PROBLEMS FOR SOLUTION

P 86. Letw be a projectivity on a line in the real pro-
jective plane. Show that if a single point P has period n> 1
under w, then w is periodic of period n, and every non-
invariant point has period n. '

John Wilker, University of Toronto

P 87. Let 0<ai<a2<... be an infinite sequence of

integers and let d = [ai, ...,a ] be the least common multiple
n n

of CPEREETL I Prove that for every ¢ >0,
n

converges.

P. Erdds, McMaster University

P 88. 1let G be a graph with n vertices and more than
k(n-k) + (1;) edges. Prove that G has a subgraph G1 each

vertex of which has valence > k.
P. Erdés, McMaster University

P 89. Exercise 2, p.132, in Distance Geometry by
L. M. Blumenthal reads:

Prove that for p=3,4,5,6, the minimum of the maximum
angle determined by planar subsets of p points is (p-2)w/p.
Show that this formula fails for p=7. (The problem of deter-
mining the desired minimax is unsolved for p> 6.)

Find the minimax for p=7.

Robert A. Melter, University of Massachusetts
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P90. Let logsx be the log function iterated s times,

and let m be the smallest positive integer such that log4m > 1.

Then show that the sum

-]

z
2
k=m k(log k) (1og2k) (Icg3k) (log4k)

1

is approximately 1,- correct to more than one million decimal
places!

John D. Dixon, California Institute of Technology

SOLUTIONS

P 75. In a certain isolated community the marriage
contract is for one year only. So great is the satisfaction with
this arrangement that each January 1st the entire population,
consisting of an equal number of men and women, gathers to-
gether and marries (in pairs) for the coming year. It may happen
that a couple marry who have been married to each other in the
past, there being no stigma attached to this. A '"marriage graph"
may be defined as a bipartite graph whose two vertex sets cor-
respond to the men and women and in which two vertices are
joined by an edge if and only if the corresponding people have
been married to each other at least once.

What are necessary and sufficient conditions for a bipartite
graph G to be a "marriage graph' of some such community for
a period of n years during which the population remains fixed?

J. W. Moon, University College, London

Solution by the proposer.

Let the bipartite graph G be such a "marriage graph'';
then the degree \(x) of each vertex x can be at most n, the
number of years involved. For any subset M of one of the
vertex sets of G denote by M the complement of M in that
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vertex set, by M' the set of vertices joined by an edge to at
least one element of M, and by c(M', M) the number of edges
joining vertices of M' and M. Since there are n|M| mar-
riages between members of M' and M and at least c(M',M)
between members of M' and M it follows that

(1) ¢(M',M)+n|M|<n|M' [,
the total number of marriages involving members of M'.

Now let G be a bipartite graph no vertex of which has
degree greater than n and which satisfies (1) for all subsets
M. We will presently show that this implies that it is possible
to assign a positive integer to each edge in G so that the sum
of the integers assigned to the edges incident to any vertex
equals n. When this is done add new edges joining vertices
already joined until the number of edges joining any two vertices
equals the integer assigned to the edge originally joining them.
The resulting bipartite graph is regular of degree n and hence
its edges may be coloured with n colours in such a way that
no two edges with the same colour have a vertex in common.
This will suffice to show that G is a "marriage graph', since
the edges of the i'th colour can be interpreted.as representing
the marriages of the i'th year, for i=1,2,...,n.

It remains to prove the above assertion regarding the
positive integers. Let X and Y be the two vertex sets of G.
From (1) it follows that X and Y have the same number of
elements. Form a transport network from G by adding a
source z which is connected with vertex x by an edge of
capacity n-A(x) for each x in X, and a sink 2z' which is

- connected with vertex y by an edge of capacity n-\(y) for
each y in Y. Let each of the edges originally in G have
c’apacity n. From the saturation theorem for network flows
it follows that there will exist a flow from z to 2z' which will
saturate the ingoing and outgoing edges if for each subset M
of Y the maximum amount F(M) of material that can flow
into M is not less than the demand d(M) of M. It is not
difficult to see that

d(M) = Z(n-A(y)) = n|M]| - Z\(y)

and
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F(M) = Z{n-\(x)) = n|M']| - c(M', M) - Z\(y),

where the sums are over all x in M' and y in M. The

fact that G satisfies (1) implies that F(M) > d(M) for all such

M and hence the required flow exists. This flow defines non-
negative integers which may be assigned to the edges in G so

that the sum of the integers assiéned to the edges incident to any
vertex equals n minus the degree of the vertex. Adding one to
each of these integers gives the positive integers with the proper-
ties originally described and completes the solution of the problem.

P76. If H is a normal subgroup of 2 group G then,
in particular,

(1) H commutes with every subgroup K of G, i.e.
HK =KH ;

(2) H is subnormalin G, i.e. there exists a normal
series from G to H.

Thus these two properties are each generalisations of the
property of being normal. Show that for any finite group G,

any subgroup H which has property (1) also has property (2).

J.D. Dixon, California Inst. of Technology

Solution by Mrs. E. Rowlinson, McGill University.
We prove (2) under the weakened assumptions

(i) [G:H]< ®», and

(ii) H® H=H H® for all ge¢ G.

Since [G:H] < ® we can form a normal series
G=N, &... DNk where N =Nk2 H and N contains no

proper normal subgroup containing H ; we will prove that

‘"N =H, thus showing that H is subnormalin G.

Let the complete set of conjugate subgroups of H in N

n n
be H, H2,....HT. Since H'H=HE" for all ne¢N,
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1

1
H H® =H" H" forall n, n' ¢N. The complex

v n n
H =HH 2 ... HT istherefore a group; moreover HogN.
° 72 Preq
But HCH , andso H =N. Let H =sHH®...H ™
n
r

this is also a group, and HiHi = Ho =N. Thus, since

nr € N, there are elements hi and hz in H1 su;h that
-1 n,

hinr thr =nr. Therefore nr € Hi' I-I1 =H‘l ) and

H,=H_=N. Similarly, let H, =H S S Y

r-1
HZHZ -Hi-N, thus nr-ieHZ’ and so HZ- Hi-Ho-N'

Continuing we obtain H = Hr 4= = Ho =N, as required.

Also solved by T. Hawkes, C.G. Thomas, H. Simon,
and the proposer. Professor Thomas pointed out that the
original problem follows from results of Ore [Duke Math.J.,
5(1939), 431-460], and that a generalization of these ideas is
given by Kegel [Math. Zeit., 78(1962), 205-221].

P 77. Prove that n> 3 lines in the projective plane,
no three concurrent, determine at least n triangles.

Leo Moser, finiversity of Alberta, Edmonton

Solution by B. Grinbaum, University of Jerusalem.

Using the notion of convexity, we prove the stronger
statement: In any general configuration of n > 3 lines in the
projective plane, every line is (edge) incident to at least 3
triangles.

Without loss of generality assume n > 4. Take any of
the lines as the line at infinity of a Euclidean plane, and
consider the (n-1)(n-2)/2 intersections of the remaining lines.
Let C be the convex hull of this point-set. Then C has at
least 3 vertices. Obviously, to each vertex of C corresponds
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exactly one triangle in the configuration of lines (formed by the
two lines through the vertex and the line at infinity).

There need be no more than n triangles; this may be
shown by different examples. The following shows also that
one may find, for each n, n lines in general position such
that each of the regions determined by them has at most 5 sides.

We construct, by induction, a family of n such lines
with the additional property (which is probably automatically
satisfied, but let us require it anyway) that a triangle is edge
incident to a quadrangle. (The case n =4 is trivial.) If n
such lines are given, take a point in the common edge of the
triangle and the quadrangle, and through it a line sufficiently
close to the carrier-line of the edge. The triangle then yields
a triangle and a quadrangle, the quadrangle a triangle and a
pentagon, and our line cuts off a quadrangle from each of the
remaining . (n-2) regions through which it passes.
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