noncompactness and real

interpolation of operators, Bull. Austral. Math. Soc. 62 (2000), 389–401.
14. J. D. Pryce, Weak compactness in locally convex spaces, Proc. Am. Math. Soc. 17 (1966),

148–155.

https://doi.org/10.1017/S0013091510000842 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000842

