
PROBLEMS FOR SOLUTION 

P 86. Let ÏÏ b e a projectivity on a line in the rea l pro­
jective plane. Show that if a single point P has period n > 1 
under TT, then TT is periodic of period n, and every non-
invariant point has period n. 

John Wilker, University of Toronto 

P 87. Let 0 < a < a < . . . be an infinite sequence of 
——«—• ^ ^ 

integers and let d = [a , . . . , a ] be the least common multiple 
n 1 n 

of a . , . . . , a . Prove that for every e > 0 , 
1 n 

00 

s d" e 

converges. 

P. Erdôs , McMaster University 

P 88. Let G be a graph with n ver t ices and more than 
k k(n-k) + ( ) edges. Prove that G has a subgraph G each 

ver tex of which has valence > k . 

P. Erdos , McMaster University 

P 89. Exercise 2, p. 132, in Distance Geometry by 
L. M. Blumenthal reads: 

Prove that for p = 3, 4, 5, 6, the minimum of the maximum 
angle determined by planar subsets of p points is (p-2)ir/p. 
Show that this formula fails for p = 7. (The problem of deter­
mining the desired minimax is unsolved for p > 6. ) 

Find the minimax for p = 7. 

Robert A. Melter, University of Massachusetts 
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P 90» Let log x be the log function iterated s times, 

and let m be the smallest positive integer such that log m > 1. 

Then show that the sum 

00 

* ! T 
k=m k(log k) (log2k) (Iog3k) (log4k) 

is approximately 1,- cor rec t to more than one million decimal 
places! 

John D. Dixon, California Institute of Technology 

SOLUTIONS 

P 75. In a cer ta in isolated community the mar r i age 
contract is for one year only. So great is the satisfaction with 
this a r rangement that each January 1st the entire population, 
consisting of an equal number of men and women, gathers to­
gether and m a r r i e s (in pairs) for the coming year . It may happen 
that a couple m a r r y who have been m a r r i e d to each other in the 
past , there being no stigma attached to this . A "marr iage graph" 
may be defined as a biparti te graph whose two ver tex sets cor­
respond to the men and women and in which two ver t ices a re 
joined by an edge if and only if the corresponding people have 
been m a r r i e d to each other at least once. 

What a re necessa ry and sufficient conditions for a bipart i te 
graph G to be a "mar r iage graph" of some such community for 
a period of n yea r s during which the population remains fixed? 

J. W, Moon, University College, London 

Solution by the proposer . 

Let the bipart i te graph G be such a "mar r i age graph"; 
then the degree X(x) of each ver tex x can be at most n, the 
number of yea r s involved. For any subset M of one of the 
ve r tex sets of G denote by M the complement of M in that 
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ver tex set, by Mf the set of ver t ices joined by an edge to at 
least one element of M, and_by c(M' , M) the number of edges 
joining ver t ices of Mf and M. Since there are n | M | m a r ­
riages between members of M1 and M and at least c(Mf , M) 
between members of Mf and M it follows that 

(1) c(Mf ,M) + n | M | < n|M f | , 

the total number of mar r i ages involving members of M1 . 

Now let G be a bipartite graph no ver tex of which has 
degree greater than n and which satisfies (1) for all subsets 
M. We will presently show that this implies that it is possible 
to assign a positive integer to each edge in G so that the sum 
of the integers assigned to the edges incident to any ver tex 
equals n. When this is done add new edges joining ver t ices 
already joined until the number of edges joining any two ver t ices 
equals the integer assigned to the edge originally joining them. 
The resulting bipartite graph is regular of degree n and hence 
its edges may be coloured with n colours in such a way that 
no two edges with the same colour have a ver tex in common. 
This will suffice to show that G is a "marr iage graph", since 
the edges of the if th colour can be interpreted.a s representing 
the mar r i ages of the i1 th year , for i = i , 2 , . . . , n . 

It remains to prove the above asser t ion regarding the 
positive integers . Let X and Y be the two ver tex sets of G. 
From (1) it follows that X and Y have the same number of 
e lements . Form a t ranspor t network from G by adding a 
source z which is connected with ver tex x by an edge of 
capacity n-X(x) for each x in X, and a sink z1 which is 
connected with ver tex y by an edge of capacity n-X(y) for 
each y in Y. Let each of the edges originally in G have 
capacity n. From the saturation theorem for network flows 
it follows that there will exist a flow from z to zf which will 
saturate the ingoing and outgoing edges if for each subset M 
of Y the maximum amount F(M) of mater ia l that can flow 
into M is not less than the demand d(M) of M. It is not 
difficult to see that 

d(M) = 2(n-X(y)) = n | M | - 2X(y) 

and 
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F(M) = 2(n-X(x)) = n|Mf | - c(M»,M) - SX(y) , 

where the sums are over all x in M1 and y in M. The 
fact that G satisfies (1) implies that F(M) > d(M) for all sach 
M and hence the required flow exis ts . This flow defines non-
negative integers which may be assigned to the edges in G so 
that the sum of the integers assigned to the edges incident to any 
ver tex equals n minus the degree of the ver tex. Adding one to 
each of these integers gives the positive integers with the proper­
ties originally described and completes the solution of the probLem. 

P 76. If H is a normal subgroup of a group G then» 
in par t icular , 

(1) H commutes with every subgroup K of G, i . e . 
HK = KH ; 

(2) H is subnormal in G» i . e . there exists a normal 
ser ies from G to H. 

Thus these two proper t ies a re each generalisations of the 
property of being normal . Show that for any finite group G, 
any subgroup H which has property (1) also has property (2). 

J . D. Dixon, California Inst, of Technology 

Solution by Mrs . £ . Rowlinson, McGill University. 

We prove (2) under the weakened assumptions 

(i) [G:H] < « , and 

(ii) Hg H = H Hg for all g c G. 

Since [G:H] < oo we can form a normal ser ies 
G = N D> . . . O N where N = N, } H and N contains no 

1 k k — 
proper normal subgroup containing H ; we will prove that 
N = H, thus showing that H is subnormal in G. 

L»et the complete set of conjugate subgroups of H in N 
n n 

be H, H , - . - f H r . Since RnH = H if for all n e N, 
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Hn Hn = Hn H n for all n. n1 € N. The complex 
n 2 n r 

H = H H . . . H is therefore a group; moreover H <3N. 
0 o — 

n2 n 1 
But H C H , and so H = N. Let H = H H . . . H r " ; 

— o o 1 
n 

this is also a group, and H.H =H = N. Thus, since 
1 1 o 

n * N, there a re elements h and h in H, such that 
r 1 Z 1 

-1 n 
h n h n - n . Therefore n € H , H =H , and 

1 r 2 r r r i l l 
n 2 n 2 

H = H = N. Similarly, let H = H H . . . H r ° ; 
1 o 2 n 1 

H H r " =H, = N, thus n c H , and so H = HA s H = N. 
2 2 1 r - 1 2 2 1 o 

Continuing we obtain H = H = . . . = H =N, as required. 

Also solved by T. Hawkes, C.G. Thomas, H. Simon, 
and the proposer . Professor Thomas pointed out that the 
original problem follows from resul ts of Ore [Duke Math. J. , 
5(1939), 431-460], and that a generalization of these ideas is 
given by Kegel [Math. Zeit. , 78(1962), 205-221]. 

P 77. Prove that n > 3 lines in the projective plane, 
no three concurrent , determine at least n t r iangles . 

Leo Moser, universi ty of Alberta, Edmonton 

Solution by B. Grunbaum, University of Je rusa lem. 

Using the notion of convexity, we prove the stronger 
statement: în any general configuration of n > 3 lines in the 
projective plane, every line is (edge) incident to at least 3 
t r iangles . 

Without loss of generality assume n > 4. Take any of 
the lines as the line at infinity of a Euclidean plane, and 
consider the (n- l)(n-2)/2 intersections of the remaining l ines. 
JLet C be the convex hull of this point-set. Then C has at 
least 3 ver t i ces . Obviously, to each ver tex of C corresponds 
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exactly one triangle in the configuration of lines (formed by the 
two lines through the vertex and the line at infinity). 

There need be no more than n t r iangles ; this may be 
shown by different examples. The following shows also that 
one may find, for each n, n lines in general position such 
that each of the regions determined by them has at most 5 sides. 

We construct , by induction, a family of n such lines 
with the additional property (which is probably automatically 
satisfied, but let us require it anyway) that a tr iangle is edge 
incident to a quadrangle. (The case n =4 is t r ivial . ) If n 
such lines a re given, take a point in the common edge of the 
tr iangle and the quadrangle, and through it a line sufficiently 
close to the ca r r i e r - l i ne of the edge. The triangle then yields 
a tr iangle and a quadrangle, the quadrangle a triangle and a 
pentagon, and our line cuts off a quadrangle from each of the 
remaining (n-2) regions through which it pa s se s . 
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