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A la Laia Crespo Oblanca

Abstract. We give a method for embedding a large family of partially ordered
simple groups of rank one into simple Riesz groups of rank one. In particular, we
answer in the affirmative a question of Wehrung, by constructing a torsion-free,
simple Riesz group G of rank one containing an interval D & G such that 2D = G*.
We sketch some potential applications of this result in the context of monoids of
intervals and K-Theory of rings.
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1. Introduction. In [6, Open Problem 30], Goodearl asks whether every partially
ordered simple abelian group can be embedded into a simple Riesz group. Wehrung
[18] answers this question in the affirmative. Moreover, he shows that this embed-
ding can be choosen to be cofinal, so that the simple Riesz group arising from his
construction is tightly related to the original group. Nevertheless, his argument lies
in the scope of Model Theory, and unfortunately it cannot be translated to concrete
constructions for given families of groups. In [18, Example 3.14], Wehrung uses his
construction to give an example of a torsion-free simple Riesz group G containing
an interval D # G such that 2D = G, and he asks ([18, Problem 3.15]) whether
this example can be realized as a torsion-free Riesz group of rank one (i.e, with posi-
tive cone isomorphic to an additive submonoid of Q). The existence of such a con-
structive example of simple Riesz group might have interesting consequences in the
context of K-Theory for C*-algebras and exchange rings, so that it is interesting to
have an answer to Wehrung’s Problem.

In this note we answer Wehrung’s Problem in the affirmative. For, we start by
showing that, for any group G lying within a large family of torsion-free simple
partially ordered groups of rank one, it is possible to construct a concrete torsion-free,
simple_Riesz group of rank one G, as well as a concrete order-embedding from G
onto G. Since the original group G appearing in [18 Example 3.14] belongs to this
family, we obtain the desired result. Observe that our result is, in fact, a partial
answer to [6, Open Problem 30], but a constructive one, and so is different from the
complete (but not constructive) answer given by Wehrung. To obtain our result, we
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accurately re-elaborate the construction introduced in [10, Section 3]. Nevertheless,
the kind of groups we obtain are quite different from those constructed in [10].

Also, we will explain how these examples apply for producing pathological
examples of refinement monoids failing separative cancellation property (see [1]),
and how they could be applied for answering some open questions in the context of
exchange rings.

Throughout this note we will refer to [6] for notations and definitions on par-
tially ordered abelian groups. We recall here some basic definitions on the context of
this note. Given an abelian group G, a cone of G is an additive submonoid P of G
containing zero, and we say that the cone P is strict if PN (—P) = {0}. A partially
ordered abelian group is an abelian group G endowed with a strict cone, called the
positive cone of G and denoted by G*. A partially ordered abelian group G is said to
be directed provided that any element can be written as a difference of two positive
elements. Given a partially ordered abelian group G, an element u € G is said to be
an order-unit provided that 0 # u € Gt and for each element x € G there exists 7 in
N such that —nu < x < nu (in particular a group with order-unit is directed). A
partially ordered abelian group is said to be simple when it is nonzero and every
nonzero positive element is an order-unit. A partially ordered abelian group G is
said to be (strictly) unperforated provided that for all x € G and for all
neN=27"\{0}, if nx € G* (0 # nx € G*), then x € G (0 # x € G*). A partially
ordered abelian group is an interpolation group if for all xy, x, y1, y» € G such that
Vi, j x; < y;, there exists an element z € G such that Vi, j x; < z < y;. A Riesz group is
a directed interpolation group. Following [10], a partially ordered abelian group is «
simple component if G = (Z,G") and G is directed. Observe that G then is obviously
simple. Given ry, ..., r; € Z*, we denote by (r, ..., r;) the additive submonoid of Z*
generated by {rj,...,r}. Given G, H partially ordered abelian groups, a group
homomorphism f: G — H is a positive morphism if {GT) € H". A positive morph-
ism f: G — H is an order-embedding if f is a one-to-one morphism, and for every
x € G, f{x) € H implies x € G™.

2. Building the embedding. We start this section by giving a general expression
of the class of groups we will consider. The groups lying in this class can be pre-
sented as direct limits in the category of partially ordered abelian groups (see [6,
Proposition 1.15]). The basic building blocks of direct systems used in this con-
struction can be built in a recursive way, as follows:

Let H = {H;};~; be a sequence of simple components, and let 4 = {a;};~; and
B = {b;};>1 be sequences of natural numbers, satisfying the following properties,
tagged by (%):

(i) Foreveryi=>1, a;, b; > 2.

(ii)) For every i > 1, a; and b; are coprime numbers.

(iii) If we define by = 1, then for all i > 1 we have b; € b, H.

Given sequences A, B, H as above, we consider the family

Gi(A, B,H) = (Z, Gk (4, B, H)")

of partially ordered abelian groups, indexed by k > 1, whose positive cones are
defined recursively as follows:

(i) G{ (4, B, H) = H{.

(ii) For every k > 2, G (A4, B, H) = ax_1G{"_(A, B, H) + by_ H .
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Also, for each k > 1, gy 41 : Gk(A, B, H) — G11(A4, B, H) is the map defined by
multiplication by .
Once we have constructed the direct system

{(Gx(4, B, H), G; (4, B, H), gk k1) k=1

associated with sequences 4, B, H, we define the partially ordered abelian group

(G(4, B, H), G*(4, B, H)) = im(G(4, B, H), G{ (4, B, H), gse+1).

The class that we consider is the one of the groups

(G(A4, B, H), G(4, B, H))
associated with sequences A4, B, H satisfying (%).

DEFINITION 2.1. (i) A triple (A, B, H), where H = {H;};~; is a sequence of simple
components, and 4 = {a;};>;, B = {b;};>; are sequences of natural numbers satisfy-
ing (%), is called the data triple (A, B, H).

(i1) Given (4, B, H) a data triple, we say that

{Gk(Av B’ H)}kzla (G(Aa Ba H)’ G+(Aa Ba H))
is the family of groups associated with the data triple (4, B, H).

REMARK 2.2.

(i) Property ()(iii) implies that for every 1 < i <, b; divides b;. So, by property
(*)(1), for every 1 <i <j, g.c.d.(a;, b)) = 1.

(i1) Since A and B are nonempty, the above remark implies that there is at least a
prime number p coprime with ¢; for all i > 1. For, pick p any prime divisor of b;.
Since for every 1 <j we have g.c.d.(a;, b1) = 1, we conclude that g.c.d.(a;, p) = 1 for
all j > 1, as desired.

We proceed to show that the groups (G(A4, B, H), G (A4, B, H)) are simple
groups of rank one. For that, we need to study the basic properties of the family of
groups associated with the data triple (4, B, H). First, we introduce some previous
definitions and results.

Lemma 2.3.

(1) Let Gy and G, be simple components, let p, q € N be coprime numbers. Then,
G3 = (Z, G}) with G = pG| + ¢G5 is a simple component.

(2) Let G\ = (Z, GY) be a partially ordered abelian group, let M be a submonoid
of 7, let a, b € N be coprime numbers, and let G, = (Z, GY) with G§ = aG{| + bM.
If b e GY, then the map f: G\ — G, defined by multiplication by a, is an order-
embedding.

Proof. (1) Since G and G, are simple components, there exist a € G|, b € GF

different prime numbers bigger than both p and ¢. Thus, pa,qbe G and
g.c.d.(pa, gb) = 1, whence the result holds (see, for example, [13, Lemma 2.3]).
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(2) Since the underlying group of both G| and G, is Z, f is an injective group
morphism. Moreover, as aG| C G5, fis a positive morphism. Let x € G| such that
ax € Gy. Then, there exist y € Gf and ze€ M such that ax =ay+ bz, ie.,
bz = a(x — y). Since g.c.d.(a, b) =1, there exists r € Z such that z = at. Hence,
abt = bz = a(x — y), whence x —y = bt. Since b € G, so is bt =x —y for some
t € Z*. Thus, x € G, as desired. 0

The next result is well-known, but we include here a proof for the sake of
completeness.

LEMMA 2.4. Let {G,, G}, fumh<p<m be a direct system of directed partially
ordered abelian groups, let (G, GT) be the direct limit (in the category of partially
ordered abelian groups) of this system, and for every n > 1, let f,,: G, — G be the
canonical map. Then:

(1) If for every n > 1 the group (G,, GY) is simple, then so is (G, G").

(2) If for every 1 <n <m the map f, : G, = G, is an order-embedding, then
for every n > 1 the map f, : G, — G is an order-embedding.

Proof. Recall that GT = | f,(G))).
i1
(1) Let x € G* be a nonzero positive element, and let y € G be an arbitrary ele-
ment. Then, we can assume that there exist n € N, 0 # x, € G; and y, € G, such
that x = f,,(x,) and y = f,(y,). Since (G,, G;") is simple, there exists k € N such that
—kx, <y, < kx,. Thus,

—kx = fu(—kx,) < fu(yn) =y < fulkx,) = kx,

so we are done.

(2) Fix n > 1. First, we show that, for every n > 1, f, : G, — G is an injective
map. For, let xekerf,. Since f,(x)=0, there exists m >n such that
Jom(x) =0 = f,,,(0). Thus, as f,, is an injective map, we conclude that x =0, as
desired.

Now, let x € G, such that f,(x) € G*. Then there exist m > n and y € G}, such
that f,,(y) = fu(x). Hence, as f,,(f,.m(x)) = fu(x) = fn(y), the injectivity of f,, implies
that f, ,(x) = y € G}f.. Since f, ,, is an order embedding, we conclude that x € G},
which ends the proof. O

Let P be the set of the natural prime numbers. Recall that a generalized integer
nis a map
n:P—{0,1,2,...,00}

Usually we write

n=[]. (1)

peP
When n is finite (i.e. it never takes the value oo and it is zero except at finitely many
primes), we identify n with the integer appearing on the right hand side of (1). For
every generalized integer 11, a sequence {a,},>; of positive integers is associated with
n when n = [] a,. Given a sequence 4 = {a,},>;, we define n(4) = [] a,, so that

n>1 n>1
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the sequence 4 is the sequence associated to 11(A4). Notice that the notion of divisi-
bility of integer numbers extends to the context of generalized integers: given
m, e N, we say that n | m if there exists n’ € N such that m = n -1, that is, for
each p € P we have m(p) = n(p) + n'(p). Given two generalized integers 11, m, we
say that n and m are coprime if for every p € P we have 0 € {n(p), m(p)}. Let n be
an infinite generalized integer satisfying, for a fixed p € P, that n(g) = 0 for every
q € P\ {p}. Then, we will denote such a generalized integer 11 by p*°. In this case, if
m is a generalized integer coprime with p®, we will say that mt is coprime with p
instead of p™. In the particular case of 2°°, we will say that m is an odd generalized
integer instead of saying that it is coprime with 2.

Given 1 a generalized integer, we associate to n an additive subgroup of Q
containing 1 in the following way: write Z, = {a/b : (a € Z)(b | n)}. It is easy to see
that Z,, is an additive subgroup of @, by using [10, Lemma 2.3].

Now we are able to state the basic properties of the family of groups associated
with a given data triple (4, B, H).

PROPOSITION 2.5. Let {Gi(A, B, H)}i=1, (G(4, B, H), GT(A, B, H)) be the family
of groups associated with the data triple (A, B, H). Then:

(1) For every k > 1, Gx(A4, B, H) is a simple component.

(2) For every k > 1, the map gi j+1: Gi(4, B, H) = Gi+1(A, B, H) is an order-
embedding.

(3) The group (G(A, B, H), G*(A, B, H)) is a simple group of rank one, and for
every k > 1 the canonical map gy : Gy(A, B, H) — G(A, B, H) is an order-embedding.

Proof. (1) We proof this by induction on k. The case k =1 holds because
G1(A4, B, H) = H,. Suppose that the result holds for k > 1. Then we have

Gi (A, B, H) = axG{ (A4, B, H) + b HY .

Hj, is a simple component by definition, Gi(A, B, H) is a simple component by
induction hypothesis, and g.c.d.(ax, bx) = 1 by property (%) (ii). Thus, Gy(4, B, H)
is a simple component by Lemma 2.3(1). Hence, the induction works, as desired.

(2) If k = 1, then G| (4, B, H) = H{, and b; € G{ by property (¥)(iii). If k > 2,
then we have

GZ(A, B, ’H) = Clk_lGlJ;l(A, B,H)+ bk_lH;.

Again by property (¥)(iii) we have by € b1 H;" € G} (4, B, H). Hence, the result
holds by Lemma 2.3(2).

(3) (G(A, B, H), G™(A4, B, H)) is a simple group by part (1) and Lemma 2.4(1).
Let n(A4) = [] an be the generalized integer associated with the sequence A. Then,

n>1
according to [10, Lemma 2.4], G(4, B, H) is isomorphic (as an abelian group) to Z,4).
Hence, we conclude that the group (G(4, B, H), GT(A4, B, H)) is a partially ordered
abelian group of rank one. The final assert holds by part (2) and Lemma 2.4(2). [J

REMARK 2.6.

(1) Let (4, B,’H) be a data triple. By Proposition 2.5(3), G(A4, B, H) = Zy4).
Under this point of view, 4 can be considered a “set of denominators” of
G(A, B, H).
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(2) Given any prime number p and any infinite generalized integer n coprime
with p, we can construct a data triple (4, B, H) such that the group G(4, B, H)
associated with this data triple is isomorphic to Z, (as an abelian group). For, let
A = {a,},> a sequence associated to 1, let B = {p"},;, and for a fixed simple com-
ponent H, let H = {H, = H},-. Thus, (4, B, H) is a data triple, and by Proposition
2.5(3), the group G(A, B, H) associated with this data triple is isomorphic to Z, (as
an abelian group). Thus, the class of groups we are considering is quite large.

Now, given the simple group of rank one G(4, B, H), associated with the data
triple (4, B, H), we will construct a simple Riesz group of rank one G(4, B, H) such
that G(A4, B, H) embeds (as an ordered group) into G(4, B, H). The idea is to use the
results of [10, Section 3] in order to get, for every k > 1, a simple component Gi(4, B, H)
and an order-embedding t; : Gi(A4, B, H) — Gi(A, B, H). Then, we will refine this
construction in_order to get, for every k> 1, an order-embedding /1 :
Gi(A, B, H) = Giy1(4, B, 'H) so that the “obstruction” to get Riesz property on
Gi(A4, B, H) “can be solved ” in Gy11(4, B, H), and also the diagram () defined by
these groups and maps

Gi(4,B,H) — GyA4,BH) — --- — GuA,B,H) —
o o o
Gi(4,B,H) — Gy(4A,B,H) — -+ — Giu4,B,H) —

commutes. Thus, if we define

(G(4, B.H), G*(A4, B.H)) = im(Gi(4, B. H). G (4, B, H). hicses),

it is easy to see that this group is simple, Riesz, and its rank is one. Moreover, the
map t: G(4, B, H) - G(A, B, H) induced by the above diagram turns out to be an
order-embedding by Lemma 2.4(2).

We proceed to develop this idea. For that, we need some previous definitions
and results of [10, Section 3]. We quote them here for convenience of the reader.
Recall that, if G is a partially ordered abelian group, we say that an interpolation
problem of G is a quadruple of the form o = (x1, X2, y1, y2) of elements of G satisfy-
ing {xi,x2} <¢ {y1, 2}, while a solution of « is an element z € G satisfying
{x1, X2} <¢ z < {y1,»2}. If G is a simple component, we say that a reduced inter-
polation problem is an interpolation problem of the form (0, x, y;, y;) with
0 <zx<zy <z

LEMMA 2.7. ([10, Lemma 3.7]) Let G = (Z, G") be a simple component. Then:

(1) For each interpolation problem o of G there exists a reduced interpolation
problem o of G and there exists an element n € G such that if r € G is a solution of o
then r+n € G is a solution of «.

(2) There are only finitely many reduced interpolation problems of G without
solution in G.

Recall that for every simple component G and every finite list of interpolation

problems «y, -+, a; of G, E(G; «y, -+ -, a;) denotes the set of all positive integers ¢
such that there exists a simple component H satisfying the two following conditions:
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(i) The multiplication map ¢- defines an embedding of ordered groups from G

into H.

(i1) For all i e {1, ..., #}, go; admits a solution in H.

If ay, -, is the list of all reduced interpolation problems of G without a
solution in G (which is finite because of Lemma 2.7), we write E(G) instead of
EG;ay, -, ay).

LEmMA 2.8. ([10, Lemma 3.9]) Let G = (Z, G) be a simple component, let 1 be
an infinite generalized integer, let {a,},>, be a sequence associated with n. Then there
are arbitrary large k € N such that q, = ay - - - ax belongs to E(G).

The next result is similar to Lemma 2.4.

LEMMA 2.9. Let {G,, Gf, fumb<n<m and {H,, H\, hym}1<p<m be direct systems of
directed partially ordered abelian groups, let (G, G") and (H, H") be respectively the
direct limits (in the category of partially ordered abelian groups) of these systems, and
for every n>1, let f,: G, — G and hy, : H, — H be the canonical maps. For each
n>1,let v, : G, - H, be a map such that t,fym = hymTs for all m > n > 1, and let
7: G — H be the induced map. If for every 1 <n < m the maps fnm, hym and T, are
order-embeddings, then so is .

Proof. Notice that, by Lemma 2.4(2), for every n > 1 the maps f, and #, are
order-embeddings.

First, we will prove that t is an injective map. For, let x € ker 7. Then there exist
n>1 and x, € G, such that f,(x,) = x. Thus, 0 = ©(x) = ©(f,(x,)) = (h, o T,)(xp)-
Since 1, and 4, are order-embeddings, so is A, o t,, whence x,, = 0, and hence x = 0.

Let x € G such that 7(x) € H'. Then, there exist n > 1 and x, € G, such that
Jfn(xn) = x. Hence, 7(x) = 7(f,(x)) = (h, o 7,)(x,). Since h, and 7, are order-embed-
dings, we have that x, € G;f. Thus, x € G*, so we are done. O

We need the following result, in order to construct the diagram () in a recursive
way.

ProPOSITION 2.10. Let Gy =(Z,GY), G =(Z,GY), G =(Z, GY) be partially
ordered abelian groups, and let a,b € N be coprime numbers such that a-: G| — G
and b- : Gy — Gs are positive morphisms. Let G4 = (Z, G{) with Gf = aG] + bG5,
and consider the commutative diagram

G L G

b- l l b-

G37G4

Then:
(1) If a- : G| — G, is an order-embedding, then so is a- : G3 — Gy.
(2) If b-: Gy — G35 is an order-embedding, then so is b- : G, — Gy

Proof. The argument is similar to that of Lemma 2.3(2).

(1) Clearly, a- : G3 — G4 is a one-to-one morphism. By definition of Gy, it is also
a positive morphism. Let x € G3 such that ax € GJ. Then there exist y € G and
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z € G such that ax = ay + bz, i.e., a(x — y) = bz. Since g.c.d.(a, b) = 1, there exists
t € Z" such that bz = bat, and thus z = at. Since z € G;r and a-: G, — G, is an
order-embedding, we have that 1 € G|, whence x — y = br € G§. Thus, x € G}, as
desired.

(2) It is analog to part (1). O

Now, we are ready to prove the main result in this note.

THEOREM 2.11. Let (G(A, B, H), GY(A, B, H)) be the simple rank one group
associated with the data triple (4, B, H), and let n(A) be the generalized integer asso-
ciated with the sequence A. Given any infinite generalized integer M coprime with n(A),
there exist a simple Riesz group of rank one (G(A, B, H, m), G*(A4, B, H, m)) and a
positive morphism

t:G(A, B, H) — G(A4, B, H, m)

such that: ~
(1) The group G(A, B, H, m) is isomorphic to Zy 4w (as abelian groups).
(2) The map t is an order-embedding.

Proof. The proof of this Theorem needs a preliminary step, in order to get the
necessary groups and morphisms to construct G(A4, B, H, m) and t. First notice that,
by Remark 2.2(ii), there exist at least an infinite generalized integer 1m coprime with
n(A). We just need to consider m = p*>°, where p is a prime number coprime with
every a; € A.

Fix mt = [] ¢; an infinite generalized integer coprime with 11(4). We will show by

i>1
induction that there exists a commutative diagram (T) of partially ordered abelian
groups and positive morphisms

GO,] e G0,2 — G0,3 — G0,4 — LI — GO,n —
\ \ \ \ \
Gl,l — GI,Z — G1’3 — G1’4 —> v —> Gl.n —
\ \ \ \
G2,2 e G2.3 e G2,4 — ... e Gz,n —>
i i s
such that:

(i) For every n > 1, Gy, is G,(4, B, H) the n-th simple component associated
with the data triple (A B, H), and g” ntl 2 Gon —> Gopte1 18 the map gyuy1:
G,(A, B, H) — G,+1(A4, B, H) that appears in the construction of G(4, B, H).

(i) Forevery i > O and everyj > 1, the group G;; = (Z, Gj;-) is a simple component.

(iii) Every map appearing in diagram (f) is an order-embedding.

(iv) For every i > 0, the map f l'ltll) 2 Giir1 = Gipp41 18 given by multiplication

by an integer ¢; satisfying: (a) for every n > 1, ]_[ ¢q; divides m; (b) the image of every
=1
reduced interpolation problem of Gy admlts a solution in Gy 41, that is,

qi € E(Gjiy1).
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Notice that, by Proposition 2.5(1-2), for every k > 1, the group Gy is a simple
component, and the map g; 3( 41 1s an order- embeddmg Now for0<i < k, we will
construct the groups G and the maps gk wr1 - Gik = Gigy1 and f G —>
Git1.k, by induction on the second entry of the subindex pair (i, k).

Case k = 1: By Lemma 2.8, there exist /; € N and a simple component, that we
denote Gy, such that the map given by multiplication by ¢; = ¢; -- - ¢;, defines an
order-embedding f : Go.1 — Gy such that ¢; € E(Gy ;). Thus, G ; satisfies prop-
erty (i), and the map f 01)] satisfies properties (iii-iv).

Case k = 2: Notice that, by Proposition 2.5(2), the map g : Go,1 = Gy, given
by multiplication by a; € 4, is an order-embedding. Since n(A) and m are coprime,
we have that g.c.d.(a1,q)) =1. We define G, = (Z, G} ), with G*’2 = alG1 \+
qugz By Lemma 2.3(1), Gy, is a simple Component Now, we define maps
g1, Gi1 — G by multiplication b ai, andf0 1+ Go2 — G2 by multiplication by
q1. By definition of G, g(l) and f 0.1» both maps are positive morphisms such that
the diagram

i,i+1

0
£

Goi — Gop
(1) (2)
forl 16
Gi1 — G2

1,2

is commutative. Since g(o) and fgl) are order-embeddings by hypothesis, so are g(l)
and f(z) because of Proposition 2.10. Now, fix Gy,, and set n1; = m/qy, that is an
infinite generalized integer coprime with 11(4). Then, by Lemma 2.8, there exist
I, € Z and a simple component, that we denote G2 2, such that multiplication by
g2 = ¢i41 - - ¢+, defines an order-embedding f : G2 — Gyp such that ¢ €
E(Gy ), whence it satisfies properties (iii—iv).

Case k > 2: We assume that, for k > 2 and i < < k, we have constructed:

- Simple components G; .

- Order-embeddings g(’) : Gjj—1 — G;; given by multiplication by a;_;.

- Order- embeddmgs ffj)l ;1 Gi_1;— G;;j given by multiplication by ¢; =
Clythy bl 417+ Cllyeetlys for suitable li, ..., Ix, iIn such a way that f’f;ll satisfies

property (iv).
Moreover, the square diagrams given by these groups and maps,

Gi—ij-1 — Gy

\ ¢
Gij-1  — Gy

commute.

By Proposition 2.5(2), the map gz,o;c 41 Gok = Goky1, given by multiplication
by ai, is an order-embedding. Since n(4) and m are coprime, we have
g.cd.(ar, q1) = 1. We define G411 =(Z, G ), with G, ., = aG{ +qGj,,,.

By Lemma 2.3(1), Gix4+1 1s a simple component We define maps ggz e

G1x — G141 by multiplication by ai, and f | (D) 2 Gok+1 = Gijt1 bY multlphcatlon

by ¢;. By definition of Gy x4, gk 1 and [ /‘H) , both maps are positive morphisms
such that the diagram
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g(o)
kk+1
Gox —> Gojql

(k (k+1
Il 15
Gk - Gl kt1

gk e+

is commutative. Since gk 1 and /gdl are order-embeddings by hypothesis, so are
gﬁlz 4 and f) D) pecause of Proposition 2.10.

Now, we apply the same argument to the simple components G, G x+1 and
Gk, to the order-embedding gf(l;( 41 Gk — Gy given by multiplication by ay,

and to the order-embedding f : G — Gy given by multlphcatlon by ¢2. As
above, we construct a simple component G k+1, order-embeddings gk g1 Gk —

Gy x+1 given by multiplication by a;, and f( 0. q k+1 = Gai41 given by multi-
plication by ¢, so that the diagram

Gy — Giis

¥ i

Gy — Garq

commutes. Repeating this argument for 1 <i <k, we construct by recurrence a
simple component G;;+; and a couple of order-embeddings gﬁ(’)k 41 Gik = Gigy
given by multiplication by ak,‘fglj’li) : Gi—1 k+1 = Giry1 given by multiplication by ¢;,

so that the diagram

Gicie — Giciggr

! !

Gir —  Gigs

commutes. To end the induction step, we fix Gy i+1, and the infinite generalized
integer N = 11/(q; - - - qx). Again by Lemma 2.8, there exist /;;; € N and a simple
component that we denote Gy k41, such that multiplication by qxi1 = ¢4t +1

- Cli+ht-+l,, defines an order-embedding fg‘;;r)l Grk+1 = Gii1x+1 such that
Gi+1 € E(Gr r+1), whence it satisfies property (iv). Hence the induction works, so we
are done.

Once we stated the existence of diagram (), we proceed to construct a group
satisfying (1-2) in the statement of the Theorem. Recall that, by property (i), for
each n > 1, Gy, = G,(A, B, H). For each n > 1, (G,,(A B, H, m), G*(A B, H,m)) is
the simple component (G, ,, G,/ n) of diagram (f). Thus, for each n > 1, the com-

position 7, =/, | OfiﬁZ,nfl o- of”) off)'f)l defines an order-embedding 1, :

G,.(4, B, H)—>5,,(A B, H,m). Analogously, for each n > 1, the composition
N1 = f;”:l)l g,(:’L 41 defines an order-embedding /1,41 :é,I(A,B, H, m) —

5n+1 (A4, B, H, m). Moreover, since the diagram () is commutative, so is the diagram (f)

G4, BH) 2% 64 BH 2

rll lrz

G\(A4, B, H, m) — G>(4, B,H,m) —>
11,2

/12_3
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Let N N
(G(4, B, H, m), G (4, B, H, m))

be the direct limit (in the category of partially ordered abelian groups) of the direct
system

{Gu(A, B,H, m), G, (A, B,H, M), By i b1

and let 7 : G(A, B, H) — 5+(A, B, 'H, m) be the map induced by diagram (f).

Since for each n > 1 the map A, 41 _is given by multiplication by a, - g,, the
sequence associated with the group G*(4,B,H,m) is {a;q;};>;. Notice that
[Taq: = [1a ] ¢ = n(4)m. Thus, by [10, Lemma 3.10], G(4, B, H,m) is iso-
i>1 =1 >l
morphic to Z,.qu (as an abelian group). Hence, part (1) holds.

By Lemma 2.4, G(4, B, H, m) 1s a simple group, and by Lemma 2.9, 7 is an
order-embedding. Since f ff;rl and g, L 4 are order-embeddings, property (iv) means
that a,q, € E(Gn(A B, H, m)). Thus, it is easy to see that G(A B, H, m) is a Riesz

group, which ends the proof. O

As a consequence, we are able to answer in the affirmative [18, Problem 3.15], as
a particular case of Theorem 2.11. In the sequel, to simplify the notation, we will
denote by A, the constant sequence {2}, by By the sequence {9"},., and by H; 7
the constant sequence {(Z, (2,7))},>;. Notice that H = (Z, (2, 7)) is a simple com-
ponent by Lemma 2.3(1), and also that 4, and By are sequences of natural numbers
satisfying (%). Hence, (42, By, Ha,7) satisfies Definition 2.1, so that it is a data triple.

COROLLARY 2.12. Let M = (2,7), and let (Go, G{) the simple dense subgroup of
Q generated by the set

G = {(k/2)(9/2)" | k € HY and n e Z*}.

Then, for any odd infinite generalized integer m, there exists a simple Riesz group of
rank one Gy, such that:

(1) G == Ly as an abelian group.

(2) Gy embeds into Gy, as an ordered group.

Proof. First, notice that the group (Gp, GJ) is the one considered in [18,
Example 3.14]. We construct the group (Gy, G§) as a direct limit, where the groups
in the direct system are {(Go,, G(J)r,n)}nzl defined as follows:

1. Foreveryn=>1, Gy, = (1/2)"Z.
2. Giy=01/29M.
3. For every n>2, G 2(1/2)(9/2)’ 'M, or in a more compact way,
Ga_n G(Tn 1 + (1/2)(9/2)” IM
Notice that the natural inclusion maps /%, 1 : Go,—> Go 1 are order-embeddings.
Now, consider the data triple (4,, By, H».7), and let

{Gu(A2, By, Ho )} y=1. (G(A2, By, Ha7), G*(A2, By, Ha, 7))

the family of groups associated with this data triple.
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For every n > 1, the map f, : Go., = G,(A2, By, H».7) given by multiplication by
2" is an isomorphism of ordered groups. Also, for every n > 1, if

Ennt1  Gu(Az, By, Ha7) = Gpy1(Az, By, Ha7)

are the maps appearing in the construction of G(A43, By, Hz7), then f,41 0 hypp1 =
Zn.n+1 ©.fn, sO that the induced map

[ Gy — G(Az, By, Ha7)

is an isomorphism of ordered groups.
Hence, by Theorem 2.11, for any odd infinite generalized integer m there exist a
countable, torsion-free, simple Riesz group of rank one

(G(A2, By, Ha 7, m), G* (A2, By, Ha 7, M)

and an order-embedding

T: G(A2, By, Ha7) — G(Aa, By, Ha 7, ).

Set 5,;1 = 6(A2, By, Hy 7, m). Thus, the composition map
g=t10f:Gy— Gm

give us the desired order-embedding, so we are done. O

3. Monoids of intervals. In this section we will use the special properties of the
group constructed in Corollary 2.12 to prove some interesting consequences on
monoids of intervals. We recall some definitions [11] about monoids of intervals of
positive cones of partially ordered abelian groups (specially in the case of simple
groups). Since most definitions about abelian monoids are analogous to those of
partially ordered abelian groups, we will use them without an explicit definition. For
basic definitions and results on abelian monoids, see for example [11], [16] and [17].
Let GT be the positive cone of a partially ordered abelian G. A nonempty subset X
of G* is called an interval in G* if X is upward directed and order-hereditary. We
denote by A(G™) the set of intervals in G*. Note that A(G") becomes an abelian
monoid with operation defined by X+ Y={z€ G" |z < x+y for some x € X,
y e YL If X € A(GY), we say that X is countably generated provided that X has a
countable cofinal subset (i.e., there is a sequence {x,} of elements in X such that for
any x € X there exists n € N such that x < x,). We denote by A,(G™) the set of all
countably generated intervals in G*. Our next result is an immediate consequence of
[18, Example 3.14] and Theorem 2.11, but we include a proof for benefit of the reader.

LemmA 3.1. Consider the data triple (A2, By, Ha.7), and let
(G(A2, By, Ha.7), G* (A2, By, Ha.7))
be the group associated with this data triple. Let m be an odd infinite generalized

integer, and let

https://doi.org/10.1017/50017089502030185 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089502030185

RANK ONE SIMPLE GROUPS 563
(G(Aa, By, Ha 7, m), Gt(Aa, By, Ha 7, M)

be the group constructed in Corollary 2.12. Then there exists a proper countably gen-
erated interval D in G (A, By, H.7, M) such that 2D = G*(A,, By, Ha.7, ).

Proof. In order to simplify the notation, we will write (~?m instead of
G(A3, By, Hs 7, m).

Consider the group (G, Gy) constructed in [18, Example 3.14], and let
g : Gy — Gy, be the order-embedding constructed in Corollary 2.12. Let d, = (9/2)"
be elements of G . According to [18, Example 3.14], for every n € 77, the elements
dy, dyy1 — dy and 2d,| — 4d, belong to Gj. Set e, := g(d,). Since g is an order-
embedding, we have that e,, ¢,41 — e, and 2e,,| — 4e, belong to G} (x). Hence

D={xeG

T lx<e, for someneZ}

is a countably generated interval. Since there is no n € 7+ such that 2dy < d,, we
have that 2¢g ¢ D, whence D # G,. On the other side, since G, is simple, given any
x € G there exist m,j € N such that x < m(ey+ --- + ¢;41). Then, by (x), we have
m(eo + -+ +e1) < (j+ Dmejyy. Pick k € N such that (j+ Dm < 2k, Again by
() we get (j+ )mej1 < 2%ejy < 2ej14. Thus, Gy, € 2D, and since 2D € G, we are

done. O

REMARK 3.2. Let (G, G, 1) ¢ (Q, @", 1) be any of the examples of [10, Section
3]. By construction, for any x € G, if x € Q" and x >g I, then x € G*. As a con-
sequence, if {x,} is any unbounded, strictly ascending chain of G, then the interval
generated by {x,}, say X ={xe G |x <x, for some n e Z'}, is equal to G*.
Hence, G* does not contain any interval D # G* such that nD = G* for some
positive integer n. In this sense, the groups obtained by using Theorem 2.11, and
those obtained by using the construction in [10, Section 3], are essentially different.

Recall that an abelian monoid M is separative if it satisfies the weak cancellation
condition that for alla, bin M,a+a=a+ b =>b+ b onlyif a = b. Also, an element
x of a monoid M is said to be directly finite in M, if, for all 0 £y € M, x4+ y # Xx;
otherwise, x is directly infinite in M. If D is a fixed interval in A,(G™"), we denote by
A4 p(GT) the submonoid of A,(G') whose elements are intervals X € A,(G*) such
that X € nD for some n € N, and we denote by W2(G™) the submonoid of A, p(GT)
whose elements are intervals X € A, p(G™) such that there exists Y € A, p(GT) with
X+ Y =unD for some n € N. Thus, as an immediate consequence of Lemma 3.1 we
have

_ CoroLLARY 3.3. Let mwt be any odd infinite generalized integer, and let
G(Az, By, Hy 7, m) and D be respectively the group and the interval constructed in
Lemma 3.1. Then,

W£(5+(A2, By, Hy 7, m))

is a non-separative refinement monoid. Moreover,
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D e Wf((~?+(A2, By, Hy 7, m))
is a directly finite element, but 2D is directly infinite, and satisfies 2(2D) = 2D.
Proof. In order to simplify the notation, we will write ém instead of

G(A3, Bo, Hy 7, m).

Since Gm is a Riesz group, WD(Gm) is a refinement mon~0id by [7, Proposition 2.5].
Observe that GJr is a countably generated interval in G}, (with countably cofinal
subset {nu|ne N} for any 0 FUE G}), and also that Gl +0=2D. Then,

G e WD(Gm) By Lemma 3.1, DG+ and 2D = G+, whence 2D = D + GJr =2G+

m me ne
and thus W? (G 1) is a non-separative monoid.

Suppose that there exists a nonzero interval X € W? (Gm) such that D + X = D.
Then, for every n € N we have D +nX =D. Leta e X be a nonzero element. Since
Gy, is a simple group, a is an order-unit. Hence, for any n € N there exists &k, € N
such that d, <k,a€k,XCD. Thus, for all m,neN we have d,+d,€
kmX 4 k,X C kX + D = D, whence G} =2D C D, contradicting the fact that
D # Gm As a consequence, D is directly finite. On the other side, 2D = G} =

m
m

2G} =2(2D), so we are done. ]

According to [11, Theorem 3.9], this pathological behavior cannot occur when-
ever the group G is strictly unperforated. Thus, Remark 3.2 and Corollary 3.3 sug-
gest the following interesting question.

PRrROBLEM 3.4. Given any countable, torsion-free, simple Riesz group G of rank
one that fails to be strictly unperforated, is W2(G*) always non-separative?

Given a partially ordered abelian group (G, u) with order-unit, we denote by S,
the compact convex space of states on (G, u), by Aff(S,)" the monoid of positive,
affine and continuous functions from S, to RT, and by ¢, : GT—Aff(S,)" the
natural evaluation map. Also, let LAff,(S,)*" be the monoid of strictly positive,
affine, lower semicontinuous functions from G* to R that are pointwise suprema of
increasing sequences of functions in Aff(S,)". According to [11, Theorem 3.9], if G
is a simple, nonatomic, strictly unperforated Riesz group, u € G* is an order-unit,
and D is a nonzero, soft, countably generated interval in G (we say that X is a soft
interval in G7 if for each x € X, there exist y € X and n € N such that (n + 1)x < ny),
then the map

o W2(GH— Gt uws,)

given by the rule ¢([0, x]) = x for any x € G*, and by ¢(X) = sup ¢,(X) for any
X € WP(G") soft interval, is a normalized monoid isomorphism.
Notice that in the case of the group

(G(A2, By, Ha 7, M), G* (A2, By, Ha 7, M)

constructed in Corollary 2.12, since its rank is one, we have that S, is a singleton, so
that Aff(S,)" = [0, 00), and LAff,(S,)"" = (0, oo]. In order to simplify the notation
of the following result, we will denote Gm instead of G(Az, By, Hy 7, m)
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COROLLARY 3.5. Let mt be any odd infinite generalized integer, let Gm and
D C G, be respectively the group and the interval constructed in Lemma 3.1, and let
d = sup ¢,(D). Then the map
¢: WP(GH)— G 1 (0, o]

m
fails to be injective.
Proof. Simply notice that (D) = co = go(éj[), but D # (N;KI ]

In a subsequent work [9] it is shown that, under the hypotheses G being a
countable, nonatomic, torsion-free, simple Riesz group, the injectivity of ¢ is
equivalent to G being strictly unperforated. Moreover, under some mild hypotheses,
@ turns out to be a monoid epimorphism.

4. Applications to K-Theory. In this section, we observe the potential connec-
tions between the above results and some recent works on K-Theory for multiplier
rings of both C*-algebras of real rank zero [7] and von Neumann regular rings [2],
[11]. We briefly recall some definitions on K-Theory. Given a ring R, we define V(R)
to be the set of isomorphism classes of finitely generated projective right R-modules;
if 4 is a finitely generated projective right R-module, we denote by [A] the iso-
morphism class of 4. We endow V(R) with the structure of an abelian monoid by
imposing the operation

[4]+[B] :==[4 & B]

for any isomorphism classes [4] and [B]. Equivalently [3, Chapter 3], V(R) can be
seen as the set of equivalence classes of idempotents in M, (R) — the ring of w x w
matrices over R with only finitely many nonzero entries — with the operation

[e] +[f]:= [(8 ?‘ﬂ

for idempotents e, f € M, (R). The group Ky(R) is the universal group of V(R), and
the image of the canonical monoid homomorphism V(R) — Ky(R) is the positive
cone of Ky(R), denoted Ky(R)*. If the Bass’ stable rank of R is 1 [1], then V(R) is
cancellative, and thus V(R) = Ky(R)". Also, if R is a simple ring, then Ky(R) is a
simple group. In the case of C*-algebras with real rank zero, or von Neumann reg-
ular rings, or in general exchange rings with stable rank 1, it is well-known that
Ky(R) is a Riesz group (see [19], [5] and [15], respectively). Thus, when we study
simple Riesz groups, we are studying K-Theory of stable rank one rings lying in
these classes.

The connection with monoids of intervals was found by Goodearl [7], who
applied it to a deep study of the structure of the group K, for the multiplier algebra
of a o-unital non-unital C*-algebra of real rank zero 4 with stable rank one, such
that Ky(A4) is an unperforated group. Later, Perera [11] used similar techniques for
studying the structure of the monoid V for the multiplier algebra of a o-unital non-
unital, simple, nonartinian C*-algebra of real rank zero 4 with stable rank one, such
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that V(A4) is an strictly unperforated monoid. Ara and Perera [2] extended these
results to the case of the multiplier ring of a o-unital non-unital von Neumann reg-
ular ring R with stable rank one, such that V(R) is an strictly unperforated monoid.
This case is specially interesting, since by [8], the ring of multipliers of a o-unital
non-unital von Neumann regular ring is an exchange ring. The fundamental result
of both Goodearl [7, Theorem 1.10] and Perera [11, Theorem 2.4] is that, if R is a o-
unital, non-unital, stable rank one C*-algebra of real rank zero (von Neumann reg-
ular ring), then there is a monoid isomorphism from V(M(R),[lynr)]) to
WP (Ky(R)") for a suitable interval D associated with a fixed approximate unit of R,
where M(R) denotes the multiplier ring of R (see [2] for definitions).

Recent results of Villadsen [14], Rerdam and Villadsen [13], and Elliott and
Villadsen [4], guarantee the existence of simple C*-algebras whose K, groups are
simple components. Hence, these results open the possibility of finding a simple C*-
algebra of real rank zero A with stable rank one such that (Ky(4), Ko(A4)") is iso-
morphic to

(G(Az, By, Ha7, W), G* (A2, By, Ha 7, 1))

for some odd infinite generalized integer m. Suppose that it is possible to construct
such a o-unital, nonunital, nonartinian, simple, stable rank one C*-algebra of real
rank zero (von Neumann regular ring) 4, and suppose that the interval D con-
structed in Lemma 3.1 is generated by {[e,]} C V(A4), where {e,} is a o-unit for A.
Then

THEOREM 4.1. Let A be a o-unital, nonunital, nonartinian, simple, stable rank one
C*-algebra of real rank zero (von Neumann regular ring) such that (Ko(A), Ko(A)T) is
isomorphic to

(G(A2, By, Haz, M), G (A2, By, Ha7, M)

for some odd infinite generalized integer m. Suppose that the interval D constructed in
Lemma 3.1 is generated by {[e,|} C V(A), where {e,} is a o-unit for A. Then, M(A) is a
non separative C*-algebra (exchange ring). Moreover, 14y € M(A) is a directly
finite idempotent, but Z[IM(A)] = 2(2[1./\/1(/4)]) € V(M(A)).

Proof. It is an immediate consequence of [7, Theorem 1.10], [11, Theorem 2.4]
and Corollary 3.3. O

Notice that, by Theorem 4.1, if such a regular ring A exists, then M(A4) is a non-
separative exchange ring. Thus we would have a negative answer to a central ques-
tion of [1]. Also, notice that, by [12, Proposition 3.6], if 4 is a o-unital, nonunital,
simple C*-algebra, then [1 rq(4)] = 2[1ma)] € V(M(A)) if and only if R is stable (i.e.,
if A= R® K, where K is the C*-algebra of compact operators on a separable Hil-
bert space). Thus we could have an example of a phenomenon first observed by
Rordam, who provided an explicit example [12, Theorem 3.7, Example 4.3], pro-
duced in a different way

COROLLARY 4.2. Let A be a o-unital, nonunital, nonartinian, simple, stable rank
one C*-algebra of real rank zero such that (Ko(A), Ko(A)") is isomorphic to
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(G(Aa, By, Ha 7, m), Gt(Aa, By, Ha 7, M)

for some odd infinite generalized integer m. Suppose that the interval D constructed in
Lemma 3.1 is generated by {[e,|} C V(A), where {e,} is a o-unit for A. Then, M(A) is a
non-stable algebra, but My(M(A)) is a stable algebra. O
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