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A TOPOLOGICAL APPROACH
TO A CONJECTURE OF RHODES

J.E. PIN

The "type II conjecture", proposed by J. Rhodes, gives an algorithm to compute the
kernel of a given finite semigroup. We show that this conjecture is a consequence of
another conjecture, of a topological nature. This new conjecture gives a simple and
effective characterisation of the recognisable subsets of a free monoid that are closed in
the finite group topology for the free monoid.

In this paper, all semigroups (respectively monoids, groups) are finite except in the
case of free monoids or free groups.

Recently, Rhodes has offered $100 for the solution of his "type II conjecture" [15],
which gives an algorithm to compute the "kernel" of a semigroup. This conjecture
implies in particular that if a (pseudo) variety of finite monoids is decidable, then the
Malcev product of this variety by the variety of all groups is also decidable. This general
statement contains as particular cases the important results of Ash [1] (every semigroup
with commuting idempotents divides a finite inverse semigroup), Birget, Margolis and
Rhodes [2, 3] (every semigroup whose idempotents form a subsemigroup divides an
orthodox semigroup) and others. We refer the reader to the survery article [11] or to
[2, 3, 15, 16, 18] for a detailed discussion of this problem.

The aim of this article is to show that the Rhodes conjecture is a consequence of
another conjecture, of a topological nature. Let A* be the free monoid on a finite set
A. The "finite group topology" on A* is the coarsest topology such that all monoid
morphisms from A* into a finite discrete group are continuous. The "topological con-
jecture" gives a simple and effective characterisation of the recognisable subsets of A*
that are closed for this topology. This conjecture and its consequences in language
theory are discussed in more detail in [12].

Only particular cases of both conjectures have been proved so far, but research is
still very active. However, even if the Rhodes conjecture can be proved directly, the
topological approach will remain interesting, in particular for extensions of the problem
to Malcev products of a variety by certain varieties of groups, such as solvable groups,
nilpotent groups or p-groups.
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1. TERMINOLOGY AND NOTATIONS

If 5 is a semigroup, S1 denotes the monoid equal to 5 if 5 has an identity and
to 5 U {1} , where 1 is a new identity, if S has no identity.

A (pseudo) variety of semigroups is a class of semigroups closed under taking
subsemigroups, quotients (that is, homomorphic images) and finite direct products.
Varieties of monoids are defined similarly. For instance, G denotes the variety of
monoids consisting of all groups. A variety V is said to be decidable if there is an
algorithm to decide whether or not a given semigroup (or monoid) belongs to V.
A semigroup S is "given" either by its multiplication table or as a transformation
semigroup, generated by a set of transformations on a finite set. We refer the reader to
[4, 6, 9] for results concerning varieties of semigroups.

Let 5 and T be two semigroups. A reiationai morphism r: S —> T is a function
T from S into the subsets of T such that

(a) (Vs) ( S r^0) ,
(b) (yS,teS)((sr)(tr)Q(3t)r).

If T: 5 —> T is a relational morphism, then there exist a semigroup R, a surjective
morpliism a: R —> 5 and a morphism /?: R —• T such that r = a~lj3. Other
properties of rational morpliisms are discussed for instance in [8, 17].

Let V be a variety of semigroups. The Malcev product V~1G is the variety of
semigroups generated by all semigroups S such that there exists a morphism TT : 5 —*
G into a group G satisfying ln~1 £ V . Equivalently V~1G is the variety of all
semigroups such that there is a relational morphism r: S —> G into a group G satisfying
IT'1 e V.

Let A be a finite set, called the alphabet. We denote by A* the free monoid over
A. The elements of A* are words, and the subsets of A* are called languages. The
product of two words u and v is simply denoted by uv. The length of a word u is
denoted by |u|. In particular, the empty word, denoted by 1, is the only word of length
0. If L is a language, L+ (respectively L* ) denotes the subsemigroup (respectively
submonoid) of A* generated by L. In particular, if u is a word, we set u° = 1, and
for every n ̂  0, un+l = uun, and

u+ = {«" | n > 0} and u* = {un \ n ̂  0}.

A language L is recognisable (or regular) if there exists a monoid morphism
n: A* —* M into a monoid M , and a subset P of M such that L = PIT'1 . We
say in this case that M recognises L. If a language L is recognisable, every monoid
that recognises L is divided by the syntactic monoid of L, defined as follows. The
syntactic congruence of L is the equivalence ~£, defined by

(u ~L v) <=> ((Vx,yE A*),(xuy £ L «=> xvy £ L)).
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The quotient M(L) = A*/ ~£, is the syntactic monoid of L, and the natural morphism
77: A* —+ M(L) is called the syntactic morphisrn.. Note that L = LTJT]~1 , so that a
recognisable language can be completely described by the pair (77, Lrj), that is, by
a finite set. Equivalent descriptions of recognisable languages can be given with the
help of finite automata or rational expressions. Note that there are some well-known
algorithms to pass from one description to another. See [4, 6, 9] for more details.

Let M be a monoid. A (context-free) grammar on M is a triple Q = (£ , P, £0)
where S is a finite alphabet, £0 is an element of I!, and P is a subset of S x (M U S)*.
The elements of P are called the productions of the grammar and are usually written
in the form £ —> u, where ( £ S and u £ (Af U S) . Such a production should be con-
sidered as a rewriting rule in the free monoid ( M u S ) ' , which allows the replacement
of every occurrence of £ by the word u. Let v, w £ (M U £)* . We say there is a direct
derivation from v to w, denoted v —> w, if there are two factorisations v = x£y and
w = xuy such that x, y £ (M U S)* and £ —> u is a production of the grammar. We
say there is a derivation from v t o u ) , denoted v t—> w, if there exists a finite sequence
v = vo, vi,..., vn = w such that for O ^ i ^ n — l,«j—> Vj+i. The subset of M*
generated by the grammar is the set

L(Q) = {w € M* I there is a derivation £0 •—* «>}.

Let 7T: M* —» M be the natural morpliism defined by rrnr = m for every m £ M . Then
every word of M* defines a unique element mir of M . The subset of M generated by
the grammar is the set

S(Q) = {ww £ M I there is a derivation £0 •—* w}.

2. T H E R H O D E S CONJECUTRE

Let S be a semigroup. The kernel of 5 is the subsemigroup

K(S) = n ix- 1

where the intersection is taken over all relational morphisms r from S into a group
G. The kernel (called "type II" by Rhodes) is related to the Malcev product by the
following proposition (see [16, 11] for a proof).

PROPOSITION 2.1. Let V be a variety of semigroups and let S be a semigroup.
Then S belongs to V " ' G if and only if K(S) belongs to V.

COROLLARY 2.2. If there is an algorithm to compute the kernel of a semigroup,

then, for every decidable variety of semigroups V, the Malcev product V~1G is de-

cidable.

The main problem is that it is not clear whether or not there is an algorithm
to compute the kernel of a given semigroup 5 . Since A'(S) = 5 D K(S*) , it would
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suffice to produce an algorithm when S is a monoid. Rhodes has conjectured that
such an algorithm exists. More precisely, we define for each monoid M an effectively
computable submonoid D(M) as follows.

DEFINITION: D{M) is the smallest submonoid of M closed under "weak conjuga-
tion": for every s,t G M such that either sts = s or tst = t, the condition u £ D(M)
implies sut £ D(M).

We can now state the "type II conjecture", for the solution of which Rhodes has
offered $100 [14].

Rhodes conjecture.

(a) (weak form) The exists an algorithm to compute the kernel of a given
monoid.

(b) (strong form) For every monoid M, K(M) is equal to D(M).

The following theorems summarise the known properties of D(M) . (See [1, 2, 3,
11, 16, 18] for more details).

THEOREM 2.3. [16, 18]

(a) D(M) is a submonoid of K(M) containing the idempotents of M.
(b) A regular element r £ M belongs to K(M) if and only if it belongs to

D{M).

THEOREM 2.4. [2, 3] The Rhodes conjecture holds true when the set E(M) of
idempotents of M form a submonoid of M. In this case D(M) = K{M) = E(M).

3. A TOPOLOGY OF THE FREE MONOID

In this section, we present our main conjecture, which is related to a topology
of the free monoid. This topology was introduced by Hall for the free group [5] and
by Reutenauer [13] for the free monoid. We refer the interested reader to [14] for an
extensive study of this topology.

Let A* be the free monoid on a finite set A. We say that a (finite) group G
separates two words u and v if there exists a monoid morphism <p: A* —» G such that
u<p ^ vtp. One can show that distinct words can always be separated by a group. Given
two words u and v, set

r(w, v) — min{Card G \ G is finite group that separates u and v},

and

d{u, v) = 2- r ( u ' u ) .
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Then d is a linear, ultrametric distance; that is, d satisfies the following properties:
for every u, v, w 6 A* :

(1) d(u,v) = d(v,u),

(2) (<*(«, *) = <)) « = * ( « = * ) ,
(3) d(u, w) < max (d(u, v), d(v, w)) ,

(4) d(wu, wv) — d(u, v) — d(uxv, vw).

One can show that the multiplication is continuous for the topology denned by d, which

is also the coarsest topology on A* such that all the monoid morphisms from A* into

a (finite) discrete group are continuous. In particular, general results of topology imply

the following result, where L denotes the topological closure of a set L.

LEMMA 3.1. Let L be a subset of A* . Then a word u belongs to L if and only
if uip € Lip for every monoid morphism ip: A* —» G into a group G .

Let £ be a recognisable subset of A*. We denote by r\ : A* —> M(L) the syntactic
morpliism of L and we set P = Lr\. The following result is proved in [8, 12].

THEOREM 3.2. If L is closed, then L satisfies the condition (*) below:

(*) (Vs, t e M(i))(Ve £ M(L), e2 = e){set e P => st 6 P)

Whether the converse of this theorem holds is unknown. However, we make the
following conjecture.

TOPOLOGICAL CONJECTURE. Let L be a recognisable subset of A* . If L satisfies

condition (*), then L is closed.

For any subset L of A* , we set

F(L) = {v G A* | {3x,y,u € A*)(v = xy) and xu+y C L}

One can show that F(L) is a recognisable language containing L. The operator F
can be iterated by setting, for every n > 0, F^^L) = L and Fn+1(L) - F(Fn(L)).
Finally, set F*(L) = \Jn>Q Fn(L). The following results are proved in [12].

THEOREM 3.3.

(a) For every recognisable language L, F*(L) is a recognisable language and,
given L, there is an algorithm to compute F*(L) .

(b) If the topological conjecture holds true, then, for every recognisable lan-
guage L, the topological closure L of L is equal to F*(L).

THEOREM 3.4. The topological conjecture is true in the following two particular

cases:

(a) if L is a submonoid of A* or
(b) if the idempotents of M(L) commute.
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4.4 MAIN RESULT.

The aim of this section is to analyse the relations between the Rhodes conjecture
and the topological conjecture. These connections are based on the following result.
Let M be a monoid. Since M is finite, one can find effectively a finite set A (for
instance A = M) and a surjective morphism n: A* —> M (for instance the morphism
defined by an — a for every a in M). Then we have:

PROPOSITION 4.1. Let me M. Then (m G K(M)) <=> (l G

PROOF: First assume that m G K(M) and let <p: A* —+ G be a monoid morpliism
from A* into a group G. Then r = w~1tp is a relational morphism from M into
G, so that m G I T " 1 by definition of K(M). It follows that 1 6 TUT and thus
l(p £ (mir~1')<p . But this property holds for every morpliism <p: A* —+ G from A" into
a group G, and hence 1 G (nnr~1) by Lemma 3.1.

Conversely, assume that 1 G (THTT"1) and let T : Af —» G be a relational morphism
from M into a group G. The general properties of relational morphisms imply that
there exist a monoid N , a surjective morphism a: N ^ M and a morphism /?: N —> G

such that r = a~1 (3. Now, by the universal property of the free monoid, there exists a
morpliism- 7: A* —* N such that the following diagram commutes:

Now, since 1 G (m-n—1), we have 1 = I7/? G (mw 1)~f(3 by Lemma 3.1. Therefore,
there exists a word u G A* such that uw — m and 1*7/? = 1. Set n = wy. Then
n a = m since 7 a = TT and n/3 = 1. Therefore m G I T " 1 and ra G K(M). |

COROLLARY 4.2. It the topological conjecture is true, then there is an alogorithm

to compute the kernel of a given monoid.

PROOF: By Proposition 4.1, m G K{M) if and only if 1 G (m7i—J). But mw'1

is a recognisable language of A* that can be effectively constructed and Theorem 3.2
gives an algorithm to compute (rrnr~1). Now, one can decide effectively whether a
given word belongs to a given recognisable language. Thus the property 1 G (mn~1) is
decidable, and so is the property m G K{M). |

Corollary 4.2 shows that the topological conjecture implies the weak form of the
Rhodes conjecture. In fact, it also implies the strong form.
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THEOREM 4.3. If the topological conjecture is true, then K{M) = D(M) for any

monoid M.

The proof of Theorem 4.3, which is rather long, uses ideas borrowed from the
theory of context-free languages. We first need a new definition of D(M), which is
more convenient for the proofs.

DEFINITION: D(M) is the subset of M generated by the grammar Q = ({£}, £, P)
whose productions are:

(1) € - 1 ,
(2) * - • « ,

(3) (Va, t € M) {sts = a) => (( -> s(t),
(4) {Vs,teM)

We first prove a technical property of the grammar Q. Let w be an integer such
that, for every m £ M, m" is idempotent.

LEMMA 4.4. Let s be a word of A* and let v = s3w. Then for every q > 0 and
for every factorisation vq = v§vi ... vp with p ^ q, there exists a derivation

PROOF: By induction on q. If q = 0 or 3 = 1, then vq = 1 and £ —> 1 by
definition. Thus we may assume s ^ 1 and q > 0. If suffices to prove the result
for p — q. Indeed, if v = vo ... vp , we also have v = vo ... vpvp+i ... vq , where
vp+i — ... — vq — 1. Therefore, if the lemma is proved for p — q, there is a derivation

and hence a derivation

since £ —+ 1.

We claim that there exists i ^ p such that

(a) K-iVi| ^ M

and

(b) K_i| < M or \vi\ < \v\.

The claim certainly holds if |vi_i| ^ |v| and \vi\ < |v| for some i, or dually, if |v
|v| and |v;| ^ |T;| for some i. Otherwise, two cases are possible. Either \vi\
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for every i or \IH\ < \v\ for every i . The first case leads to a contradiction since
<2>|i>| = \vq\ = \vo...Vq\. In the second case, condition (b) is clearly satisfied. If
condition (a) is not satisfied, we would have

\vovi\ < \v\, \v2\ < \viv2\ < \v\,...,\vq\ 4 \vq-ivq\ < \v\,

and hence \vq\ — \VQ • • • vq\ < q \v\, a contradiction. Therefore the claim holds true and
we may assume there is an index i such that |t^_iv;| ^ \v\ and |v;_i| < \v\ (the case
\vi\ < \v\ would be similar). Set Vi = v[v" where |VJ_IUJ| = |w|. Then we have

.. vi-2v"vi+1 ...vq =

and by induction, there is a derivation

(1) (, K-> (vow^v^i ... £(w<-2ir)f (VJ'TT)?(v

Furthermore, the word Vi_ivJ is a conjugate of v = s3u and hence Vi_jvj = xs2wz for
some words x and z such that zx = s" . It follows that either xs" is a left factor of Vj_j
of suz is a right factor of v\. Suppose for instance i>;_i = xswy, so that yv[x = s2u.
Then (uj_ivjri_i)7r = (xsuyv'ixswy)'ir = (x3*uy)ir = (xsuy)w = Vj_j7r. Similarly, if
v[ = ys^z and zvi-iy = x2u , a similar argument shows that (vJ7r)(vi_i7r)(vj7r) = (VJTT) .
In both cases there is a derivation £ —» (i>i_i7r)£(vJ7r). Therefore, we have by (l).

and this proves the lemma since VJTT = (vj7r)(v"7r). |

We come back to the proof of Theorem 4.3. Assume that the topological conjecture
is true. By Proposition 2.3, D(M) is contained in K(M), and hence it suffices to
show that K(M) is contained in D(M). Let m G K{M). Theorems 4.1 and 3.3
show that 1 £ F*(L) where L — TUTT"1 . Therefore, there exists n > 0 such that
1 G Fn(L). We now construct, by induction on t , a sequence «o . . . , u n of words such
that Ui G F^'V^L) as follows.

(a) tt0 = 1.
(b) Let Ui G F^-^iL) = F(F(-n-i-1\L)). By the definition of F, there

exist some words r j , Sj, <i G 4̂.* such that «j = rrfi and risfti C
f i ) . Then we put « i + 1 = ns*{n-i)wt{, so that

Furthermore un G F^°\L) — L and hence unir = m by the definition of i .
We shall prove that there is a derivation £ i—> -itn7r — TO , as a consequence of the

following lemma.
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LEMMA 4.5. For 0 < i ^ n, and for every factorisation tt; = Ui,o-..u»,fc with

k < n — i; + 1, tiiere exists a derivation £ i-» (tti,o''r)^(Mi,i7r)C • • • £{ui,fcw) •

PROOF: By induction on i . If i = 0, then «o = 1 and there is clearly a derivation

£ i-» l £ l . . . £ 1 . Let tti+i = i*ja/n~*'a'<j = Uito • • • Wj.fc be a factorisation of Uj+i with

k ^ n — i. Then there exist two indices c ^ d such that the occurrence of s / n

defined by the factorisation

is a factor of «i)C . . . U{,d. We may suppose that c (respectively d) is maximal (respec-
tively minimal) for this property. Therefore there is a left factor x of UitC and a right
factor y of Uitd such that

3(n—i)u>
• jC • • * U / t 1 d ~~~ i if'

Note that we may have c ='d.

Consider the factorisation Ui = rtfi — u^o . . . UilC-ixyUitd+i • • • Wfc which contains
at most fc + 1 ^ n — i + 2 factors. By the induction hypothesis, there is a derivation

represented onNow, the factorisation «j>c . . .u^

one of the following diagrams.

K j AI 3(n—i)w i

c < o, then s^v = E'

induces a factorisation of

If c = <f, then the factorisation is trivial: 3
3.<n-i)« = aM—0«

In the first case, the factorisation contains at most (n — i + 1) factors and by
Lemma 4.4, there exists a derivation
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It follows that

S3(n-i)co

and this concludes the proof since xx' = U{iC and y'y = uitj.

The second case is even simpler. Indeed we have £ H-> si TT whence

= ui)Cw

and f H-> (

We can now conclude the proof of Theorem 4.3. Indeed, if we apply Lemma 4.5 to
the factorisation « „ = « „ , we have a derivation £ i-» wn7r = TO . |
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