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A la Laia Crespo Oblanca

Abstract. We give a method for embedding a large family of partially ordered
simple groups of rank one into simple Riesz groups of rank one. In particular, we
answer in the affirmative a question of Wehrung, by constructing a torsion-free,
simple Riesz group G of rank one containing an interval D�

¼= G
þ such that 2D ¼ Gþ.

We sketch some potential applications of this result in the context of monoids of
intervals and K-Theory of rings.

2000 Mathematics Subject Classification. Primary 6F20, 20K20; Secondary
16A50, 16D70, 19K14, 46L05.

1. Introduction. In [6, Open Problem 30], Goodearl asks whether every partially
ordered simple abelian group can be embedded into a simple Riesz group. Wehrung
[18] answers this question in the affirmative. Moreover, he shows that this embed-
ding can be choosen to be cofinal, so that the simple Riesz group arising from his
construction is tightly related to the original group. Nevertheless, his argument lies
in the scope of Model Theory, and unfortunately it cannot be translated to concrete
constructions for given families of groups. In [18, Example 3.14], Wehrung uses his
construction to give an example of a torsion-free simple Riesz group G containing
an interval D 6¼ Gþ such that 2D ¼ Gþ, and he asks ([18, Problem 3.15]) whether
this example can be realized as a torsion-free Riesz group of rank one (i.e, with posi-
tive cone isomorphic to an additive submonoid of Q). The existence of such a con-
structive example of simple Riesz group might have interesting consequences in the
context of K-Theory for C�-algebras and exchange rings, so that it is interesting to
have an answer to Wehrung’s Problem.

In this note we answer Wehrung’s Problem in the affirmative. For, we start by
showing that, for any group G lying within a large family of torsion-free simple
partially ordered groups of rank one, it is possible to construct a concrete torsion-free,
simple Riesz group of rank one eGG, as well as a concrete order-embedding from G
onto eGG. Since the original group G appearing in [18 Example 3.14] belongs to this
family, we obtain the desired result. Observe that our result is, in fact, a partial
answer to [6, Open Problem 30], but a constructive one, and so is different from the
complete (but not constructive) answer given by Wehrung. To obtain our result, we
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accurately re-elaborate the construction introduced in [10, Section 3]. Nevertheless,
the kind of groups we obtain are quite different from those constructed in [10].

Also, we will explain how these examples apply for producing pathological
examples of refinement monoids failing separative cancellation property (see [1]),
and how they could be applied for answering some open questions in the context of
exchange rings.

Throughout this note we will refer to [6] for notations and definitions on par-
tially ordered abelian groups. We recall here some basic definitions on the context of
this note. Given an abelian group G, a cone of G is an additive submonoid P of G
containing zero, and we say that the cone P is strict if P \ ð�PÞ ¼ f0g. A partially
ordered abelian group is an abelian group G endowed with a strict cone, called the
positive cone of G and denoted by Gþ. A partially ordered abelian group G is said to
be directed provided that any element can be written as a difference of two positive
elements. Given a partially ordered abelian group G, an element u 2 G is said to be
an order-unit provided that 0 6¼ u 2 Gþ and for each element x 2 G there exists n in
N such that �nu  x  nu (in particular a group with order-unit is directed). A
partially ordered abelian group is said to be simple when it is nonzero and every
nonzero positive element is an order-unit. A partially ordered abelian group G is
said to be (strictly) unperforated provided that for all x 2 G and for all
n 2 N ¼ Zþ

n f0g, if nx 2 Gþ (0 6¼ nx 2 Gþ), then x 2 Gþ (0 6¼ x 2 Gþ). A partially
ordered abelian group is an interpolation group if for all x1; x2; y1; y2 2 G such that
8i; j xi  yj, there exists an element z 2 G such that 8i; j xi  z  yj. A Riesz group is
a directed interpolation group. Following [10], a partially ordered abelian group is a
simple component if G ¼ ðZ;GþÞ and G is directed. Observe that G then is obviously
simple. Given r1; . . . ; rl 2 Zþ, we denote by hr1; . . . ; rli the additive submonoid of Zþ

generated by fr1; . . . ; rlg. Given G;H partially ordered abelian groups, a group
homomorphism f : G ! H is a positive morphism if fðGþÞ � Hþ. A positive morph-
ism f : G ! H is an order-embedding if f is a one-to-one morphism, and for every
x 2 G, fðxÞ 2 Hþ implies x 2 Gþ.

2. Building the embedding. We start this section by giving a general expression
of the class of groups we will consider. The groups lying in this class can be pre-
sented as direct limits in the category of partially ordered abelian groups (see [6,
Proposition 1.15]). The basic building blocks of direct systems used in this con-
struction can be built in a recursive way, as follows:

Let H ¼ fHigi�1 be a sequence of simple components, and let A ¼ faigi�1 and
B ¼ fbjgj�1 be sequences of natural numbers, satisfying the following properties,
tagged by (?):

(i) For every i � 1, ai; bi � 2.
(ii) For every i � 1, ai and bi are coprime numbers.

(iii) If we define b0 ¼ 1, then for all i � 1 we have bi 2 bi�1H
þ
i .

Given sequences A;B;H as above, we consider the family

GkðA;B;HÞ ¼ ðZ;GkðA;B;HÞ
þ

Þ

of partially ordered abelian groups, indexed by k � 1, whose positive cones are
defined recursively as follows:

(i) Gþ
1 ðA;B;HÞ ¼ Hþ

1 .
(ii) For every k � 2, Gþ

k ðA;B;HÞ ¼ ak�1G
þ
k�1ðA;B;HÞ þ bk�1H

þ
k .
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Also, for each k � 1, gk;kþ1 : GkðA;B;HÞ ! Gkþ1ðA;B;HÞ is the map defined by
multiplication by ak.

Once we have constructed the direct system

fðGkðA;B;HÞ;Gþ
k ðA;B;HÞ; gk;kþ1Þgk�1

associated with sequences A;B;H, we define the partially ordered abelian group

ðGðA;B;HÞ;GþðA;B;HÞÞ ¼ lim
!

ðGkðA;B;HÞ;Gþ
k ðA;B;HÞ; gk;kþ1Þ:

The class that we consider is the one of the groups

ðGðA;B;HÞ;GþðA;B;HÞÞ

associated with sequences A;B;H satisfying (?).

Definition 2.1. (i) A triple ðA;B;HÞ, where H ¼ fHigi�1 is a sequence of simple
components, and A ¼ faigi�1, B ¼ fbjgj�1 are sequences of natural numbers satisfy-
ing (?), is called the data triple ðA;B;HÞ.

(ii) Given ðA;B;HÞ a data triple, we say that

fGkðA;B;HÞgk�1; ðGðA;B;HÞ;GþðA;B;HÞÞ

is the family of groups associated with the data triple ðA;B;HÞ.

Remark 2.2.
(i) Property (?)(iii) implies that for every 1  i  j, bi divides bj. So, by property

(?)(ii), for every 1  i  j, g.c.d.ðaj; biÞ ¼ 1.
(ii) Since A and B are nonempty, the above remark implies that there is at least a

prime number p coprime with ai for all i � 1. For, pick p any prime divisor of b1.
Since for every 1  j we have g.c.d.ðaj; b1Þ ¼ 1, we conclude that g.c.d.ðaj; pÞ ¼ 1 for
all j � 1, as desired.

We proceed to show that the groups ðGðA;B;HÞ;GþðA;B;HÞÞ are simple
groups of rank one. For that, we need to study the basic properties of the family of
groups associated with the data triple ðA;B;HÞ. First, we introduce some previous
definitions and results.

Lemma 2.3.
(1) Let G1 and G2 be simple components, let p; q 2 N be coprime numbers. Then,

G3 ¼ ðZ;Gþ
3 Þ with Gþ

3 ¼ pGþ
1 þ qGþ

2 is a simple component.
(2) Let G1 ¼ ðZ;Gþ

1 Þ be a partially ordered abelian group, let M be a submonoid
of Zþ, let a; b 2 N be coprime numbers, and let G2 ¼ ðZ;Gþ

2 Þ with Gþ
2 ¼ aGþ

1 þ bM.
If b 2 Gþ

1 , then the map f : G1 ! G2, defined by multiplication by a, is an order-
embedding.

Proof. (1) Since G1 and G2 are simple components, there exist a 2 Gþ
1 , b 2 Gþ

2

different prime numbers bigger than both p and q. Thus, pa; qb 2 Gþ
3 and

g.c.d.ðpa; qbÞ ¼ 1, whence the result holds (see, for example, [13, Lemma 2.3]).
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(2) Since the underlying group of both G1 and G2 is Z, f is an injective group
morphism. Moreover, as aGþ

1 � Gþ
2 , f is a positive morphism. Let x 2 G1 such that

ax 2 Gþ
2 . Then, there exist y 2 Gþ

1 and z 2 M such that ax ¼ ay þ bz, i.e.,
bz ¼ aðx � yÞ. Since g.c.d.ða; bÞ ¼ 1, there exists t 2 Zþ such that z ¼ at. Hence,
abt ¼ bz ¼ aðx � yÞ, whence x � y ¼ bt. Since b 2 Gþ

1 , so is bt ¼ x � y for some
t 2 Zþ. Thus, x 2 Gþ

1 , as desired. &

The next result is well-known, but we include here a proof for the sake of
completeness.

Lemma 2.4. Let fGn;G
þ
n ; fn;mg1nm be a direct system of directed partially

ordered abelian groups, let ðG;GþÞ be the direct limit (in the category of partially
ordered abelian groups) of this system, and for every n � 1, let fn : Gn ! G be the
canonical map. Then:

(1) If for every n � 1 the group ðGn;G
þ
n Þ is simple, then so is ðG;GþÞ.

(2) If for every 1  n  m the map fn;m : Gn ! Gm is an order-embedding, then
for every n � 1 the map fn : Gn ! G is an order-embedding.

Proof. Recall that Gþ ¼
S
i�1

fnðG
þ
n Þ.

(1) Let x 2 Gþ be a nonzero positive element, and let y 2 G be an arbitrary ele-
ment. Then, we can assume that there exist n 2 N, 0 6¼ xn 2 Gþ

n and yn 2 Gn such
that x ¼ fnðxnÞ and y ¼ fnðynÞ. Since ðGn;G

þ
n Þ is simple, there exists k 2 N such that

�kxn  yn  kxn. Thus,

�kx ¼ fnð�kxnÞ  fnðynÞ ¼ y  fnðkxnÞ ¼ kx;

so we are done.
(2) Fix n � 1. First, we show that, for every n � 1, fn : Gn ! G is an injective

map. For, let x 2 ker fn. Since fnðxÞ ¼ 0, there exists m � n such that
fn;mðxÞ ¼ 0 ¼ fn;mð0Þ. Thus, as fn;m is an injective map, we conclude that x ¼ 0, as
desired.

Now, let x 2 Gn such that fnðxÞ 2 Gþ. Then there exist m � n and y 2 Gþ
m such

that fmðyÞ ¼ fnðxÞ. Hence, as fmðfn;mðxÞÞ ¼ fnðxÞ ¼ fmðyÞ, the injectivity of fm implies
that fn;mðxÞ ¼ y 2 Gþ

m. Since fn;m is an order embedding, we conclude that x 2 Gþ
n ,

which ends the proof. &

Let P be the set of the natural prime numbers. Recall that a generalized integer
n is a map

n : P�!f0; 1; 2; . . . ;1g:

Usually we write

n ¼
Y
p2P

pnðpÞ: ð1Þ

When n is finite (i.e. it never takes the value 1 and it is zero except at finitely many
primes), we identify n with the integer appearing on the right hand side of ð1Þ. For
every generalized integer n, a sequence fangn�1 of positive integers is associated with
n when n ¼

Q
n�1

an. Given a sequence A ¼ fangn�1, we define nðAÞ ¼
Q
n�1

an, so that
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the sequence A is the sequence associated to nðAÞ. Notice that the notion of divisi-
bility of integer numbers extends to the context of generalized integers: given
m;n 2 eNN, we say that n j m if there exists n0 2 eNN such that m ¼ n � n0, that is, for
each p 2 P we have mðpÞ ¼ nðpÞ þ n0ðpÞ. Given two generalized integers n;m, we
say that n and m are coprime if for every p 2 P we have 0 2 fnðpÞ;mðpÞg. Let n be
an infinite generalized integer satisfying, for a fixed p 2 P, that nðqÞ ¼ 0 for every
q 2 P n fpg. Then, we will denote such a generalized integer n by p1. In this case, if
m is a generalized integer coprime with p1, we will say that m is coprime with p
instead of p1. In the particular case of 21, we will say that m is an odd generalized
integer instead of saying that it is coprime with 2.

Given n a generalized integer, we associate to n an additive subgroup of Q

containing 1 in the following way: write Zn ¼ fa=b : ða 2 ZÞðb j nÞg. It is easy to see
that Zn is an additive subgroup of Q, by using [10, Lemma 2.3].

Now we are able to state the basic properties of the family of groups associated
with a given data triple ðA;B;HÞ.

Proposition 2.5. Let fGkðA;B;HÞgk�1; ðGðA;B;HÞ;GþðA;B;HÞÞ be the family
of groups associated with the data triple ðA;B;HÞ. Then:

(1) For every k � 1, GkðA;B;HÞ is a simple component.
(2) For every k � 1, the map gk;kþ1 : GkðA;B;HÞ ! Gkþ1ðA;B;HÞ is an order-

embedding.
(3) The group ðGðA;B;HÞ;GþðA;B;HÞÞ is a simple group of rank one, and for

every k � 1 the canonical map gk : GkðA;B;HÞ ! GðA;B;HÞ is an order-embedding.

Proof. (1) We proof this by induction on k. The case k ¼ 1 holds because
G1ðA;B;HÞ ¼ H1. Suppose that the result holds for k � 1. Then we have

Gþ
kþ1ðA;B;HÞ ¼ akG

þ
k ðA;B;HÞ þ bkH

þ
kþ1:

Hkþ1 is a simple component by definition, GkðA;B;HÞ is a simple component by
induction hypothesis, and g.c.d.ðak; bkÞ ¼ 1 by property (?) (ii). Thus, Gkþ1ðA;B;HÞ

is a simple component by Lemma 2.3(1). Hence, the induction works, as desired.
(2) If k ¼ 1, then Gþ

1 ðA;B;HÞ ¼ Hþ
1 , and b1 2 Gþ

1 by property (?)(iii). If k � 2,
then we have

Gþ
k ðA;B;HÞ ¼ ak�1G

þ
k�1ðA;B;HÞ þ bk�1H

þ
k :

Again by property (?)(iii) we have bk 2 bk�1H
þ
k � Gþ

k ðA;B;HÞ. Hence, the result
holds by Lemma 2.3(2).

(3) ðGðA;B;HÞ;GþðA;B;HÞÞ is a simple group by part (1) and Lemma 2.4(1).
Let nðAÞ ¼

Q
n�1

an be the generalized integer associated with the sequence A. Then,

according to [10, Lemma 2.4],GðA;B;HÞ is isomorphic (as an abelian group) to ZnðAÞ.
Hence, we conclude that the group ðGðA;B;HÞ;GþðA;B;HÞÞ is a partially ordered
abelian group of rank one. The final assert holds by part (2) and Lemma 2.4(2). &

Remark 2.6.
(1) Let ðA;B;HÞ be a data triple. By Proposition 2.5(3), GðA;B;HÞ ffi ZnðAÞ.

Under this point of view, A can be considered a ‘‘set of denominators’’ of
GðA;B;HÞ.
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(2) Given any prime number p and any infinite generalized integer n coprime
with p, we can construct a data triple ðA;B;HÞ such that the group GðA;B;HÞ

associated with this data triple is isomorphic to Zn (as an abelian group). For, let
A ¼ fangn�1 a sequence associated to n, let B ¼ fpngn�1, and for a fixed simple com-
ponent H, let H ¼ fHn ¼ Hgn�1. Thus, ðA;B;HÞ is a data triple, and by Proposition
2.5(3), the group GðA;B;HÞ associated with this data triple is isomorphic to Zn (as
an abelian group). Thus, the class of groups we are considering is quite large.

Now, given the simple group of rank one GðA;B;HÞ, associated with the data
triple ðA;B;HÞ, we will construct a simple Riesz group of rank one eGGðA;B;HÞ such
that GðA;B;HÞ embeds (as an ordered group) into eGGðA;B;HÞ. The idea is to use the
results of [10, Section 3] in order to get, for every k � 1, a simple component eGGkðA;B;HÞ

and an order-embedding �k : GkðA;B;HÞ ! eGGkðA;B;HÞ. Then, we will refine this
construction in order to get, for every k � 1, an order-embedding hk;kþ1 :eGGkðA;B;HÞ ! eGGkþ1ðA;B;HÞ so that the ‘‘obstruction’’ to get Riesz property oneGGkðA;B;HÞ ‘‘can be solved ’’ in eGGkþ1ðA;B;HÞ, and also the diagram ð{Þ defined by
these groups and maps

G1ðA;B;HÞ ! G2ðA;B;HÞ ! � � � ! GnðA;B;HÞ ! � � �

# # #eGG1ðA;B;HÞ ! eGG2ðA;B;HÞ ! � � � ! eGGnðA;B;HÞ ! � � �

commutes. Thus, if we define

ðeGGðA;B;HÞ; eGGþðA;B;HÞÞ ¼ lim
!

ðeGGkðA;B;HÞ; eGGþ
k ðA;B;HÞ; hk;kþ1Þ;

it is easy to see that this group is simple, Riesz, and its rank is one. Moreover, the
map � : GðA;B;HÞ ! eGGðA;B;HÞ induced by the above diagram turns out to be an
order-embedding by Lemma 2.4(2).

We proceed to develop this idea. For that, we need some previous definitions
and results of [10, Section 3]. We quote them here for convenience of the reader.
Recall that, if G is a partially ordered abelian group, we say that an interpolation
problem of G is a quadruple of the form � ¼ ðx1; x2; y1; y2Þ of elements of G satisfy-
ing fx1; x2g G fy1; y2g, while a solution of � is an element z 2 G satisfying
fx1; x2g G z G fy1; y2g. If G is a simple component, we say that a reduced inter-
polation problem is an interpolation problem of the form ð0; x; y1; y2Þ with
0 <Z x <Z y1 <Z y2.

Lemma 2.7. ([10, Lemma 3.7]) Let G ¼ ðZ;GþÞ be a simple component. Then:
(1) For each interpolation problem � of G there exists a reduced interpolation

problem �0 of G and there exists an element n 2 G such that if r 2 G is a solution of �0

then r þ n 2 G is a solution of �.
(2) There are only finitely many reduced interpolation problems of G without

solution in G.

Recall that for every simple component G and every finite list of interpolation
problems �1; � � � ; �t of G, EðG; �1; � � � ; �tÞ denotes the set of all positive integers q
such that there exists a simple component H satisfying the two following conditions:
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(i) The multiplication map q� defines an embedding of ordered groups from G
into H.

(ii) For all i 2 f1; . . . ; tg, q�i admits a solution in H.
If �1; � � � ; �t is the list of all reduced interpolation problems of G without a

solution in G (which is finite because of Lemma 2.7), we write EðGÞ instead of
EðG; �1; � � � ; �tÞ.

Lemma 2.8. ([10, Lemma 3.9]) Let G ¼ ðZ;GþÞ be a simple component, let n be
an infinite generalized integer, let fangn�1 be a sequence associated with n. Then there
are arbitrary large k 2 N such that qk ¼ a1 � � � ak belongs to EðGÞ.

The next result is similar to Lemma 2.4.

Lemma 2.9. Let fGn;G
þ
n ; fn;mg1nm and fHn;H

þ
n ; hn;mg1nm be direct systems of

directed partially ordered abelian groups, let ðG;GþÞ and ðH;HþÞ be respectively the
direct limits (in the category of partially ordered abelian groups) of these systems, and
for every n � 1, let fn : Gn ! G and hn : Hn ! H be the canonical maps. For each
n � 1, let �n : Gn ! Hn be a map such that �mfn;m ¼ hn;m�n for all m � n � 1, and let
� : G ! H be the induced map. If for every 1  n  m the maps fn;m; hn;m and �n are
order-embeddings, then so is �.

Proof. Notice that, by Lemma 2.4(2), for every n � 1 the maps fn and hn are
order-embeddings.

First, we will prove that � is an injective map. For, let x 2 ker �. Then there exist
n � 1 and xn 2 Gn such that fnðxnÞ ¼ x. Thus, 0 ¼ �ðxÞ ¼ �ðfnðxnÞÞ ¼ ðhn � �nÞðxnÞ.
Since �n and hn are order-embeddings, so is hn � �n, whence xn ¼ 0, and hence x ¼ 0.

Let x 2 G such that �ðxÞ 2 Hþ. Then, there exist n � 1 and xn 2 Gn such that
fnðxnÞ ¼ x. Hence, �ðxÞ ¼ �ðfnðxÞÞ ¼ ðhn � �nÞðxnÞ. Since hn and �n are order-embed-
dings, we have that xn 2 Gþ

n . Thus, x 2 Gþ, so we are done. &

We need the following result, in order to construct the diagram ð{Þ in a recursive
way.

Proposition 2.10. Let G1 ¼ ðZ;Gþ
1 Þ, G2 ¼ ðZ;Gþ

2 Þ, G3 ¼ ðZ;Gþ
3 Þ be partially

ordered abelian groups, and let a; b 2 N be coprime numbers such that a� : G1 ! G2

and b� : G1 ! G3 are positive morphisms. Let G4 ¼ ðZ;Gþ
4 Þ with Gþ

4 ¼ aGþ
3 þ bGþ

2 ,
and consider the commutative diagram

G1 �!
a�

G2

b� j
#

j
#
b�

G3
a�

�! G4

Then:
(1) If a� : G1 ! G2 is an order-embedding, then so is a� : G3 ! G4.
(2) If b� : G1 ! G3 is an order-embedding, then so is b� : G2 ! G4

Proof. The argument is similar to that of Lemma 2.3(2).
(1) Clearly, a� : G3 ! G4 is a one-to-one morphism. By definition of G4, it is also

a positive morphism. Let x 2 G3 such that ax 2 Gþ
4 . Then there exist y 2 Gþ

3 and
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z 2 Gþ
2 such that ax ¼ ay þ bz, i.e., aðx � yÞ ¼ bz. Since g.c.d.ða; bÞ ¼ 1, there exists

t 2 Zþ such that bz ¼ bat, and thus z ¼ at. Since z 2 Gþ
2 and a� : G1 ! G2 is an

order-embedding, we have that t 2 Gþ
1 , whence x � y ¼ bt 2 Gþ

3 . Thus, x 2 Gþ
3 , as

desired.
(2) It is analog to part (1). &

Now, we are ready to prove the main result in this note.

Theorem 2.11. Let ðGðA;B;HÞ;GþðA;B;HÞÞ be the simple rank one group
associated with the data triple ðA;B;HÞ, and let nðAÞ be the generalized integer asso-
ciated with the sequence A. Given any infinite generalized integerm coprime with nðAÞ,
there exist a simple Riesz group of rank one ðeGGðA;B;H;mÞ; eGGþðA;B;H;mÞÞ and a
positive morphism

� : GðA;B;HÞ ! eGGðA;B;H;mÞ

such that:
(1) The group eGGðA;B;H;mÞ is isomorphic to ZnðAÞ�m (as abelian groups).
(2) The map � is an order-embedding.

Proof. The proof of this Theorem needs a preliminary step, in order to get the
necessary groups and morphisms to construct GðA;B;H;mÞ and �. First notice that,
by Remark 2.2(ii), there exist at least an infinite generalized integer m coprime with
nðAÞ. We just need to consider m ¼ p1, where p is a prime number coprime with
every ai 2 A.

Fix m ¼
Q
i�1

ci an infinite generalized integer coprime with nðAÞ. We will show by

induction that there exists a commutative diagram ðyÞ of partially ordered abelian
groups and positive morphisms

G0;1 ! G0;2 ! G0;3 ! G0;4 ! � � � ! G0;n ! � � �

# # # # #

G1;1 ! G1;2 ! G1;3 ! G1;4 ! � � � ! G1;n ! � � �

# # # #

G2;2 ! G2;3 ! G2;4 ! � � � ! G2;n ! � � �

# # #

..

. ..
. ..

.

such that:
(i) For every n � 1, G0;n is GnðA;B;HÞ, the n-th simple component associated

with the data triple ðA;B;HÞ, and g
ð0Þ

n;nþ1 : G0;n ! G0;nþ1 is the map gn;nþ1 :
GnðA;B;HÞ ! Gnþ1ðA;B;HÞ that appears in the construction of GðA;B;HÞ.

(ii) For every i � 0 and every j � 1, the groupGi;j ¼ ðZ;Gþ
i;jÞ is a simple component.

(iii) Every map appearing in diagram ðyÞ is an order-embedding.
(iv) For every i � 0, the map f

ðiþ1Þ

i;iþ1 : Gi;iþ1 ! Giþ1;iþ1 is given by multiplication

by an integer qi satisfying: (a) for every n � 1,
Qn
i¼1

qi divides m; (b) the image of every

reduced interpolation problem of Gi;iþ1 admits a solution in Giþ1;iþ1, that is,
qi 2 EðGi;iþ1Þ.
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Notice that, by Proposition 2.5(1–2), for every k � 1, the group G0;k is a simple
component, and the map g

ð0Þ

k;kþ1 is an order-embedding. Now, for 0  i  k, we will
construct the groups Gi;k and the maps g

ðiÞ
k;kþ1 : Gi;k ! Gi;kþ1 and f

ðkÞ

i;iþ1 : Gi;k !

Giþ1;k, by induction on the second entry of the subindex pair ði; kÞ.
Case k ¼ 1: By Lemma 2.8, there exist l1 2 N and a simple component, that we

denote G1;1, such that the map given by multiplication by q1 ¼ c1 � � � cl1 defines an
order-embedding f

ð1Þ

0;1 : G0;1 ! G1;1 such that q1 2 EðG0;1Þ. Thus, G1;1 satisfies prop-
erty (ii), and the map f

ð1Þ

0;1 satisfies properties (iii–iv).
Case k ¼ 2: Notice that, by Proposition 2.5(2), the map g

ð0Þ

1;2 : G0;1 ! G0;2, given
by multiplication by a1 2 A, is an order-embedding. Since nðAÞ and m are coprime,
we have that g.c.d.ða1; q1Þ ¼ 1. We define G1;2 ¼ ðZ;Gþ

1;2Þ, with Gþ
1;2 ¼ a1G

þ
1;1þ

q1G
þ
0;2. By Lemma 2.3(1), G1;2 is a simple component. Now, we define maps

g
ð1Þ

1;2 : G1;1 ! G1;2 by multiplication by a1, and f
ð2Þ

0;1 : G0;2 ! G1;2 by multiplication by
q1. By definition of G1;2, g

ð1Þ

1;2 and f
ð2Þ

0;1, both maps are positive morphisms such that
the diagram

G0;1 �!
g

ð0Þ

1;2

G0;2

f
ð1Þ

0;1
j
#

j
#
f

ð2Þ

0;1

G1;1
gð1Þ

1;2

�! G1;2

is commutative. Since g
ð0Þ

1;2 and f
ð1Þ

0;1 are order-embeddings by hypothesis, so are g
ð1Þ

1;2

and f
ð2Þ

0;1 because of Proposition 2.10. Now, fix G1;2, and set m1 ¼ m=q1, that is an
infinite generalized integer coprime with nðAÞ. Then, by Lemma 2.8, there exist
l2 2 Z and a simple component, that we denote G2;2, such that multiplication by
q2 ¼ cl1þ1 � � � cl1þl2 defines an order-embedding f

ð2Þ

1;2 : G1;2 ! G2;2 such that q2 2

EðG1;2Þ, whence it satisfies properties (iii–iv).
Case k > 2: We assume that, for k � 2 and i  j  k, we have constructed:
- Simple components Gi;j.
- Order-embeddings g

ðiÞ
j�1;j : Gi;j�1 ! Gi;j given by multiplication by aj�1.

- Order-embeddings f
ð jÞ
i�1;i : Gi�1;j ! Gi;j given by multiplication by qi ¼

cl1þl2þ���þli�1þ1 � � � cl1þl2þ���þli , for suitable l1; . . . ; lk, in such a way that f
ðiþ1Þ

i;iþ1 satisfies
property (iv).

Moreover, the square diagrams given by these groups and maps,

Gi�1;j�1 ! Gi�1;j

# #

Gi;j�1 ! Gi;j

commute.
By Proposition 2.5(2), the map g

ð0Þ

k;kþ1 : G0;k ! G0;kþ1, given by multiplication
by ak, is an order-embedding. Since nðAÞ and m are coprime, we have
g.c.d.ðak; q1Þ ¼ 1. We define G1;kþ1 ¼ ðZ;Gþ

1;kþ1Þ, with Gþ
1;kþ1 ¼ akG

þ
1;k þ q1G

þ
0;kþ1.

By Lemma 2.3(1), G1;kþ1 is a simple component. We define maps g
ð1Þ

k;kþ1 :
G1;k ! G1;kþ1 by multiplication by ak, and f

ðkþ1Þ

0;1 : G0;kþ1 ! G1;kþ1 by multiplication

by q1. By definition of G1;kþ1; g
ð1Þ

k;kþ1 and f
ðkþ1Þ

0;1 , both maps are positive morphisms
such that the diagram
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G0;k �!
g

ð0Þ

k;kþ1

G0;kþ1

f ðkÞ

0;1
j
#

j
#
f ðkþ1Þ

0;1

G1;k
g

ð1Þ

k;kþ1

�! G1;kþ1

is commutative. Since g
ð0Þ

k;kþ1 and f
ðkÞ

0;1 are order-embeddings by hypothesis, so are
g

ð1Þ

k;kþ1 and f
ðkþ1Þ

0;1 because of Proposition 2.10.
Now, we apply the same argument to the simple components G1;k, G1;kþ1 and

G2;k, to the order-embedding g
ð1Þ

k;kþ1 : G1;k ! G1;kþ1 given by multiplication by ak,

and to the order-embedding f
ðkÞ

1;2 : G1;k ! G2;k given by multiplication by q2. As
above, we construct a simple component G2;kþ1, order-embeddings g

ð2Þ

k;kþ1 : G2;k !

G2;kþ1 given by multiplication by ak, and f
ðkþ1Þ

1;2 : G1;kþ1 ! G2;kþ1 given by multi-
plication by q2, so that the diagram

G1;k ! G1;kþ1

# #

G2;k ! G2;kþ1

commutes. Repeating this argument for 1  i  k, we construct by recurrence a
simple component Gi;kþ1 and a couple of order-embeddings g

ðiÞ
k;kþ1 : Gi;k ! Gi;kþ1

given by multiplication by ak, f
ðkþ1Þ

i�1;i : Gi�1;kþ1 ! Gi;kþ1 given by multiplication by qi,
so that the diagram

Gi�1;k ! Gi�1;kþ1

# #

Gi;k ! Gi;kþ1

commutes. To end the induction step, we fix Gk;kþ1, and the infinite generalized
integer mk ¼ m=ðq1 � � � qkÞ. Again by Lemma 2.8, there exist lkþ1 2 N and a simple
component, that we denote Gkþ1;kþ1, such that multiplication by qkþ1 ¼ cl1þl2þ���þlkþ1

� � � cl1þl2þ���þlkþ1
defines an order-embedding f

ðkþ1Þ

k;kþ1 : Gk;kþ1 ! Gkþ1;kþ1 such that
qkþ1 2 EðGk;kþ1Þ, whence it satisfies property (iv). Hence the induction works, so we
are done.

Once we stated the existence of diagram ðyÞ, we proceed to construct a group
satisfying (1-2) in the statement of the Theorem. Recall that, by property (i), for
each n � 1, G0;n ¼ GnðA;B;HÞ. For each n � 1, ðeGGnðA;B;H;mÞ; eGGþ

n ðA;B;H;mÞÞ is
the simple component ðGn;n;G

þ
n;nÞ of diagram ðyÞ. Thus, for each n � 1, the com-

position �n ¼ f
ðnÞ

n�1;n � f
ðnÞ

n�2;n�1 � � � � � f
ðnÞ

1;2 � f
ðnÞ

0;1 defines an order-embedding �n :

GnðA;B;HÞ ! eGGnðA;B;H;mÞ. Analogously, for each n � 1, the composition

hn;nþ1 ¼ f
ðnþ1Þ

n;nþ1 � g
ðnÞ

n;nþ1 defines an order-embedding hn;nþ1 : eGGnðA;B;H;mÞ !eGGnþ1ðA;B;H;mÞ. Moreover, since the diagram ðyÞ is commutative, so is the diagram ð\Þ

G1ðA;B;HÞ �!
g1;2

G2ðA;B;HÞ �!
g2;3

� � �

�1
j
#

j
#
�2eGG1ðA;B;H;mÞ

h1;2

�! eGG2ðA;B;H;mÞ
h2;3

�! � � �
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Let
ðeGGðA;B;H;mÞ; eGGþðA;B;H;mÞÞ

be the direct limit (in the category of partially ordered abelian groups) of the direct
system

feGGnðA;B;H;mÞ; eGGþ

n ðA;B;H;mÞ; hn;nþ1gn�1;

and let � : GðA;B;HÞ ! eGGþðA;B;H;mÞ be the map induced by diagram ð\Þ.
Since for each n � 1 the map hn;nþ1 is given by multiplication by an � qn, the

sequence associated with the group eGGþðA;B;H;mÞ is faiqigi�1. Notice thatQ
i�1

aiqi ¼
Q
i�1

ai
Q
i�1

qi ¼ nðAÞm. Thus, by [10, Lemma 3.10], eGGðA;B;H;mÞ is iso-

morphic to ZnðAÞm (as an abelian group). Hence, part (1) holds.

By Lemma 2.4, eGGðA;B;H;mÞ is a simple group, and by Lemma 2.9, � is an
order-embedding. Since f

ðnþ1Þ

n;nþ1 and g
ðnÞ

n;nþ1 are order-embeddings, property (iv) means
that anqn 2 EðeGGnðA;B;H;mÞÞ. Thus, it is easy to see that eGGðA;B;H;mÞ is a Riesz
group, which ends the proof. &

As a consequence, we are able to answer in the affirmative [18, Problem 3.15], as
a particular case of Theorem 2.11. In the sequel, to simplify the notation, we will
denote by A2 the constant sequence f2gn�1, by B9 the sequence f9ngn�1, and by H2;7

the constant sequence fðZ; h2; 7iÞgn�1. Notice that H ¼ ðZ; h2; 7iÞ is a simple com-
ponent by Lemma 2.3(1), and also that A2 and B9 are sequences of natural numbers
satisfying (?). Hence, ðA2;B9;H2;7Þ satisfies Definition 2.1, so that it is a data triple.

Corollary 2.12. Let M ¼ h2; 7i, and let ðG0;G
þ
0 Þ the simple dense subgroup of

Q generated by the set

Gþ
0 ¼ fðk=2Þð9=2Þ

n
j k 2 Hþ and n 2 Zþ

g:

Then, for any odd infinite generalized integer m, there exists a simple Riesz group of
rank one eGGm such that:

(1) eGGm ffi Z21m as an abelian group.
(2) G0 embeds into eGGm as an ordered group.

Proof. First, notice that the group ðG0;G
þ
0 Þ is the one considered in [18,

Example 3.14]. We construct the group ðG0;G
þ
0 Þ as a direct limit, where the groups

in the direct system are fðG0;n;G
þ
0;nÞgn�1 defined as follows:

1. For every n � 1, G0;n ¼ ð1=2Þ
nZ.

2. Gþ
0;1 ¼ ð1=2ÞM.

3. For every n � 2, Gþ
0;n ¼

Pn
j¼1

ð1=2Þð9=2Þ
j�1M, or in a more compact way,

Gþ
0;n ¼ Gþ

0;n�1 þ ð1=2Þð9=2Þ
n�1M.

Notice that the natural inclusion maps hn;nþ1 : G0;n�!G0;nþ1 are order-embeddings.
Now, consider the data triple ðA2;B9;H2;7Þ, and let

fGnðA2;B9;H2;7Þgn�1; ðGðA2;B9;H2;7Þ;GþðA2;B9;H2;7ÞÞ

the family of groups associated with this data triple.
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For every n � 1, the map fn : G0;n ! GnðA2;B9;H2;7Þ given by multiplication by
2n is an isomorphism of ordered groups. Also, for every n � 1, if

gn;nþ1 : GnðA2;B9;H2;7Þ ! Gnþ1ðA2;B9;H2;7Þ

are the maps appearing in the construction of GðA2;B9;H2;7Þ, then fnþ1 � hn;nþ1 ¼

gn;nþ1 � fn, so that the induced map

f : G0 ! GðA2;B9;H2;7Þ

is an isomorphism of ordered groups.
Hence, by Theorem 2.11, for any odd infinite generalized integer m there exist a

countable, torsion-free, simple Riesz group of rank one

ðeGGðA2;B9;H2;7;mÞ; eGGþðA2;B9;H2;7;mÞÞ

and an order-embedding

� : GðA2;B9;H2;7Þ ! eGGðA2;B9;H2;7;mÞ:

Set eGGm ¼ eGGðA2;B9;H2;7;mÞ. Thus, the composition map

g ¼ � � f : G0 ! eGGm

give us the desired order-embedding, so we are done. &

3. Monoids of intervals. In this section we will use the special properties of the
group constructed in Corollary 2.12 to prove some interesting consequences on
monoids of intervals. We recall some definitions [11] about monoids of intervals of
positive cones of partially ordered abelian groups (specially in the case of simple
groups). Since most definitions about abelian monoids are analogous to those of
partially ordered abelian groups, we will use them without an explicit definition. For
basic definitions and results on abelian monoids, see for example [11], [16] and [17].
Let Gþ be the positive cone of a partially ordered abelian G. A nonempty subset X
of Gþ is called an interval in Gþ if X is upward directed and order-hereditary. We
denote by �ðGþÞ the set of intervals in Gþ. Note that �ðGþÞ becomes an abelian
monoid with operation defined by X þ Y ¼ fz 2 Gþ j z  x þ y for some x 2 X;
y 2 Yg. If X 2 �ðGþÞ, we say that X is countably generated provided that X has a
countable cofinal subset (i.e., there is a sequence fxng of elements in X such that for
any x 2 X there exists n 2 N such that x  xn). We denote by �
ðGþÞ the set of all
countably generated intervals in Gþ. Our next result is an immediate consequence of
[18, Example 3.14] and Theorem 2.11, but we include a proof for benefit of the reader.

Lemma 3.1. Consider the data triple ðA2;B9;H2;7Þ, and let

ðGðA2;B9;H2;7Þ;GþðA2;B9;H2;7ÞÞ

be the group associated with this data triple. Let m be an odd infinite generalized
integer, and let
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ðeGGðA2;B9;H2;7;mÞ; eGGþðA2;B9;H2;7;mÞÞ

be the group constructed in Corollary 2.12. Then there exists a proper countably gen-
erated interval D in eGGþðA2;B9;H2;7;mÞ such that 2D ¼ eGGþðA2;B9;H2;7;mÞ.

Proof. In order to simplify the notation, we will write eGGm instead of

eGGðA2;B9;H2;7;mÞ:

Consider the group ðG0;G
þ
0 Þ constructed in [18, Example 3.14], and let

g : G0 ! eGGm be the order-embedding constructed in Corollary 2.12. Let dn ¼ ð9=2Þ
n

be elements of Gþ
0 . According to [18, Example 3.14], for every n 2 Zþ, the elements

dn; dnþ1 � dn and 2dnþ1 � 4dn belong to Gþ
0 . Set en :¼ gðdnÞ. Since g is an order-

embedding, we have that en; enþ1 � en and 2enþ1 � 4en belong to eGGþ
m (�). Hence

D ¼ fx 2 eGGþ
m j x  en for some n 2 Zþ

g

is a countably generated interval. Since there is no n 2 Zþ such that 2d0  dn, we
have that 2e0 62 D, whence D 6¼ eGGþ

m. On the other side, since eGGm is simple, given any
x 2 eGGþ

m there exist m; j 2 N such that x  mðe0 þ � � � þ ejþ1Þ. Then, by (�), we have
mðe0 þ � � � þ ejþ1Þ  ð j þ 1Þmejþ1. Pick k 2 N such that ð j þ 1Þm  2k. Again by
(�) we get ð j þ 1Þmejþ1  2kejþ1  2ejþk. Thus, eGGþ

m � 2D, and since 2D � eGGþ
m, we are

done. &

Remark 3.2. Let ðG;Gþ; 1Þ � ðQ;Qþ; 1Þ be any of the examples of [10, Section
3]. By construction, for any x 2 G, if x 2 Q

þ and x �Q 1, then x 2 Gþ. As a con-
sequence, if fxng is any unbounded, strictly ascending chain of Gþ, then the interval
generated by fxng, say X ¼ fx 2 Gþ j x  xn for some n 2 Zþ

g, is equal to Gþ.
Hence, Gþ does not contain any interval D 6¼ Gþ such that nD ¼ Gþ for some
positive integer n. In this sense, the groups obtained by using Theorem 2.11, and
those obtained by using the construction in [10, Section 3], are essentially different.

Recall that an abelian monoid M is separative if it satisfies the weak cancellation
condition that for all a, b in M, a þ a ¼ a þ b ¼ b þ b only if a ¼ b. Also, an element
x of a monoid M is said to be directly finite in M, if, for all 0 6¼ y 2 M, x þ y 6¼ x;
otherwise, x is directly infinite in M. If D is a fixed interval in �
ðGþÞ, we denote by
�
;DðGþÞ the submonoid of �
ðGþÞ whose elements are intervals X 2 �
ðGþÞ such
that X � nD for some n 2 N, and we denote by WD


 ðGþÞ the submonoid of �
;DðGþÞ

whose elements are intervals X 2 �
;DðGþÞ such that there exists Y 2 �
;DðGþÞ with
X þ Y ¼ nD for some n 2 N. Thus, as an immediate consequence of Lemma 3.1 we
have

Corollary 3.3. Let m be any odd infinite generalized integer, and leteGGðA2;B9;H2;7;mÞ and D be respectively the group and the interval constructed in
Lemma 3.1. Then,

WD

 ðeGGþðA2;B9;H2;7;mÞÞ

is a non-separative refinement monoid. Moreover,
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D 2 WD

 ðeGGþðA2;B9;H2;7;mÞÞ

is a directly finite element, but 2D is directly infinite, and satisfies 2ð2DÞ ¼ 2D.

Proof. In order to simplify the notation, we will write eGGm instead of

eGGðA2;B9;H2;7;mÞ:

Since eGGm is a Riesz group, WD

 ðeGGþ

mÞ is a refinement monoid by [7, Proposition 2.5].
Observe that eGGþ

m is a countably generated interval in eGGþ
m (with countably cofinal

subset fnu j n 2 Ng for any 0 6¼ u 2 eGGþ
m), and also that eGGþ

m þ 0 ¼ 2D. Then,eGGþ
m 2 WD


 ðeGGþ
mÞ. By Lemma 3.1, DeGGþ

m and 2D ¼ eGGþ
m, whence 2D ¼ D þ eGGþ

m ¼ 2eGGþ
m,

and thus WD

 ðeGGþ

mÞ is a non-separative monoid.
Suppose that there exists a nonzero interval X 2 WD


 ðeGGþ
mÞ such that D þ X ¼ D.

Then, for every n 2 N we have D þ nX ¼ D. Let a 2 X be a nonzero element. SinceeGGm is a simple group, a is an order-unit. Hence, for any n 2 N there exists kn 2 N

such that dn  kna 2 knX � D. Thus, for all m; n 2 N we have dm þ dn 2

kmX þ knX � kmX þ D ¼ D, whence eGGþ
m ¼ 2D � D, contradicting the fact that

D 6¼ eGGþ
m. As a consequence, D is directly finite. On the other side, 2D ¼ eGGþ

m ¼

2eGGþ
m ¼ 2ð2DÞ, so we are done. &

According to [11, Theorem 3.9], this pathological behavior cannot occur when-
ever the group G is strictly unperforated. Thus, Remark 3.2 and Corollary 3.3 sug-
gest the following interesting question.

Problem 3.4. Given any countable, torsion-free, simple Riesz group G of rank
one that fails to be strictly unperforated, is WD


 ðGþÞ always non-separative?

Given a partially ordered abelian group ðG; uÞ with order-unit, we denote by Su
the compact convex space of states on ðG; uÞ, by AffðSuÞ

þ the monoid of positive,
affine and continuous functions from Su to Rþ, and by �u : G

þ�!AffðSuÞ
þ the

natural evaluation map. Also, let LAff
ðSuÞ
þþ be the monoid of strictly positive,

affine, lower semicontinuous functions from Gþ to Rþ that are pointwise suprema of
increasing sequences of functions in AffðSuÞ

þ. According to [11, Theorem 3.9], if G
is a simple, nonatomic, strictly unperforated Riesz group, u 2 Gþ is an order-unit,
and D is a nonzero, soft, countably generated interval in Gþ (we say that X is a soft
interval in Gþ if for each x 2 X, there exist y 2 X and n 2 N such that ðn þ 1Þx  ny),
then the map

’ : WD

 ðGþÞ�!Gþ t Wd


ðSuÞ

given by the rule ’ð½0; x!Þ ¼ x for any x 2 Gþ, and by ’ðXÞ ¼ sup�uðXÞ for any
X 2 WD


 ðGþÞ soft interval, is a normalized monoid isomorphism.
Notice that in the case of the group

ðeGGðA2;B9;H2;7;mÞ; eGGþðA2;B9;H2;7;mÞÞ

constructed in Corollary 2.12, since its rank is one, we have that Su is a singleton, so
that AffðSuÞ

þ
¼ ½0;1Þ, and LAff
ðSuÞ

þþ
¼ ð0;1!. In order to simplify the notation

of the following result, we will denote eGGm instead of eGGðA2;B9;H2;7;mÞ
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Corollary 3.5. Let m be any odd infinite generalized integer, let eGGm and
D � eGGþ

m be respectively the group and the interval constructed in Lemma 3.1, and let
d ¼ sup �uðDÞ. Then the map

’ : WD

 ðeGGþ

mÞ�!eGGþ
m t ð0;1!

fails to be injective.

Proof. Simply notice that ’ðDÞ ¼ 1 ¼ ’ðeGGþ
mÞ, but D 6¼ eGGþ

m. &

In a subsequent work [9] it is shown that, under the hypotheses G being a
countable, nonatomic, torsion-free, simple Riesz group, the injectivity of ’ is
equivalent to G being strictly unperforated. Moreover, under some mild hypotheses,
’ turns out to be a monoid epimorphism.

4. Applications to K-Theory. In this section, we observe the potential connec-
tions between the above results and some recent works on K-Theory for multiplier
rings of both C�-algebras of real rank zero [7] and von Neumann regular rings [2],
[11]. We briefly recall some definitions on K-Theory. Given a ring R, we define VðRÞ

to be the set of isomorphism classes of finitely generated projective right R-modules;
if A is a finitely generated projective right R-module, we denote by ½A! the iso-
morphism class of A. We endow VðRÞ with the structure of an abelian monoid by
imposing the operation

½A! þ ½B! :¼ ½A " B!

for any isomorphism classes ½A! and ½B!. Equivalently [3, Chapter 3], VðRÞ can be
seen as the set of equivalence classes of idempotents in M1ðRÞ – the ring of ! # !
matrices over R with only finitely many nonzero entries – with the operation

½e! þ ½ f ! :¼
e 0
0 f

� �� 	

for idempotents e; f 2 M1ðRÞ. The group K0ðRÞ is the universal group of VðRÞ, and
the image of the canonical monoid homomorphism VðRÞ ! K0ðRÞ is the positive
cone of K0ðRÞ, denoted K0ðRÞ

þ. If the Bass’ stable rank of R is 1 [1], then VðRÞ is
cancellative, and thus VðRÞ ¼ K0ðRÞ

þ. Also, if R is a simple ring, then K0ðRÞ is a
simple group. In the case of C�-algebras with real rank zero, or von Neumann reg-
ular rings, or in general exchange rings with stable rank 1, it is well-known that
K0ðRÞ is a Riesz group (see [19], [5] and [15], respectively). Thus, when we study
simple Riesz groups, we are studying K-Theory of stable rank one rings lying in
these classes.

The connection with monoids of intervals was found by Goodearl [7], who
applied it to a deep study of the structure of the group K0 for the multiplier algebra
of a 
-unital non-unital C�-algebra of real rank zero A with stable rank one, such
that K0ðAÞ is an unperforated group. Later, Perera [11] used similar techniques for
studying the structure of the monoid V for the multiplier algebra of a 
-unital non-
unital, simple, nonartinian C�-algebra of real rank zero A with stable rank one, such
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that VðAÞ is an strictly unperforated monoid. Ara and Perera [2] extended these
results to the case of the multiplier ring of a 
-unital non-unital von Neumann reg-
ular ring R with stable rank one, such that VðRÞ is an strictly unperforated monoid.
This case is specially interesting, since by [8], the ring of multipliers of a 
-unital
non-unital von Neumann regular ring is an exchange ring. The fundamental result
of both Goodearl [7, Theorem 1.10] and Perera [11, Theorem 2.4] is that, if R is a 
-
unital, non-unital, stable rank one C�-algebra of real rank zero (von Neumann reg-
ular ring), then there is a monoid isomorphism from VðMðRÞ; ½1MðRÞ!Þ to
WD


 ðK0ðRÞ
þ

Þ for a suitable interval D associated with a fixed approximate unit of R,
where MðRÞ denotes the multiplier ring of R (see [2] for definitions).

Recent results of Villadsen [14], R�rdam and Villadsen [13], and Elliott and
Villadsen [4], guarantee the existence of simple C�-algebras whose K0 groups are
simple components. Hence, these results open the possibility of finding a simple C�-
algebra of real rank zero A with stable rank one such that ðK0ðAÞ;K0ðAÞ

þ
Þ is iso-

morphic to

ðeGGðA2;B9;H2;7;mÞ; eGGþðA2;B9;H2;7;mÞÞ

for some odd infinite generalized integer m. Suppose that it is possible to construct
such a 
-unital, nonunital, nonartinian, simple, stable rank one C�-algebra of real
rank zero (von Neumann regular ring) A, and suppose that the interval D con-
structed in Lemma 3.1 is generated by f½en!g � VðAÞ, where feng is a 
-unit for A.
Then

Theorem 4.1. Let A be a 
-unital, nonunital, nonartinian, simple, stable rank one
C�-algebra of real rank zero (von Neumann regular ring) such that ðK0ðAÞ;K0ðAÞ

þ
Þ is

isomorphic to

ðeGGðA2;B9;H2;7;mÞ; eGGþðA2;B9;H2;7;mÞÞ

for some odd infinite generalized integer m. Suppose that the interval D constructed in
Lemma 3.1 is generated by f½en!g � VðAÞ, where feng is a 
-unit for A. Then, MðAÞ is a
non separative C�-algebra (exchange ring). Moreover, 1MðAÞ 2 MðAÞ is a directly
finite idempotent, but 2½1MðAÞ! ¼ 2ð2½1MðAÞ!Þ 2 VðMðAÞÞ.

Proof. It is an immediate consequence of [7, Theorem 1.10], [11, Theorem 2.4]
and Corollary 3.3. &

Notice that, by Theorem 4.1, if such a regular ring A exists, then MðAÞ is a non-
separative exchange ring. Thus we would have a negative answer to a central ques-
tion of [1]. Also, notice that, by [12, Proposition 3.6], if A is a 
-unital, nonunital,
simple C�-algebra, then ½1MðAÞ! ¼ 2½1MðAÞ! 2 VðMðAÞÞ if and only if R is stable (i.e.,
if A ffi R % K, where K is the C�-algebra of compact operators on a separable Hil-
bert space). Thus we could have an example of a phenomenon first observed by
R�rdam, who provided an explicit example [12, Theorem 3.7, Example 4.3], pro-
duced in a different way

Corollary 4.2. Let A be a 
-unital, nonunital, nonartinian, simple, stable rank
one C�-algebra of real rank zero such that ðK0ðAÞ;K0ðAÞ

þ
Þ is isomorphic to
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ðeGGðA2;B9;H2;7;mÞ; eGGþðA2;B9;H2;7;mÞÞ

for some odd infinite generalized integer m. Suppose that the interval D constructed in
Lemma 3.1 is generated by f½en!g � VðAÞ, where feng is a 
-unit for A. Then, MðAÞ is a
non-stable algebra, but M2ðMðAÞÞ is a stable algebra. &
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