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The work presents the analysis of the free boundary value problem related to the one-

dimensional invasion model of new species in biofilm reactors. In the framework of continuum

approach to mathematical modelling of biofilm growth, the problem consists of a system of

non-linear hyperbolic partial differential equations governing the microbial species growth and

a system of semi-linear elliptic partial differential equations describing the substrate trends.

The model is completed with a system of elliptic partial differential equations governing the

diffusion and reaction of planktonic cells, which are able to switch their mode of growth

from planktonic to sessile when specific environmental conditions are found. Two systems

of non-linear differential equations for the substrate and planktonic cells mass balance

within the bulk liquid are also considered. The free boundary evolution is governed by a

differential equation that accounts for detachment. The qualitative analysis is performed and

a uniqueness and existence result is presented. Furthermore, two special models of biological

and engineering interest are discussed numerically. The invasion of Anammox bacteria in a

constituted biofilm inhabiting the deammonification units of the wastewater treatment plants

is simulated. Numerical simulations are run to evaluate the influence of the colonization

process on biofilm structure and activity.

Key words: Invasion model, biofilm reactor, hyperbolic free boundary value problem, nu-

merical simulations, Anammox process.

1 Introduction

The term biofilm is used nowadays to indicate the prevailing form of microbial lifestyle,

which consists of complex dynamic microbial structures composed of various prokaryotic

cells and other microorganisms, forming on solid or liquid surfaces and encased in a self-

produced protective matrix of extracellular polymeric substances. The roles biofilms exert

on both natural and human environments are disparate: they have proven detrimental to

human health or undesirable in the open water environment, but they can also be used

beneficially in resource recovery systems, as well as water treatment [1]. With specific

reference to the last point, biofilm reactors represent the primary means to harness the

usefulness of biofilms for wastewater treatment by means of the synergistic interactions

and biochemical transformations characterizing these microbial communities [2]. The

biofilm structure results from the interplay of different interactions, such as mass transfer,
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conversion rates and detachment forces. The main biofilm expansion is due to bacterial

growth and to extracellular polymer production. The soluble substrates necessary for

bacterial growth are dissolved in the liquid flow and reach the cells first by passing

through a boundary layer, characterized by a negligible flow over the biofilm/liquid

interface, and then through the biofilm matrix. The external fluid flow regulates biofilm

growth by establishing the concentration of substrates and products at the solid–liquid

interface and shearing the biofilm surface. Other biological phenomena are found to play

significant roles in the establishment of mixed species biofilms, i.e. dispersal, bacteriophage

and quorum sensing [3].

Among these phenomena, there is a growing interest in the study of microbial inva-

sion and colonization of pre-existing biofilms as these processes can determine biofilm

landscape and contribute to rapid alterations in biofilm populations. Recent advances

in microbial ecology have identified motility as one of the main mediators of such pro-

cesses. Indeed, motile bacteria with high kinetic energy and acting as invaders can lead

to the dissolution of heterologous biofilms and repopulation of the matrix [4]. Once a

motile bacteria, supplied by the liquid phase or the biofilm itself (as a consequence of

dispersal phenomenon), has successfully infiltrated the biofilm matrix, it can invade a

resident community and establish where the environmental conditions are optimal for

its growth. An accurate modelling of such a system has to take all of these factors into

account.

Over the last decades, numerous approaches have been proposed to model biofilm

development and structure. Two main categories can be distinguished, namely the con-

tinuum [5–7] and discrete models [8,9], based on biomass representation (refer to [10] for

a recent survey). The one-dimensional multispecies biofilm model proposed by Wanner

and Gujer [11] is an essentially hyperbolic free boundary value problem, and it has been

widely used for numerical simulations of wastewater treatment bioreactors. However, in

a recent contribution [12], it was shown through an exclusion principle that this model

leads to restrictions on ecological structure and highlighted the importance of including

downward microbial mobility for ecological considerations. This was accomplished in [13]

by adding diffusion terms to the equations for the material volume fractions and thus

converting the model from hyperbolic to parabolic. In a recent contribution [14], the

authors have introduced a multispecies biofilm model which explicitly takes into account

the invasion phenomenon pursued by planktonic cells. The core of the model lies on

the introduction of new state variables that represent the concentrations of planktonic

colonizing cells within the biofilm. These cells are supposed to be characterized by a

diffusive movement within the biofilm and be able to give up the ability to move in order

to settle down in specific environmental niches.

In this work, we introduce the free boundary value problem for the invasion phe-

nomenon in biofilm reactors which takes into account the dynamics of the bulk liquid

phase in terms of both substrates and planktonic cells. The mathematical problem consists

of a system of hyperbolic partial differential equations governing the biofilm growth, a

system of elliptic partial differential equations for substrate dynamics within the biofilm

and a system of elliptic partial differential equations regulating the diffusion and reaction

of planktonic cells. Mass balance equations for the dissolved substrates and planktonic

cells within the bulk liquid phase of the biofilm reactor have been taken into account
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as well. The free boundary evolution is governed by a non-linear ordinary differential

equation. It is noteworthy to cite the work of [15], where the interactions between the

two modes of growth, the suspended and the sessile, have been investigated within a

biofilm reactor devoted to wastetwater treatment. The exchange between the two phen-

otypic states has been considered through the attachment and detachment fluxes, but a

downward mobility has not been taken into account.

The qualitative analysis of such a complex system is not an easy task as outlined

in [15]. Beyond the contribution given by the authors to this topic, only a few qualitative

mathematical results can be found in the literature for the Wanner–Gujer model [16, 17].

Due to the high non-linearity of the problem, the fixed point theorem seems the natural

tool to be used for the existence and uniqueness of the solutions. However, we are

considering a moving boundary problem where the domain is not fixed. To overcome

this issue, we follow the methodology used in [18] for the analysis of the biofilm reactor

model and in [14, 19] for the modelling of the planktonic cells dynamics both within the

biofilm and the bulk phase. In particular, we use the method of characteristics to convert

the differential problem to an integral one where the unknown functions are defined on a

fixed domain and the existence and uniqueness of the solutions are proved in the class of

continuous functions.

In addition, the work is completed with some numerical applications related to a real

engineering/biological case that examines the invasion of specific microbial species in a

constituted biofilm. More precisely, the case study reproduces the invasion of Anammox

bacteria within a multispecies biofilm devoted to the concurrent oxidization of ammonium

nitrogen and organic carbon occurring in the biological units of the wastewater treatment

plants. Traditionally, ammonium oxidation leads to the formation of residual nitrogen

compounds that need to be further removed by means of other treatment phases. The

establishment of a biofilm community constituted by Anammox bacteria and Aerobic

ammonium oxidizers may lead instead to the complete conversion of ammonium nitrogen

to nitrogen gas within a single treatment unit. The establishment of this syntrophy is

catalysed by the formation of an anoxic zone where the Anammox bacteria can effectively

proliferate. The invasion model has been adopted to illustrate the trends related to

the establishment of such a multispecies community and to assess the effect of specific

operational conditions on the biofilm colonization by Anammox bacteria. For all the

cases analysed, real data from existing literature is used to feed numerical simulations,

which produce results in nice agreement with experimental findings.

The paper is organized as follows. In Section 2, the invasion moving boundary problem

for a biofilm reactor model is introduced and assumptions, boundary and initial condi-

tions are discussed. Section 3 introduces the Volterra integral equations. In Section 4, a

uniqueness and existence result is presented. Section 5 describes the experimental case to

which the model is applied and presents the numerical results. Finally, in Section 6, we

present the conclusions and the future recommendations of the work.

2 Invasion boundary problem for biofilm reactors

We analyse the free boundary value problem related to the invasion problem in biofilm

reactors. In this model, we consider the biofilm as constituted by various particulate
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components (bacteria, extracellular polymeric substances, etc.) growing in a liquid envir-

onment along with planktonic cells belonging to various microbial species that are able

to move within the biofilm and the bulk liquid as well. The biofilm expansion depends

on growth limiting nutrients which are dissolved in the liquid region or produced within

the biofilm itself. The planktonic cells can diffuse and invade from the bulk liquid to

the biofilm and switch their mode of growth from suspended to sessile when appropriate

environmental conditions are found.

The model is formulated for the variables concentration of microbial species in sessile

form Xi, the concentration of planktonic invading cells Ψi, the concentration of dissolved

substrates Sj , all of which are expressed as functions of time t and the spatial coordinate

z. The substratum is assumed to be placed at z = 0. The one-dimensional form of the

model writes:

∂Xi

∂t
+

∂

∂z
(uXi) = ρirM,i(z, t,X, S) + ρiri(z, t, S,Ψ), i = 1, . . . , n, (2.1)

where ρi denotes the constant density of species i, u(z, t) the biomass velocity at which

the microbial mass is displaced with respect to the film support, and X = (X1, . . . ,Xn),

S = (S1, . . . , Sm), Ψ = (Ψ1, . . . , Ψn). The reaction terms rM,i describe the growth of sessile

cells, which is controlled by the local availability of nutrients and usually modelled as

standard Monod kinetics, and natural cell death. In most biological processes, the function

rM,i depends on z, t only trough the functions X and S. The explicit dependence has been

considered mainly for mathematical generality. The variable t is positive and 0 � z � L(t),

where L(t) denotes the biofilm thickness at time t. Equation (2.1) without the term ri was

first derived in [11] by mass balance principle. The initial conditions for (2.1) are provided

by the initial concentrations ϕi(z) of biofilm particulate components:

Xi(z, 0) = ϕi(z), i = 1, . . . , n, 0 � z � L(0). (2.2)

The initial concentrations of the invading microbial species are set to zero. The equation

in the form (2.1) was presented in [14]. The terms ri represent the growth rates of the

microbial species Xi due to the invasion process which induces the switch of planktonic

cells to a sessile mode of growth. This phenotypic alteration is catalysed by the formation

within the biofilm matrix of specific environmental niches. The explicit dependence on z, t

has been introduced only for mathematical generality.

Similarly to traditional continuum models of biofilm growth, equation (2.1) can be

rewritten in terms of volume fractions fi = Xi/ρi, which indicate the fraction of space at

a particular location that is occupied by species i,

∂fi
∂t

+
∂

∂z
(ufi) = rM,i + ri.

It is assumed that the sum of the biomass volume fractions is equal to one at each

location and time,
∑n

i=1 fi = 1.
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From the equations above, it follows immediately that the function u(z, t) satisfies the

following problem:

∂u

∂z
=

n∑
i=1

(
rM,i(z, t,X, S) + ri(z, t, S,Ψ)

)
, 0 < z � L(t), u(0, t) = 0, (2.3)

where the boundary condition u(0, t) = 0 comes from a no flux condition on substratum.

The function L(t) is solution of the following problem:

L̇(t) = u(L(t), t) − σd(L(t)), L(0) = L0. (2.4)

Therefore, it is apparent that the evolution of the free boundary depends on the dis-

placement velocity of microbial biomass u and detachment flux σd as well. Equation (2.4)

comes from the global mass conservation principle.

The substrate diffusion within the biofilm is governed by the following reaction–diffusion

equations:

∂Sj
∂t

− ∂

∂z

(
Dj

∂Sj
∂z

)
= rS,j(z, t,X, S), j = 1, . . . , m, 0 < z < L(t), (2.5)

where the terms rS,j represent the substrate production or consumption rates due to

microbial metabolism and Dj denotes the diffusion coefficient of substrate j within the

biofilm. As to the boundary conditions, it is assumed that

∂Sj
∂z

(0, t) = 0, h
Dj

D∗
j

∂Sj
∂z

(L(t), t) + Sj(L(t), t) = S∗
j (t), j = 1, . . . , m. (2.6)

The first condition is a no-flux boundary condition on the substratum placed at z = 0. The

second condition derives from the following reasonings. According to [20], we assume

that at a certain distance from the substratum H(t) = L(t) + h, with h being a given

positive constant, the substrate concentration Sj(H(t), t) is the same as the bulk liquid

concentration denoted by S∗
j (t). This dissolved substrate diffuses from the bulk liquid to

the biofilm 0 � z � L(t), where it is consumed according to equation (2.5). No biochemical

reactions are supposed to occur for L(t) � z � H(t) which leads to consider homogeneous

parabolic equations for Sj(z, t). Solving at steady-state leads to (2.6), where D∗
j represents

the diffusion coefficient of substrate j within the bulk liquid. Note that condition (2.6)

reduces to Sj(L(t), t) = S∗
j (t) for h = 0.

The functions S∗
j (t) are governed by the following initial value problem for ordinary

differential equations:

V Ṡ∗
j = −ADj

∂Sj
∂z

(L(t), t) + Q(S in
j − S∗

j (t)), j = 1, . . . , m, S∗
j (0) = S in

j . (2.7)

Equations above are derived from mass balance on the bulk liquid taking into account

the inlet and outlet flux from the reactor and the exchange flux between the biofilm and

the bulk liquid. The bulk liquid is modelled as a completely mixed compartment of volume

V , continuously fed and withdrawn at the same flow rate Q. A denotes the biofilm surface

area. The initial conditions for S∗
j are the same as the inlet concentrations.
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The movement of planktonic cells within the biofilm matrix has been modelled through

the Fick’s law of diffusion as we assumed a random character of motility. An experimental

explanation of it can be found in [21]. However, the mechanisms which regulate free cells

movement within the biofilm matrix are still poorly understood and further experimental

work is required to make definitive assignments on the factors that favour/impede mobility.

According to [14], we assume that the presence of relatively large channels and pores

within the matrix structure allow the planktonic cells to move within the biofilm itself.

The diffusion of planktonic cells within the biofilm matrix is governed by the following

diffusion–reaction equations:

∂Ψi

∂t
− ∂

∂z

(
DM,i

∂Ψi

∂z

)
= rΨ,i(z, t, S,Ψ), i = 1, . . . , n, 0 < z < L(t), (2.8)

where the reaction terms rΨ,i represent loss terms for the invading species and DM,i

denotes the diffusion coefficient for the planktonic species Ψi in the biofilm. Homogeneous

Neumann conditions are adopted on the substratum at z = 0 due to a no-flux condition,

and Robin boundary conditions are prescribed on the free boundary z = L(t):

∂Ψi

∂z
(0, t) = 0, h

DM,i

D∗
M,i

∂Ψi

∂z
(L(t), t) +Ψi(L(t), t) = ψ∗

i (t), i = 1, . . . , n, (2.9)

with D∗
M,i denoting the diffusion coefficient of planktonic species within the bulk liquid.

The initial conditions are set to zero if it is assumed that the invasion process starts at

t = 0, but specific functions can be also considered.

The functions ψ∗
i (t) denote the concentrations of planktonic cells within the bulk liquid

and are governed by the following initial value problem for ordinary differential equations:

Vψ̇∗
i = −ADM,i

∂Ψi

∂z
(L(t), t) + Q(ψin

i − ψ∗
i (t)), ψ

∗
i (0) = ψin

i , i = 1, . . . , n. (2.10)

Equation (2.10) come from a mass balance within the bulk liquid and account for the

inlet and outlet flux to the biofilm reactor and the exchange fluxes to or from the biofilm

as well. The initial concentrations of planktonic cells within the bulk liquid are provided

by the inlet concentrations ψin
i .

Finally, due to the slow evolution of the system [18], Sj(z, t) profiles can be considered

to evolve quasi-statically and thus equation (2.5) are rewritten as

−Dj
∂2Sj

∂z2
= rS,j(z,X, S), j = 1, . . . , m, 0 < z < L(t), (2.11)

with boundary conditions (2.6). In addition, same arguments as before lead to replace

equation (2.8) with the following:

−DM,i

∂2Ψi

∂z2
= rΨ,i(z, S,Ψ), i = 1, . . . , n, 0 < z < L(t), (2.12)

with boundary conditions (2.9).

In conclusion, the invasion free boundary problem for biofilm reactor is expressed

by equations (2.1)–(2.12). In the next section, following [18, 19], an equivalent integral
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formulation of the problem will be provided. As it will be apparent at the end of the

following section, the integral form of the free boundary problem presents the great

advantage that the space variable is defined on a fixed domain, whereas in the differential

formulation (2.1)–(2.12), the space variable belongs to the moving domain 0 � z � L(t).

3 Volterra integral equations

The differential problem introduced in the previous section is herein converted to Volterra

integral equations by using the method of characteristics. The characteristic-like lines of

system (2.1) are defined by

∂c

∂t
(z0, t) = u(c(z0, t), t), c(z0, 0) = z0, 0 � z0 � L0, t > 0. (3.1)

Considering (3.1), equation (2.1) is converted to

d

dt
Xi(c(z0, t), t)

= Fi(c(z0, t), t,X(c(z0, t), t), S(c(z0, t), t),Ψ(c(z0, t), t)), 0 � z0 � L0, t > 0, (3.2)

with

Fi = ρirM,i(c(z0, t), t,X(c(z0, t), t), S(c(z0, t), t))

+ ρiri(c(z0, t), t, S(c(z0, t), t),Ψ(c(z0, t), t)) −Xi(c(z0, t), t)

n∑
i=1

(
rM,i + ri

)
, (3.3)

and initial conditions

Xi(c(z0, 0), 0) = ϕi(z0), 0 � z0 � L0. (3.4)

Integrating (3.2) and considering (3.4) yields

Xi(c(z0, t), t)=

∫ t

0

Fi(c(z0, τ), τ,X(c(z0, τ), τ), S(c(z0, τ), τ),Ψ(c(z0, τ), τ))dτ

+ϕi(z0), i = 1, . . . , n, 0 � z0 � L0, t > 0. (3.5)

The following integral equation for c(z0, t) is derived from (3.1) and (2.3):

c(z0, t) = z0 +

∫ t

0

dτ

∫ z0

0

n∑
i=1

((rM,i(c(ζ0, τ), τ,X(c(ζ0, τ), τ), S(c(ζ0, τ), τ))

+ ri(c(ζ0, τ), τ, S(c(ζ0, τ), τ),Ψ(c(ζ0, τ), τ)))
∂c

∂ζ0
(ζ0, τ) dζ0, 0 � z0 � L0, t > 0. (3.6)

From (3.6), it follows easily

∂c

∂z0
(z0, t) = 1 +

∫ t

0

n∑
i=1

((rM,i(c(z0, τ), τ,X(c(z0, τ), τ), S(c(z0, τ), τ))

+ ri(c(z0, τ), τ, S(c(z0, τ), τ),Ψ(c(z0, τ), τ)))
∂c

∂ζ0
(z0, τ)dτ, 0 � z0 � L0, t > 0. (3.7)
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The integral equations for Sj(z, t) are obtained by integrating (2.11) and considering the

boundary conditions (2.6)

Sj(z, t) = S∗
j (t) + D−1

j

∫ z

0

(L− z)rS,j(ζ,X(ζ, t), S(ζ, t))dζ

+D−1
j

∫ L

z

(L− ζ)rS,j(ζ,X(ζ, t), S(ζ, t))dζ

+
h

D∗
j

∫ L

0

rS,j(ζ,X(ζ, t), S(ζ, t))dζ, j = 1, . . . , m, 0 < z < L(t), t > 0. (3.8)

Similarly, the following integral equations for Ψi are obtained:

Ψi(z, t) = ψ∗
i (t) + D−1

M,i

∫ z

0

(L− z)rψ,i(ζ, S(ζ, t),Ψ(ζ, t))dζ

+D−1
M,i

∫ L

z

(L− ζ)rψ,i(ζ, S(ζ, t),Ψ(ζ, t))dζ

+
h

D∗
M,i

∫ L

0

rψ,i(ζ, S(ζ, t),Ψ(ζ, t))dζ, i = 1, . . . , n, 0 < z < L(t), t > 0. (3.9)

From (3.8), it follows

∂Sj
∂z

(L, t) = −D−1
j

∫ L

0

rS,j(ζ,X(ζ, t), S(ζ, t))d ζ. (3.10)

Considering (3.10) in (2.7), the equation for S∗
j (t) writes

Ṡ∗
j (t) = (A/V )

∫ L

0

rS,j(ζ,X(ζ, t), S(ζ, t))dζ + (Q/V )(S in
j − S∗

j (t)).

Integrating the last equation over time leads to the following integral equation for S∗
j (t):

S∗
j (t) =

∫ t

0

exp(−Q(t− τ)/V )dτ

∫ L

0

(A/V )rS,j(ζ,X(ζ, τ), S(ζ, τ))dζ

+ Sinj , j = 1, . . . , m, t > 0. (3.11)

Following the same reasoning, a similar equation is obtained for ψ∗
i (t)

ψ∗
i (t) =

∫ t

0

exp(−Q(t− τ)/V )dτ

∫ L

0

(A/V )rψ,i(ζ, S(ζ, τ),Ψ(ζ, τ))dζ

+ψin
i , i = 1, . . . , n, t > 0. (3.12)

The integral equation for L(t) is obtained from (2.4)

L(t) = L0 +

∫ t

0

u(L(τ), τ) dτ−
∫ t

0

σd(L(τ)) dτ, t > 0. (3.13)
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Note that under the hypotheses σd = 0, equations (3.8), (3.9), (3.11) and (3.12) can be

re-written by introducing the change of variable ζ = c(ζ0, t), ζ0 < L0 and considering that

the free boundary L(t) is the characteristic line z = c(L0, t). They take the following form:

Sj(c(z0, t), t) = S∗
j (t) + D−1

j

∫ z0

0

(c(L0, t) − c(z0, t))rS,j(c(ζ0, t),X(c(ζ0, t), t), S(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0 + D−1

j

∫ L0

z0

(c(L0, t) − c(ζ0, t))rS,j(c(ζ0, t),X(c(ζ0, t), t), S(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0 +

h

D∗
j

∫ L0

0

rS,j(c(ζ0, t),X(c(ζ0, t), t), S(c(ζ0, t), t))
∂c

∂ζ0
(ζ0, t)dζ0,

j = 1, . . . , m, 0 < z0 < L0, t > 0, (3.14)

Ψi(c(z0, t), t)

= ψ∗
i (t) + D−1

M,i

∫ z0

0

(c(L0, t) − c(z0, t))rψ,i(c(ζ0, t), S(c(ζ0, t), t),Ψ(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0 + D−1

M,i

∫ L0

z0

(c(L0, t) − c(ζ0, t))rψ,i(c(ζ0, t), S(c(ζ0, t), t),Ψ(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0,+

h

D∗
M,i

∫ L0

0

rψ,i(c(ζ0, t), S(c(ζ0, t), t),Ψ(c(ζ0, t), t))
∂c

∂ζ0
(ζ0, t)dζ0,

i = 1, . . . , n, 0 < z0 < L0, t > 0, (3.15)

S∗
j (t) = S in

j +

∫ t

0

exp(−Q(t− τ)/V )dτ

∫ L0

0

(A/V )rS,j(c(ζ0, t),X(c(ζ0, t), t), S(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0, j = 1, . . . , m, t > 0, (3.16)

ψ∗
i (t) = ψin

i +

∫ t

0

exp(−Q(t− τ)/V )dτ

∫ L0

0

(A/V )rψ,i(c(ζ0, t), S(c(ζ0, t), t),Ψ(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0, i = 1, . . . , n, t > 0. (3.17)

4 Existence and uniqueness theorem

As outlined at the end of Section 2, the integral equations introduced in Section 3 depend

on time and space variable z0 defined in the fixed domain 0 � z � L0. This result is

essential to prove the existence and uniqueness of solutions. Indeed, following [18, 19], a

suitable contractive map can be introduced in the space of continuous functions and the
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fixed point theorem can be applied. By setting

xi(z0, t) = Xi(c(z0, t), t), i = 1, . . . , n, x = (x1, . . . , xn),

sj(z0, t) = Sj(c(z0, t), t), j = 1, . . . , m, s = (s1, . . . , sm),

ψi(z0, t) = Ψi(c(z0, t), t), i = 1, . . . , n, ψ = (ψ1, . . . , ψn),

and introducing the vector of unknown variables x∗ = (x∗1 , . . . , x
∗
3n+2+2m) such that

x∗i = xi, i = 1, . . . , n, x∗n+1 = c, x∗n+2 = ∂c/∂z0, x
∗
n+2+j = S∗

j ,

x∗n+2+m+j = sj , j = 1, . . . , m, x∗n+2+2m+i = ψ∗
i , x

∗
2n+2+2m+i = ψi, i = 1, . . . , n,

the integral equations (3.5)–(3.7), (3.14)–(3.17) are converted to the following more compact

equations:

x∗i (z0, t) = ϕi(z0) +

∫ t

0

Fi(τ, x
∗(z0, τ))dτ, i = 1, . . . , n, 0 � z0 � L0, (4.1)

x∗n+1(z0, t) = z0 +

∫ t

0

dτ

∫ z0

0

Fn+1(τ, x
∗(ζ0, τ))dζ0, 0 � z0 � L0, (4.2)

x∗n+2(z0, t) = 1 +

∫ t

0

Fn+2(τ, x
∗(z0, τ))dτ, 0 � z0 � L0, (4.3)

x∗n+2+j(t) = S in
j +

∫ t

0

dτ

∫ L0

0

Fn+2+j(t, τ, x
∗(ζ0, t))dζ0, j = 1, . . . , m, (4.4)

x∗n+2+m+j(z0, t) = x∗n+2+j(t) +

∫ z0

0

F1
n+2+m+j(x

∗(ζ0, t))dζ0 +

∫ L0

z0

F2
n+2+m+j(x

∗(ζ0, t))dζ0

+

∫ L0

0

F3
n+2+m+j(x

∗(ζ0, t))dζ0, j = 1, . . . , m, 0 < z0 < L0, (4.5)

x∗n+2+2m+i(t) = ψin
i +

∫ t

0

dτ

∫ L0

0

Fn+2+2m+i(t, τ, x
∗(ζ0, t))dζ0, i = 1, . . . , n, (4.6)

x∗2n+2+2m+i(z0, t) = x∗n+2+2m+i(t) +

∫ z0

0

F1
2n+2+2m+i(x

∗(ζ0, t))dζ0

+

∫ L0

z0

F2
2n+2+2m+i(x

∗(ζ0, t))dζ0

+

∫ L0

0

F3
2n+2+2m+i(x

∗(ζ0, t))dζ0, i = 1, . . . , n, 0 < z0 < L0, (4.7)

where the functions Fh, h = 1, . . . , 3n+ 2 + 2m denote the integrand functions in equations

(3.5)–(3.7), (3.14)–(3.17). The following result can be proved.
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Theorem 1 Assume that

(i) the functions x∗h (z0, t) are continuous on I = [0, L0] × [0, T1], L0 > 0, T1 > 0, h =

1, . . . , 3n+ 2 + 2m;

(ii) ϕi(z0) are continuous functions on I = [0, L0] × [0, T1], L0 > 0, T1 > 0, i = 1, . . . , n,

and Sinj , ψ
in
i are positive constants j = 1, . . . , m, i = 1, . . . , n;

(iii) |x∗i −ϕi| � Ki, i = 1, . . . , n; |x∗n+1−z0| � Kn+1; 1 � x∗n+2 � 1+Kn+2; |x∗n+2+j−Sinj | �
Kn+2+j , j = 1, . . . , 2m; |x∗n+2+2m+i − ψini | � Kn+2+2m+i, i = 1, . . . , 2n, where Kh =

constant > 0;

(iv) G =
∑n

i=1(rM,i(c(z0, t), t, x(z0, t), s(z0, t))+ri(c(z0, t), t, s(z0, t),ψ(z0, t))) is essentially pos-

itive;

(v) Fh are bounded and Lipschitz continuous functions with respect to x∗h , h = 1, . . . , 3n+

2 + 2m,

Mh = max |Fh|, h = 1, . . . , n+ 2 + m,

M1
n+2+m+j = max |F1

n+2+m+j |, M2
n+2+m+j = max |F2

n+2+m+j |,
M3

n+2+m+j = max |F3
n+2+m+j |,

Mn+2+m+j = max{M1
n+2+m+j ,M

2
n+2+m+j ,M

3
n+2+m+j}, j = 1, . . . , m,

Mn+2+2m+i = max |Fn+2+2m+i|, i = 1, . . . , n,

M1
2n+2+2m+i = max |F1

2n+2+2m+i|, M2
2n+2+2m+i = max |F2

2n+2+2m+i|,
M3

2n+2+2m+i = max |F3
2n+2+2m+i|

M2n+2+2m+i = max{M1
2n+2+2m+i,M

2
2n+2+2m+i,M

3
2n+2+2m+i}, i = 1, . . . , n,

when (z0, t) ∈ [0, L0] × [0, T1] and the functions x∗h satisfy the assumptions (i)–(iv).

Then, the integral system (4.1)–(4.7) has a unique solution x∗h ∈ C0([0, L0] × [0, T ]), h =

1, . . . , 3n+ 2 + 2m, where

T = min{T1,
K1

M1
, . . . ,

Kn

Mn

,
Kn+1

L0Mn+1
,
Kn+2

Mn+2
,
Kn+3

L0Mn+3
, . . . ,

Kn+2+m

L0Mn+2+m
,

Kn+2m+3

L0Mn+2m+3
, . . . ,

K2n+2m+2

L0M2n+2m+2
}.

All the calculations are reported in Appendix A as they are a generalization of [18, 19]

with small modifications. The previous result represents a crucial point in showing the

biological consistency of the proposed model. The existence and uniqueness result has

been obtained for an arbitrary number of microbial species n and dissolved substrates m,

with non-linear reaction terms. The uniqueness result provides a solid base for the further

numerical calculations. Moreover, we stress that all hypotheses of the theorem are not

suggested by mathematical artefacts, but they are mostly qualitative and naturally derived

from biological considerations.
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5 Anammox invasion model

In the previous sections, we performed the qualitative analysis for the invasion free bound-

ary value problem of a biofilm reactor model. In particular, a result on the existence and

uniqueness of solutions was provided. However, it is apparent that when complex biolo-

gical cases are discussed, only numerical simulations can provide satisfactory predictions.

The previous qualitative analysis gives a solid base for calculations. For the numerical

solution of the model, we use an extension of the numerical method proposed in [22].

The method of characteristics is used to track biofilm expansion, while a finite differ-

ence approximation is adopted for the diffusion reactions. We extended this method to

account for the new independent variables Ψi which are treated in the same manner of

Sj . A first-order approximation is used for the newly introduced variables ψ∗
i and S∗

j .

An original code is implemented in MatLab platform and simulations are run for a set

target simulation time T that will be specified later on. The time to compute the values of

the unknown variables is in the order of hours to days, depending on the specific target

simulation time.

The simulated biofilm system consists of bacterial cells accumulating on a surface sur-

rounded by an aquatic region and reproduces a typical multiculture and multisubstrate

process which establishes in the deammonification units of the wastewater treatment

plants. The deammonification process consists of the autotrophic nitrogen removal car-

ried out by two microbial groups, the ammonium oxidizing bacteria AOB (X1) which

oxidize ammonium SNH4
(S1) partially to nitrite SNO2

(S2) aerobically, and the anaerobic

ammonium oxidizing bacteria AMX (X2), which subsequently convert the remaining am-

monium and the newly formed nitrite into nitrogen gas and nitrate SNO3
(S3) in trace

concentrations. This process is also known as partial nitritation/anammox [23]. In multis-

pecies biofilms, the AOB and AMX compete with other two major microbial groups: the

nitrite oxidizing bacteria NOB (X3), which oxidize SNO2
to SNO3

in aerobic conditions and

compete with AOB for oxygen SO2
(S5) and AMX for nitrite, and heterotrophic bacteria

HB (X4). The latter can be further classified in ordinary heterotrophic organisms oxidizing

the organic matter and denitrifiers reducing nitrate to nitrite and nitrite to dinitrogen gas

by consuming organic carbon SOC (S4). HB compete with AOB and NOB for oxygen and

with NOB for nitrite, the limiting substrate of AMX in most instances. The establishment

and proliferation of AMX in such constituted biofilms strictly depends on the formation

of an anoxic zone in the inner parts of the matrix where NOB cannot grow due to oxygen

limitation.

The mathematical model takes into consideration the dynamics of the five microbial

species Xi(z, t), including inert material X5 which derives from microbial decay, and the

five reactive components Sj(z, t) within the biofilm. The corresponding concentrations in

the bulk liquid S∗
j (t) are taken into account as well. Planktonic cells have been considered

for both AMX and HB species as the model is aimed at simulating the invasion of a

constituted biofilm by heterotrophic and Anammox bacteria after the establishment of

a favourable environmental niche. Two modelling scenarios have been considered: the

case of AMX as a single invading species and the case of AMX and HB invasion and

establishment in an autotrophic biofilm. Hereafter, they will be referred as Model 1,

considered in Section 5.1, and Model 2 that will be discussed in Section 5.2.
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Figure 1. Initial biofilm configuration for Model 1. The substratum is placed at z = 0.

5.1 Model 1 – One invading species

Model 1 considers a single invading species: the anaerobic ammonium oxidizing bacteria

AMX (X2). The mathematical formalization of the problem is provided below. The

microbial species dynamics is governed by equation (2.1) rewritten in terms of fi for

convenience

∂fi
∂t

+
∂

∂z
(ufi) = rM,i(z, t, f , S) + ri(z, t, S,Ψ), i = 1, . . . , 5. (5.1)

The following initial volume fractions are associated to equation (5.1):

f1(z, 0) = 0.6, f2(z, 0) = 0.0, f3(z, 0) = 0.22, f4(z, 0) = 0.18, f5(z, 0) = 0.0. (5.2)

The biofilm is assumed to be initially constituted only by the species X1 (AOB), X3 (NOB),

X4 (HB). The invasion of the species X2 (AMX) is simulated. The initial biofilm thickness

L0 is given by

L0 = 0.1 mm. (5.3)

According to the common practice in biofilm modelling [24], the detachment flux σd(L(t))

is assumed to be a known function of L, in particular,

σd(L(t)) = λL2(t),

where λ denotes the constant erosion parameter.

A representation of the initial microbial distribution is reported in Figure 1.

The net specific biomass growth rates rM,i, i = 1, . . . , 4 are expressed as

rM,i = (μi(S) − kd,i)fi,

where the function μi(S) denotes the ith biomass specific growth rate and depends on

the anabolic reactions performed by the ith microbial species. It is usually formulated as

Monod kinetics as detailed below. The term kd,i accounts instead for the forms of biomass

loss and energy requirements not associated with growth, including decay, maintenance,

endogenous respiration, lysis, predation and death. The net specific growth rates associated
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to Xi, i = 1, . . . , 4 are the following:

rM,1 = (μ1(S) − kd,1)f1 =

(
μmax,1

S1

K1,1 + S1

S5

K1,5 + S5
− kd,1

)
f1, (5.4)

rM,2 = (μ2(S) − kd,2)f2 =

(
μmax,2

K2,5

K2,5 + S5

S1

K2,1 + S1

S2

K2,2 + S2
− kd,2

)
f2, (5.5)

rM,3 = (μ3(S) − kd,3)f3 =

(
μmax,3

S2

K3,2 + S2

S5

K3,5 + S5

S1

S1 +K3,1
− kd,3

)
f3, (5.6)

rM,4 = (μ4,1(S) + μ4,2(S) + μ4,3(S) − kd,4)f4

=

(
μmax,4

S4

K4,4 + S4

S5

K4,5 + S5

S1

S1 +K4,1
+ β1μmax,4

K4,5

K4,5 + S5

S4

K4,4 + S4

S3

K4,3 + S3

S3

S2 + S3

× S1

S1 +K4,1
+ β2μmax,4

K4,5

K4,5 + S5

S4

K4,4 + S4

S2

K4,2 + S2

S2

S2 + S3

S1

S1 +K4,1
− kd,4

)
f4, (5.7)

where μmax,i denotes the maximum net growth rate for biomass i, Ki,j the affinity constant

of substrate j for biomass i, β1 and β2 the reduction factor for denitrification nitrate to

nitrite and nitrite to nitrogen gas, respectively.

The autotrophic performance in the deammonification process relies on the activity of

X1 (AOB) and X2 (AMX) and results in the S1 (SNH4
) conversion to dinitrogen gas

via S2 (SNO2
). In aerobic environments, S1 (SNH4

) represents the preferential substrate

for X1 (AOB) growth (5.4). X2 (AMX) proliferate, in turn, on S1 (SNH4
) and S2 (SNO2

)

and their metabolic activity is strongly affected by the oxygen concentration, the latter

being inhibitory even at low concentrations (5.5). Moreover, they rely on the production

of S2 (SNO2
) by X1 (AOB), when that substrate is not provided from the bulk liquid.

X3 (NOB) oxidize S2 (SNO2
) to S3 (SNO3

) under aerobic conditions and thus they compete

with X2 (AMX) for S2 (SNO2
) (5.6). X4 (HB) are considered facultative bacteria: they

can aerobically oxidize the organic matter (μ4,1) or perform denitrification reactions over

S3 (SNO3
) and S2 (SNO2

) (μ4,2 and μ4,3, respectively). Indeed, in presence of S4 (SOC),

S2 (SNO2
) and S3 (SNO3

) can be contextually consumed by X4 (HB) according to equation

(5.7). In particular, S3 (SNO3
) and S2 (SNO2

) are reduced to dinitrogen gas in a sequential

process which first converts S3 (SNO3
) into S2 (SNO2

), the latter being then reduced to

N2. In addition, the ratios S3/(S2 + S3) and S2/(S2 + S3) varying between 0∼1, indicate

the percentage of biomass growing on nitrate and/or nitrite, respectively. Inert has been

treated as an additional microbial species whose growth rate depends on the decay of all

the active species

rM,5 = kd,1f1 + kd,2f2 + kd,3f3 + kd,4f4. (5.8)

The specific growth rates ri induced by the switch of the planktonic cells to the sessile

mode of growth are defined as

r1 = r3 = r4 = r5 = 0, (5.9)

r2 = kcol,2
Ψ2

kψ,2 +Ψ2

K2,5

K2,5 + S5

S1

K2,1 + S1

S2

K2,2 + S2
. (5.10)
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Note that the growth rate terms r2 for X2 (AMX) is newly introduced as Monod kinetics

and indicate that the transition of bacteria from planktonic state Ψ2 into the sessile

state X2 is controlled by the formation of a specific environmental niche that is strictly

connected to the local concentration of dissolved substrates. The presence of planktonic

species is fundamental for the occurrence of the invasion process, as better specified in

the following lines.

Remark 1 Consider the second equation in (5.1) with rM,2 given by (5.5) and initial condition

f2(z, 0) = 0. If it is supposed that r2 = 0, then the mentioned equation admits the unique

solution f2(z, t) = 0 and the species X2 cannot develop.

The diffusion of substrates is governed by

∂Sj
∂t

− Dj
∂2Sj

∂z2
= rS,j(z, t,X, S), j = 1, . . . , 5, (5.11)

with the following initial boundary conditions:

Sj(z, 0) = 0,
∂Sj
∂z

(0, t) = 0, j = 1, . . . , 5, (5.12)

Sj(L(t), t) = S∗
j (t), j = 1, . . . , 4, S5(L(t), t) = S5 = 1.5 mg O2/L. (5.13)

The last condition simulates a continuous aeration of the biofilm reactor, [15].

The net substrate conversion rates account for both the microbial production and

consumption (positive and negative terms, respectively), and can be formulated from the

corresponding microbial growth rates through the specific microbial yield Yi. They are

usually expressed as double-Monod kinetics as presented below.

The ammonium conversion rate rS,1 is expressed as

rS,1 = (− 1

Y1
− iN,B)μ1X1 +(− 1

Y2
− iN,B)μ2X2− iN,B(μ3X3 +μ4,1X4 +μ4,2X4 +μ4,3X4), (5.14)

where Yi denotes the yield for biomass i and iN,B is the nitrogen content in biomass.

Ammonium can be directly consumed by AOB and AMX (first and second term in

(5.14)), and it is usually uptaken by other microbial species for anabolic reactions (third

term in (5.14)).

The nitrite and nitrate conversion rates rS,2 and rS,3 can be written as

rS,2 =
1

Y1
μ1X1 − (

1

Y2
+

1

1.14
)μ2X2 −

1

Y3
μ3X3 − (1 − 1

Y4
)

1

1.14
μ4,2X4 + (1 − 1

Y4
)

1

1.72
μ4,3X4,

(5.15)

rS,3 = (
1

1.14
)μ2X2 +

1

Y3
μ3X3 + (1 − 1

Y4
)

1

1.14
μ4,2X4. (5.16)

In aerobic environments, nitrite S2 is produced through the ammonium conversion

catalysed by AOB and it is further oxidized to nitrate S3 by NOB (first and third term

in (5.15)). Obviously, the latter represents a production rate for nitrate (second term in
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(5.16)). Conversely, in anoxic conditions, AMX bacteria convert nitrite and ammonium

in dinitrogen gas (second term in (5.15)), while HB consume both the oxidized nitrogen

compounds by reducing nitrate to nitrite (fourth and third term in (5.15) and (5.16),

respectively) and by using nitrite as an oxygen source (fifth term in (5.15)).

The organic carbon conversion rate rS,4 is expressed by

rS,4 = − 1

Y4
(μ4,1X4 + μ4,2X4 + μ4,3X4), (5.17)

and indicates the S4 consumption due to X4 metabolism in both aerobic and anoxic

conditions.

Finally, rS,5 describes the oxygen conversion rate within the multispecies biofilm

rS,5 = (1 − 3.43

Y1
)μ1X1 + (1 − 1.14

Y3
)μ3X3 + (1 − 1

Y4
)μ4,1X4, (5.18)

where the three terms in (5.18) are the net consumption rates due to AOB, NOB and HB

species using oxygen for their metabolisms. The stoichiometric coefficients in equations

(5.14)–(5.18) have been calculated from the reactions describing the two-step nitrification

process and the oxidation–reduction half reactions related to the denitrification process

[25]. They represent (i) 3.43 the amount of oxygen expressed in grams needed for

ammonium oxidation to nitrite, (ii) 1.14 the amount of oxygen expressed in grams

needed for nitrite oxidation to nitrate, (iii) 1.72 the amount of COD expressed in grams

needed to reduce nitrite to dinitrogen gas, (iv) 1.14 the amount of COD expressed in

grams necessary to reduce nitrate to nitrite.

The functions S∗
j (t) are governed by the following initial value problem for ordinary

differential equations:

V Ṡ∗
j = −ADj

∂Sj
∂z

(L(t), t) + Q(S in
j − S∗

j (t)), j = 1, . . . , 4. (5.19)

The initial conditions for S∗
j are the following:

S in
1 = 1, 200 mg N/L, S in

2 = S in
3 = 0, S in

4 = 120 mg COD/L. (5.20)

The inlet concentrations are non-zero only for S1 (SNH4
) and S4 (SOC), reproducing the

case of a biofilm reactor fed with wastewater containing both ammonium nitrogen and

organic carbon.

The diffusion and reaction of planktonic cells within the biofilm matrix is governed by

the following equations:

∂Ψi

∂t
− DM,i

∂2Ψi

∂z2
= rΨ,i(z, t, S,Ψ), i = 1, . . . , 5, (5.21)

where DM,i denotes the diffusivity coefficient. The conversion rates of planktonic cells due

to the invasion process are expressed by

rψ,i = − 1

Yψ,i
ri, i = 1, . . . , 5, (5.22)
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with Yψ,i being the yield of sessile species on planktonic ones. They are assumed propor-

tional to ri, i.e. described by the same Monod kinetics [14]. The following initial boundary

conditions are associated to equation (5.21):

Ψi(z, 0) = 0,
∂Ψi

∂z
(0, t) = 0, Ψi(L(t), t) = ψ∗

i (t), i = 1, . . . , 5. (5.23)

The functions ψ∗
i (t) satisfy the following initial value problem for ordinary differential

equations:

Vψ̇∗
i = −ADM,i

∂Ψi

∂z
(L(t), t) + Q(ψin

i − ψ∗
i (t)), i = 1, . . . , 5, (5.24)

ψin
1 = 0, ψin

2 = 1.0 mg COD/L, ψin
3 = ψin

4 = ψin
5 = 0. (5.25)

Note that for i = 1, the equation for Ψ1 is homogeneous because of hypothesis (5.9)

and equation for ψ∗
1 does not contain the term ψin

1 because of hypothesis (5.25). Therefore,

the system of the two equations admits the unique solution Ψ1(z, t) = 0, ψ∗
1 (t) = 0. Same

result holds for Ψ3(z, t) = 0, ψ∗
3 (t) = 0, Ψ4(z, t) = 0, ψ∗

4 (t) = 0, Ψ5(z, t) = 0, ψ∗
5 (t) = 0.

The biofilm reactor is characterized by the following operational parameters: the flow

rate Q is set to 3.15 L/d, the surface area available for biofilm attachment and proliferation

A is equal to 1 m2 and the reactor volume is of 3.15 L, leading to a hydraulic retention

time of 1 day. The biofilm mainly grows on the surfaces of suspended carriers, which

continuously move due to the aeration system. The reactor is operated in continuous

conditions. The biofilm is modelled as a one-dimensional, continuous, homogeneous

system growing in a direction perpendicular to the substratum.

The values of the stoichiometric and kinetic parameters used for numerical simulations

are adopted from [2] and are reported for convenience in Tables 1 and 2. The values of

the erosion parameter λ and the diffusion coefficients for the planktonic species DM,i have

been reported in Table 2 as well.

The simulation results for the multispecies biofilm performance when the AMX invasion

is considered are reported in Figures 2 and 3. After 1 day of simulation time (Figure

2(A)), it is possible to notice that the microbial distribution into the biofilm is still affected

by the initial conditions and the colonization phenomenon has not occurred yet. After 5

days of simulation time (Figure 2(B) and (D)), the biofilm experiences oxygen limitation,

due to the low concentration maintained within the bulk liquid. As a consequence, the

NOB concentration significantly decreases with respect to the initial fraction, with the

AOB and HB being the two species proliferating the most. The AOB activity is confirmed

by the decrease in SNH4
concentration within the bulk liquid with respect to the inlet

concentration and a concurrent increase in SNO2
concentration (Figure 2(C) and (D)).

Note that the latter is higher than SNO3
concentration as the metabolic activity of NOB

is limited by the low oxygen concentration. The organic carbon is completely depleted

within the biofilm and its concentration is lower than 1 mg/L.

Figure 3(A) displays biofilm configuration after 20 days of system operation: never-

theless the concomitant formation of an anoxic zone in the inner part of the biofilm

(Figure 3(C)) and a non-zero Ψ2(ψAMX) concentration all over the biofilm (Figures 2(C)

and (D)–3(C) and (D)), AMX have not yet established in sessile form. This might be

due to the very slow growth rate of AMX. The biofilm is dominated by AOB, while
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Table 1. Kinetic and stoichiometric parameters used for numerical simulations

Symbol Definition Value Units

Y1 X1 yield on S1 0.150 g COD/g N

Y2 X2 yield on S1 0.159 g COD/g N

Y3 X3 yield on S1 0.041 g COD/g N

Y4 X4 yield on S4 0.63 g COD/g COD

μmax,1 Maximum growth rate of X1 2.05 d−1

μmax,2 Maximum growth rate of X2 0.08 d−1

μmax,3 Maximum growth rate of X3 1.45 d−1

μmax,4 Maximum growth rate of X4 6.0 d−1

K1,1 S1 affinity constant for X1 2.4 mg N/L

K1,5 S5 affinity constant for X1 0.6 mg O2/L

K2,1 S1 affinity constant for X2 0.07 mg N/L

K2,2 S2 affinity constant for X2 0.05 mg N/L

K2,5 S5 inhibiting constant for X2 0.01 mg O2/L

K3,1 S1 affinity constant for X3 0.1 mg N/L

K3,2 S2 affinity constant for X3 5.5 mg N/L

K3,5 S5 affinity constant for X3 2.2 mg O2/L

K4,4 S4 affinity constant for X4 4.0 mg COD/L

K4,5 S5 affinity/inhibiting constant for X4 0.2 mg O2/L

K4,2 S2 affinity constant for X4 0.5 mg N/L

K4,3 S3 affinity constant for X4 0.5 mg N/L

K4,1 S1 affinity constant for X4 0.1 mg N/L

kd,1 Decay constant for X1 0.0068 d−1

kd,2 Decay constant for X2 0.00026 d−1

kd,3 Decay constant for X3 0.004 d−1

kd,4 Decay constant for X4 0.06 d−1

Table 2. Kinetic and Ssoichiometric parameters used for numerical simulations

Symbol Definition Value Units

iN,B N content of biomass 0.07 g N/g COD

β1 Reduction factor for denitrification NO3–NO2 0.8 –

β2 Reduction factor for denitrification NO2–N2 0.8 –

kcol,2 Maximum colonization rate of ψ2 0.0001 d−1

kcol,4 Maximum colonization rate of ψ4 0.0001 d−1

Yψ,2 Yield of X2 on Ψ2 0.001 –

Yψ,4 Yield of X4 on Ψ4 0.001 –

kψ,2 Kinetic constant for Ψ2 0.000001 mg COD/L

kψ,4 Kinetic constant for Ψ4 0.000001 mg COD/L

λ Erosion parameter 50 m−1d−1

DM,2 Diffusion coefficient for Ψ2 0.00001 m2d−1

DM,4 Diffusion coefficient for Ψ4 0.00001 m2d−1
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Figure 2. Microbial species distribution (A,B) and substrate trends (C,D) within a multispecies

biofilm undergoing ψAMX colonization after 1(A,C) and 5(B,D) days simulation time. The substratum

is placed at z = 0. SNH4 , SNO2and SNO3 concentrations are reduced by a factor of 0.002, 0.005 and

0.005, respectively.

the inert material predominates in the inner layer. Substrate trends assume the following

configuration: SNH4
increases in the bulk liquid due to the lower AOB activity in the

outer part of the biofilm, where SO2
is totally consumed and its depletion determines the

formation of an anoxic zone. Moreover, SNO2
represents the main abundant product, while

SNO3
and SOC are close to zero all over the biofilm (Figure 3(C)). At day 50 (Figure 3(B)

and (D)), AMX have colonized the environmental niche that formed at the bottom of

the biofilm (Figure 3(B)). AOB still dominate the aerobic zone, while NOB are confined

to the internal layers. SNO3
concentration is close to zero as the metabolism of NOB

significantly slows down. Note that the availability of SO2
within the biofilm is strictly

connected to the relative penetration depth, which when decreased leads to an increasing

anoxic zone (Figure 3(D)). Furthermore, AMX grow only where favourable environmental

conditions establish despite the biofilm results fully penetrated by the same bacteria in

motile/colonizing form Ψ2 for all simulation times (Figures 2(B) and (D)–3(B) and (D)).

AMX invasion is significantly influenced by many parameters such as environmental

factors (i.e. pH and temperature) and operational conditions (i.e. dilution rate, organic

carbon/nitrogen ratio and aeration pattern). The main goals for the further computational

studies are to determine how the invasion phenomenon is affected by the oxygen and
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Figure 3. Microbial species distribution (A,B) and substrate trends (C,D) within a multispecies

biofilm undergoing Ψ2 colonization after 20 (A,C) and 50 (B,D) days simulation time. The sub-

stratum is placed at z = 0. SNH4 , SNO2and SNO3 concentrations are reduced by a factor of 0.002,

0.005 and 0.005, respectively.

organic carbon availability. For this reason, we vary the concentration of oxygen in the

bulk liquid S5 and the organic carbon concentration in the inlet S in
4 in the range [0.5–6]

and [120–750], respectively. In the following, we will refer to Sections 5.1.1 and 5.1.2 for

the applications with the variable oxygen and organic carbon. We assumed the initial

condition reported in Figure 1 for all the simulation studies.

5.1.1 Model 1 – Assessment A – Effect of oxygen concentration

Model outcomes for the simulation studies with variable oxygen are summarized in

Figures 4 and 5 in terms of biomass distribution and substrate concentrations within the

bulk liquid. Four different oxygen levels (0.5–1.5–3–6 mg O2/L) have been tested and the

simulations have been run for a target time of 50 days. AMX are strictly inhibited by

the oxygen concentration and, as expected, their total volume fraction is found to slightly

increase when varying the oxygen level from 6 to 0.5. The optimal condition for AMX

establishment and proliferation in terms of mass within the biofilm occurs at 3 mg O2/L,

although the relative total biofilm fraction is lower with respect to 0.5 mg O2/L. Of
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Figure 4. Total biofilm volume fractions at different bulk liquid oxygen concentrations after

50 days simulation time.

course, the NOB fraction is higher when the oxygen concentration is equal to 6 mg O2/L.

Regarding nitrogen removal, it is possible to note that the SNH4
concentration progressively

decreases and consequently SNO2
increases going from 0.5 to 6 mg O2/L (Figure 5). These

substrates show fully penetrated profiles (data not shown), and consequently the AMX

can grow for all the cases with their maximum specific growth rate, but only where anoxic

conditions are established.

5.1.2 Model 1 – Assessment B – Effect of inlet organic carbon concentration

The second simulation studies investigated the effect of increasing carbon/nitrogen ratios

on AMX performances. The oxygen concentration within the bulk liquid has been fixed to

3 mg O2/L. As shown in Figures 6 and 7, four different concentrations of the inlet organic

carbon S in
4 have been tested (120– 250–500– 750 mg COD/L) and all the simulations have

been run for 50 days. Figure 6 shows that the AOB volume fraction is prevalent when low

organic carbon is available for HB, which compete for oxygen with all the other aerobic

species in the external part of the biofilm. AMX invasion and proliferation (in terms of

mass) is favoured at S in
4 = 500 mg COD/L, since the NOB significantly decrease when

increasing the inlet organic carbon concentration. The highest carbon content leads to the

highest inerts volume fraction as HB are strongly predominant and out-compete all the

other species.

According to the volume fraction distribution, total nitrogen removal is higher when

both AMX and AOB can easily perform their metabolisms, while NOB activity is inhibited

by HB. This particular condition is more evident when the inlet carbon concentration is

250 mg COD/L and a higher amount of dissolved oxygen is utilized by HB. Ammonium

removal is not significant when both AMX and AOB are not prevalent within the biofilm
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Figure 5. Substrate concentrations within the bulk liquid at different bulk liquid oxygen con-

centrations after 50 days simulation time. The values reported have been rounded to the nearest

integer.

and organic carbon removal starts to be incomplete when increasing S in
4 concentration to

750 mg COD/L.

5.2 Model 2 – Two invading species

In this section, the model was applied to the case of two species invasion, HB and AMX,

respectively. The microbial species growth is governed by equation (5.1) with the following

initial volume fractions:

f1(z, 0) = 0.7, f2(z, 0) = 0, f3(z, 0) = 0.3, f4(z, 0) = 0, f5(z, 0) = 0. (5.26)

Only the species X1 (AOB) and X3 (NOB) are supposed to inhabit the biofilm at t = 0.

The invasion of the species X2 (AMX) and X4 (HB) is simulated. The initial biofilm

thickness L0 is given by (5.3). A representation of the initial microbial distribution is

reported in Figure 8.

The biomass growth rates rM,i are the same as Model 1, formulas (5.4)–(5.8). The specific

growth rates ri induced by the switch of the planktonic cells to the sessile mode of growth

are defined as

r1 = r3 = r5 = 0, (5.27)

r2 = kcol,2
Ψ2

kψ,2 +Ψ2

K2,5

K2,5 + S5

S1

K2,1 + S1

S2

K2,2 + S2
, (5.28)
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Figure 6. Total biofilm volume fractions at different inlet organic carbon concentrations (S in
4 )

after 50 days simulation time.

r4 = kcol,4
Ψ4

kψ,4 +Ψ4

(
S4

K4,4 + S4

S5

K4,5 + S5

S1

S1 +K4,1
+ β1

K4,5

K4,5 + S5

S4

K4,4 + S4

S3

K4,3 + S3

S3

S2 + S3

× S1

S1 +K4,1
+ β2

K4,5

K4,5 + S5

S4

K4,4 + S4

S2

K4,2 + S2

S2

S2 + S3

S1

S1 +K4,1

)
. (5.29)

The growth rate terms r2 and r4 for X2 (AMX) and X4 (HB), respectively, indicate

that the transition of bacteria from planktonic state Ψ2, Ψ4 into the sessile state X2, X4

is controlled by the formation of specific environmental niches connected to the local

concentration of dissolved substrates. As in Model 1, consider the second and fourth

equations in (5.1) with rM,2 and rM,4 given by (5.5) and (5.7), respectively. If it is supposed

that r2 = r4 = 0, then the mentioned equations with initial condition f2(z, 0) = f4(z, 0) = 0

admit the unique solution f2(z, t) = f4(z, t) = 0 and the species X2 and X4 cannot develop.

The initial boundary conditions for Sj and the net substrate conversion rates are

the same as Model 1, formulas (5.12), (5.13) and (5.14)–(5.18), respectively. The initial

conditions for S∗
j are given by (5.20). The initial boundary conditions for Ψi are same as

Model 1, formula (5.23). The initial conditions for ψ∗
i are the following:

ψin
1 = 0, ψin

2 = 1.0 mg COD/L, ψin
3 = 0, ψin

4 = 1.2 mg COD/L, ψin
5 = 0. (5.30)

Note that, by using the same arguments as Model 1, it can be shown that Ψ1(z, t) = 0,

ψ∗
1 (t) = 0, Ψ3(z, t) = 0, ψ∗

3 (t) = 0, Ψ5(z, t) = 0, ψ∗
5 (t) = 0.

The operational parameters of the biofilm reactor are the same as Model 1.

In Figure 9, the simulation results for the multispecies biofilm system with two invading

species are reported. Differently from Model 1, the X4 (HB) invasion is very fast and
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Figure 8. Initial biofilm configuration for Model 2. The substratum is placed at z = 0.

it is already visible after 5 days of simulation time (Figure 9(B)). This is due to the

different environmental conditions that trigger the invasion of the two microbial species.

Indeed the establishment of X2 (AMX) is dependent on the formation of an anoxic zone

within the biofilm, while X4 (HB) are facultative bacteria and can grow in both aerobic

and anoxic environments. After 20 days, the biofilm configuration is the same of the

previous application (Figures 3(A) and 9(C)) and as we can expect, the further evolution

of the system is practically the same for the two cases studied (Figures 3(B) and 9(D)).

Simulation results confirm model capability of predicting the invasion phenomenon on

time and space. Indeed, the model is able to predict the delays between the X2 (AMX) and

X4 (HB) colonizations and the location where the two planktonic species establish. To the

best of our knowledge, such results cannot be achieved by the existing continuum biofilm
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Figure 9. Microbial species distribution of a multispecies biofilm undergoing Ψ2 and Ψ4

colonization after 2(A), 5(B), 20(C), 50(D) days simulation time. The substratum is placed at z = 0.

models but they might have a significant impact on the development of new strategies for

such biofilm reactors operation.

6 Conclusion

In this work, the qualitative analysis of the free boundary problem related to the invasion

phenomenon in biofilm reactors has been discussed. The model takes into account the

dynamics of sessile species, nutrients and microbial products and planktonic cells. The

latter diffuse from the bulk liquid within the biofilm matrix, where they might switch their

status from motile to sessile and thus colonize the pre-existing biofilm. The dynamics

of the bulk liquid have been explicitly modelled by considering two systems of non-

linear ordinary differential equations which derive from mass conservation principles. An

existence and uniqueness result has been provided for the related free boundary value

problem by using the method of characteristics and the fixed point theorem. It is important

to notice that the planktonic species are just provided by the bulk liquid; however, the

reverse process which accounts for the switch from the sessile to the planktonic form of

life might occur under specific conditions. This phenomenon could be explicitly taken

into account by considering a direct dependence of the free planktonic cell reaction rates

on the concentration of the sessile bacteria. The same methodology adopted in this work
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could be easily adapted to address the existence and uniqueness questions of this new

system. In addition, future work, based on a more solid experimental evidence, could be

focused on a more detailed description of the free cells movement within the biofilm,

which might imply the consideration of DM,i as a function of the biofilm composition.

Numerical simulations related to a real biofilm system have been performed. Two specific

model applications have been analysed. Simulation results demonstrate the underlying

conclusion that the invasion model can be effectively used as a predictive tool to develop

specific reactor operation strategies. More precisely, the model can be used to predict

the optimal operational conditions (dilution rate, oxygen concentration, external carbon

content addition, etc.) which favour the establishment of the desired microbial syntrophy

or viceversa, when all the operational conditions are fixed, to verify the performance

of the biological system. Further developments might be related to the definition of a

calibration protocol through experimental data as well as the generalization to problems

regarding more complex biological cases and the consideration of stability questions

[26, 27].
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Appendix A

Proof of Theorem 1. Consider the map y = Ax∗, where A(x∗) designates the right-hand

side of equations (4.1)–(4.7). Denote by V the vector space of the continuous functions

x∗h , h = 1, . . . , 3n+2+2m, on I = [0, L0]×[0, T ]. Let us first prove that A maps V into itself.

Let Kn+2+m+j = Kn+2+j + 3Mn+2+m+jL0 and K2n+2+2m+i = Kn+2+2m+i

+3M2n+2+2m+iL0. First, hypothesis (iv), jointly with x∗n+2 � 1, implies Fn+2 � 0. Then,

|yi − ϕi| � MiT � Ki, i = 1, . . . , n,

|yn+1 − z0| � Mn+1TL0 � Kn+1,

https://doi.org/10.1017/S0956792518000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000165


1106 B. D’Acunto et al.

1 � yn+2 � 1 +Mn+2T � 1 +Kn+2,

|yn+2+j − S in
j | � Mn+2+jTL0 � Kn+2+j , j = 1, . . . , m,

|yn+2+m+j − S in
j | � |yn+2+j − S in

j | + 3Mn+2+m+jL0 � Kn+2+m+j , j = 1, . . . , m,

|yn+2+2m+i − ψin
i | � Mn+2+2m+iTL0 � Kn+2+2m+i, i = 1, . . . , n,

|y2n+2+2m+i − ψin
i | � |yn+2+2m+i − ψin

i | + 3M2n+2+2m+iL0

� K2n+2+2m+i, i = 1, . . . , n,

which is the desired result.

Let us now prove that A is a contractive map. Assume Fh Lipschitz continuous functions

with respect to x∗h , h = 1, . . . , 3n+ 2 + 2m

|Fi(τ, x∗) − Fi(τ, x̃
∗)| � λi

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = 1, . . . , n+ 2 + m,

|F1
i (τ, x

∗) − F1
i (τ, x̃

∗)| � λ1
i

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = n+ m+ 3, . . . , n+ 2 + 2m,

|F2
i (τ, x

∗) − F2
i (τ, x̃

∗)| � λ2
i

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = n+ m+ 3, . . . , n+ 2 + 2m,

|F3
i (τ, x

∗) − F3
i (τ, x̃

∗)| � λ3
i

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = n+ m+ 3, . . . , n+ 2 + 2m,

|Fi(τ, x∗) − Fi(τ, x̃
∗)| � λi

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = n+ 3 + 2m, . . . , 2n+ 2 + 2m,

|F1
i (τ, x

∗) − F1
i (τ, x̃

∗)| � λ1
i

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = 2n+ 2m+ 3, . . . , 3n+ 2 + 2m,

|F2
i (τ, x

∗) − F2
i (τ, x̃

∗)| � λ2
i

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = 2n+ 2m+ 3, . . . , 3n+ 2 + 2m.

|F3
i (τ, x

∗) − F3
i (τ, x̃

∗)| � λ3
i

3n+2+2m∑
h=1

|x∗h − x̃∗h |, i = 2n+ 2m+ 3, . . . , 3n+ 2 + 2m.

and introduce the norm

||x∗|| =

3n+2m+2∑
h=1

max
I

exp(−γt)|x∗h |,

with γ a positive constant.
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Consider x̃∗ ∈ V with ỹ = Ax̃∗. It follows

|yi − ỹi| exp(−γt) � (λi/γ)||x∗ − x̃∗||, i = 1, . . . , n,

|yn+1 − ỹn+1| exp(−γt) � (λn+1L0/γ)||x∗ − x̃∗||,

|yn+2 − ỹn+2| exp(−γt) � (λn+2/γ)||x∗ − x̃∗||,

|yn+2+j − ỹn+2+j | exp(−γt) � (λn+2+jL0/γ)||x∗ − x̃∗||, j = 1, . . . , m,

|yn+2+m+j − ỹn+2+m+j | exp(−γt) � (λ1
n+2+m+j + λ2

n+2+m+j

+λ3
n+2+m+j)L0||x∗ − x̃∗||, j = 1, . . . , m,

|yn+2+2m+i − ỹn+2+2m+i| exp(−γt) � (λn+2+2m+iL0/γ)||x∗ − x̃∗||, i = 1, . . . , n,

|y2n+2+2m+i − ỹ2n+2+2m+i| exp(−γt) � (λ1
2n+2+2m+i + λ2

2n+2+2m+i

+λ3
2n+2+2m+i)L0||x∗ − x̃∗||, i = 1, . . . , n.

Hence,

||y∗ − ỹ∗|| � Λ||x∗ − x̃∗||,
where

Λ = Λ1 + Λ2,

Λ1 =
1

γ

⎛
⎝ n∑

i=1

λi + λn+1L0 + λn+2 +

m∑
j=1

λn+2+j +

n∑
i=1

λn+2+2m+i

⎞
⎠ ,

Λ2 = L0

( m∑
j=1

(λ1
n+2+m+j + λ2

n+2+m+j + λ3
n+2+m+j) +

n∑
i=1

(λ1
2n+2+2m+i

+λ2
2n+2+2m+i + λ3

2n+2+2m+i)

)
.

Selecting γ such that Λ1 < ε, ∀ε > 0 and L0 small enough such that

L0 � (1 − ε)

( m∑
j=1

(λ1
n+2+m+j + λ2

n+2+m+j + λ3
n+2+m+j) +

n∑
i=1

(λ1
2n+2+2m+i

+λ2
2n+2+2m+i + λ3

2n+2+2m+i)

)−1

,

then Λ < 1 and the theorem is proved. �
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Appendix B

Table B1. Petersen matrix of the model application

Components 1 2 3 4 5 6 7 8 9 10

Process S1 S2 S3 S4 S5 X1 X2 X3 X4 X5 Process rate

1 Growth of X1 − 1
Y1

− iN,B
1
Y1

1 − 3.43
Y1

1 μ1X1

2 Growth of X2 - 1
Y2

− iN,B ( 1
Y2

+ 1
1.14

) 1
1.14

1 μ2X2

3 Growth of X3 −iN,B − 1
Y3

1
Y3

1 − 1.14
Y3

1 μ3X3

4 Aerobic growth of X4 −iN,B − 1
Y4

1 − 1
Y4

1 μ4,1X4

5 Growth of X4 on S3 −iN,B −(1 − 1
Y4

) 1
1.14

(1 − 1
Y4

) 1
1.14

− 1
Y4

1 μ4,2X4

6 Growth of X4 on S2 −iN,B (1 − 1
Y4

) 1
1.72

− 1
Y4

1 μ4,3X4

7 Decay of X1 −1 +1 kd,1X1

8 Decay of X2 −1 +1 kd,2X2

9 Decay of X3 −1 +1 kd,3X3

10 Decay of X4 −1 +1 kd,4X4

S
N

H
4

S
N

O
2

S
N

O
3

S
O

C

S
O

2

A
O

B

A
M

X

N
O

B

H
B

In
erts
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Table B2. Kinetic rate expressions for model application

Process Rate expression

1. Growth of X1 μ1X1 = μmax,1
S1

K1,1+S1

S5
K1,5+S5

X1

2. Growth of X2 μ2X2 = μmax,2
K2,5

K2,5+S5

S1
K2,1+S1

S2
K2,2+S2

X2

3. Growth of X3 μ3X3 = μmax,3
S2

K3,2+S2

S5
K3,5+S5

S1
S1+K3,1

X3

4. Aerobic growth of X4 μ4,1X4 = μmax,4
S4

K4,4+S4

S5
K4,5+S5

S1
S1+K4,1

X4

5. Growth of X4 on S3 μ4,2X4 = β1μmax,4
K4,5

K4,5+S5

S4
K4,4+S4

S3
K4,3+S3

S3
S3+S2

S1
S1+K4,1

X4

6. Growth of X4 on S2 μ4,3X4 = β2μmax,4
K4,5

K4,5+S5

S4
K4,4+S4

S2
K4,2+S2

S2
S3+S2

S1
S1+K4,1

X4

7. Decay of X1 kd,1X1

8. Decay of X2 kd,2X2

9. Decay of X3 kd,3X3

10. Decay of X4 kd,4X4
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