APPROXIMATION OF FOLIATIONS

MAURICE COHEN

1. Let \mathscr{F} , \mathscr{F}' be two foliations on a C^r manifold M. We say \mathscr{F} and \mathscr{F}' are C^k -conjugate if there exists a C^k diffeomorphism $h: M \to M$ such that h maps the leaves of \mathscr{F} onto the leaves of \mathscr{F}' .

We wish to prove the following:

THEOREM. Let M be an n-dimensional C^r manifold. Let \mathscr{F} be a foliation of class C^k and codimension p on M, $1 \le k \le r \le \infty$. Let δ be a real-valued positive function defined on M. Then there exists an open set U, dense in M, and a foliation \mathscr{F}' of codimension p on M such that

- (1) \mathcal{F}' is of class C^k
- (2) $\mathcal{F}' \mid U$ is of class C^r
- (3) \mathcal{F} and \mathcal{F}' are C^k -conjugate
- (4) \mathcal{F} and \mathcal{F}' are C^k δ -close.

Denjoy [2] constructs a foliation of codimension one on $S^1 \times S^1$, of class C^1 , such that no foliation of class C^2 on $S^1 \times S^1$ is C° -conjugate to it. This is an example where $U \neq M$ in the theorem (see also Cohen [1]).

Since the theorem and its proof depend only on elementary definitions about foliations, we will provide these in §2. The definitions are a slight modification of the ones in Haefliger [3].

ACKNOWLEDGEMENT. I wish to thank Professor M. W. Hirsch and the referee for their advice and comments.

2. Consider R^n as the Cartesian product $R^{n-p}xR^p$ and denote points by (x, y) with $x \in R^{n-p}$, $y \in R^p$. The simplest example of a foliation of codimension p on R^n is the one whose leaves are the (n-p)-planes parallel to the plane y=0. Denote this foliation by \mathscr{F}_0 .

A local homeomorphism h of class C^k of \mathscr{F}_0 is a local homeomorphism of R^n which locally preserves the leaves. In the neighborhood of each point (x, y) where h is defined, the homeomorphism h(x, y) = (x', y') is given by

(1)
$$\begin{cases} x' = \phi(x, y) \\ y' = \psi(y) \end{cases}$$

If the map h is of class C^k , ϕ is of class C^k .

Received by the editors October 1, 1970 and, in revised form, November 24, 1970.

DEFINITION 1. Let M be an n-dimensional topological manifold. A foliated structure or foliation \mathcal{F} of class C^k and codimension p on M is given by a collection $\{U_i, h_i\}$ of charts satisfying

- (1) $\{U_i\}$ is an open covering of M.
- (2) h_i is a homeomorphism of U_i with an open set in \mathbb{R}^n .
- (3) The maps $h_j h_i^{-1}$ are local homeomorphisms of \mathbb{R}^n of class \mathbb{C}^k which are locally of the form (1).
 - (4) The collection $\{U_i, h_i\}$ is maximal with respect to the preceding properties.

The atlas $\mathcal{A} = \{U_i, h_i\}$ generates a C^k differentiable structure on the manifold M. For this structure the maps h_i are of class C^k .

DEFINITION 2. Let M_{α} be a manifold with a C^r differentiable structure α . A foliation \mathscr{F} with atlas \mathscr{A} is a C^k foliation on M_{α} if α is contained in the C^k differentiable structure generated by \mathscr{A} . This is equivalent to requiring that the maps of the charts of \mathscr{A} be of class C^k for the structure α .

Let T_0 be the topology on R^n which is the product of the usual topology on R^{n-p} by the discreet topology on R^p . Let \mathscr{F} be a foliation on a manifold M and let $\mathscr{A} = \{U_i, h_i\}$ be the atlas for \mathscr{F} . There is a unique topology T on M such that each h_i is a homeomorphism of U_i with $h_i(U_i)$ for the topologies $T \mid U_i, T_0 \mid h_i(U_i)$.

DEFINITION 3. The leaves of the foliation \mathcal{F} are the connected components of M relative to the topology T.

The leaves are (n-p)-dimensional submanifolds of M which are of class C^k if \mathcal{F} is of class C^k .

Let M be an n-dimensional C^r manifold with tangent bundle TM. Let \mathscr{F} be a foliation of class C^k and codimension p on M. The C^k section σ in the bundle $\mathscr{G}_{n-p}TM$ of (n-p)-planes of TM, such that for each $x \in M$, $\sigma(x)$ is tangent to the leaf of \mathscr{F} through x, is called the tangent plane field to \mathscr{F} .

An atlas $\mathscr{A} = \{U_i, h_i\}$ is an atlas for a foliation \mathscr{F} if the foliation it defines has the same tangent plane field as \mathscr{F} .

For other definitions and basic properties of foliations see Haefliger [3] and Reeb [5].

3. Let M be an n-dimensional C^r manifold and let $\mathscr S$ be the space of C^k sections in $\mathscr G_{n-p}TM$, with the C^k topology. Let $\mathscr F_1$ and $\mathscr F_2$ be foliations of class C^k and codimension p on M (as a C^r manifold), $r \ge k \ge 1$, with tangent plane fields σ_1 , σ_2 , respectively. We have σ_1 , $\sigma_2 \in \mathscr S$.

DEFINITION 4. Let δ be a positive continuous real-valued function on M. We say that \mathscr{F}_2 is a C^k δ -approximation to \mathscr{F}_1 , or that \mathscr{F}_1 and \mathscr{F}_2 are C^k δ -close, if the sections σ_1 and σ_2 are δ -close in \mathscr{S} .

Let M and N be C^r manifolds and \mathscr{F}' a foliation of class C^k and codimension p on N, with atlas $\mathscr{A}' = \{U'_i, h'_i\}$. If $h: M \to N$ is a C^r diffeomorphism and $r \ge k$, the

inverse image of \mathscr{F}' by h is the foliation $\mathscr{F} = h^{-1}\mathscr{F}'$, of class C^k and codimension p on M defined by the atlas $\mathscr{A} = \{h^{-1}(U_i), h_i \circ h\}$.

The following follows directly from the definitions.

PROPOSITION. Let M be a manifold, \mathcal{F} a foliation of class C^k on M. Let α , β be C^r differentiable structures on M, with \mathcal{F} a C^k foliation for both M_α and M_β . Let $h: M_\alpha \to M_\beta$ be a C^r diffeomorphism which is C^k δ -close to the identity. Then \mathcal{F} and $\mathcal{F}' = h^{-1}\mathcal{F}$ are two foliations on M_α which are C^k δ -close.

4. **Proof of the theorem.** Let α be the given C^r differentiable structure on M. Let \mathscr{F} be given by an atlas $\mathscr{A} = \{U_i, h_i\}$ and let β be the C^k differentiable structure generated by \mathscr{A} . Then $\alpha \subset \beta$ by definition. Consider pairs (V, \mathscr{A}_V) where V is open in M, $\mathscr{A}_V \subset \mathscr{A} \mid V \subset \mathscr{A}$ and if $\{U_i, h_i\}$, $\{U_j, h_j\}$ are in \mathscr{A}_V , then $h_j h_i^{-1}$ is of class C^r , i.e. the changes of coordinates in \mathscr{A}_V are of class C^r . (For example, if $\{U, k\}$ is a chart of \mathscr{A} , then $(U, \{U, k\})$ is such a pair, and if \mathscr{A}_U consists of all the charts $\{T, k \mid T\}$ with $T \subset U$, then (U, \mathscr{A}_U) is another such pair.) Define a partial order on the set of such pairs by $(V, \mathscr{A}_V) \leq (V', \mathscr{A}_{V'})$ if $V \subset V'$ and $\mathscr{A}_V \subset \mathscr{A}_{V'}$. If we have a totally ordered chain

$$(V_1, \mathscr{A}_{V_1}) \leq \cdots \leq (V_n, \mathscr{A}_{V_n}) \leq \cdots$$

then the pair $(\bigcup_{1}^{\infty} V_{i}, \bigcup_{1}^{\infty} \mathscr{A}_{v_{i}})$ is an upper bound for the elements of the chain. The set of pairs (V, \mathscr{A}_{v}) as above is therefore inductive with \leq and hence by Zorn's lemma there is a maximal element (W, \mathscr{A}_{w}) . Suppose W is not dense in M. Then there is a point x in M-W, and a chart $\{U_{x}, h_{x}\} \in \mathscr{A}$ such that $W \cap U_{x} = \varnothing$. But then $\mathscr{A}_{W} \cup \{U_{x}, h_{x}\} \subset \mathscr{A} \mid W \cup U_{x}$, the changes of coordinates in $\mathscr{A}_{W} \cup \{U_{x}, h_{x}\}$ are of class C^{r} and $(W, \mathscr{A}_{w}) \leq (W \cup U_{x}, \mathscr{A}_{w} \cup \{U_{x}, h_{x}\})$, which contradicts the maximality of (W, \mathscr{A}_{w}) . Hence W is dense in M. Moreover \mathscr{A}_{w} is a C^{r} foliation atlas on W. Let α'_{w} be the C^{r} differentiable structure on W generated by \mathscr{A}_{w} . We have $\alpha'_{w} \subset \beta \mid W$. We can extend α'_{w} to a C^{r} differentiable structure α' on M with $\alpha' \subset \beta$. Then the foliation \mathscr{F} is a C^{k} foliation on $M_{\alpha'}$, with $\mathscr{F} \mid W$ a C^{r} foliation on W considered as a subspace of $M_{\alpha'}$ (\mathscr{A}_{w} is an atlas for it). Since α and α' are contained in β , the identity map

id:
$$M_{\alpha} \to M_{\alpha'}$$

is a C^k diffeomorphism. Approximate id by a C^r diffeomorphism $h: M_\alpha \to M_{\alpha'}$, with $h \ C^k$ δ -close to id (see Munkres [4]). Put $U = h^{-1}W$ and $\mathscr{F}' = h^{-1}\mathscr{F}$. Then U is dense in M, \mathscr{F}' is of class C^k , $\mathscr{F}' \mid U$ is of class C^r . Since α , $\alpha' \subset \beta$, h is a C^k diffeomorphism of M_α , which implies that \mathscr{F} and \mathscr{F}' are C^k conjugate, and by the proposition that \mathscr{F} and \mathscr{F}' are C^k δ -close.

REFERENCES

- 1. M. Cohen, Smoothing one dimensional foliations on $S^1 \times S^1$ (to appear).
- 2. A. Denjoy, Sur les courbes définies par les equations différentielles à la surface du tore, J. Math. Pures Appl. (9) 11 (1932), 333-375.

- 3. A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, (3) 16 (1962), 367-397.
- 4. J. R. Munkres, *Elementary differential topology*, Ann. of Math. Studies no. 54, Princeton Univ. Press, Princeton, N.J., 1963.
- 5. G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., 1183, Hermann, Paris, 1952.

SIR GEORGE WILLIAMS UNIVERSITY, MONTREAL, QUEBEC