A REMARK ON TALENTI'S SEMIGROUP

BY

THOMAS I. SEIDMAN

For $\alpha > 0$ the Riemann-Liouville Integral $J(\alpha)$ is given for suitable functions g by

(1)
$$[J(\alpha)g](t) = \int_0^t g(s)(t-s)^{\alpha-1} ds/\Gamma(\alpha) \quad (0 \le t).$$

For a variety of function spaces (e.g., C[0, 1] or $L_p(0, 1)$ with $p \ge 1$) this defines a C_0 semigroup which has been extensively studied (c.f., e.g., [3]). A generalization of this was given by G. Talenti [4], setting

(2)
$$[I(\alpha)g](t) = \int_0^t g(s) \left[\int_s^t p(r) \, dr \right]^{\alpha-1} p(s) \, ds / \Gamma(\alpha)$$

with $p(\cdot)$ a specified positive continuous function; note that $J(\cdot)$ is the special case: $p \equiv 1$.

A. Chrysovergis [1] has shown that, for $\alpha > 0$, $I(\alpha)$ is bounded on C[0, 1] and depends continuously in norm on α . E. Hille [2] in reviewing [1], suggested the likelihood that, as with the Riemann-Liouville Integral J, this semigroup is holomorphic in α for $\Re e \alpha > 0$. Our present remark consists of the observation that Talenti's semigroup may be reduced to the Riemann-Liouville case $(p \equiv 1)$ by an appropriate substitution.

We assume the functions are to be defined on [0, 1] and set

$$P(t) = e^{c} \int_{0}^{t} p(s) \, ds$$

with

$$c = \log \int_0^1 p(s) \, ds.$$

Thus, P is strictly increasing (as p is positive) with P(0)=0, P(1)=1 and so is a homeomorphism of [0, 1] to itself. Now, noting that

$$\int_{s}^{t} p(r) dr = e^{c} [P(t) - P(s)]$$

and setting $\sigma = P(s)$, $\tau = P(t)$ so $p(s) ds = e^{c} d\sigma$, one has from (2) that

$$[I(\alpha)g](t) = e^{-c\alpha} \int_0^\tau g(P^{-1}(\sigma))(\tau-\sigma)^{\alpha-1} d\sigma/\Gamma(\alpha)$$

(3)

 $= e^{-c\alpha}[J(\alpha)(g \circ P^{-1})](P(t))$

Received by the editors March 13, 1974.

591

T. I. SEIDMAN

or

592

(3')
$$I(\alpha) = e^{-c\alpha} \cdot \pi J(\alpha) \pi^{-1}$$

where π is the operator of composition with P, i.e.,

$$[\pi f](t) = f(P(t)), \qquad \pi : f \mapsto f \circ P;$$

For any suitable function space, then, the properties of $I(\cdot)$ are immediately deducible from the (known) properties of $J(\cdot)$ provided π is non-singular. For C[0, 1] it is sufficient to require that $p \in L_1(0, 1)$ with p > 0 a.e.; for $L_p(0, 1)$ one requires 0 < p, $1/p \in L_{\infty}(0, 1)$ although if one only had 0 one could $consider <math>I(\cdot)$ acting on a space with an L_p norm weighted by p. In particular we see that $I(\alpha)$ is, indeed a C_0 semigroup on C[0, 1], holomorphic in the right halfplane.

References

1. A. Chrysovergis, Some Remarks on Talenti's Semigroup, Canad. Math. Bull. 14 (1971), pp. 147-150.

2. E. Hille, review of [1] in Math. Rev., 46 (1973), rev. 9247.

3. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., v. 31.

4. G. Talenti, Sul Problema di Cauchy per le Equazioni a Derivate Parziali, Ann. Mat. Pura Appl., LXVII (1965), pp. 365–394.

UNIVERSITY OF MARYLAND, BALTIMORE COUNTY 5401 WILKENS AVENUE BALTIMORE, MARYLAND 21228, U.S.A.