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ABSTRACT

The Pareto-optimal design for profit-sharing is derived under general assump-
tions as to the utility function of both the insured and the insurer. This
generalizes the result of Jones and Gerber and explains commonly used dividend
formulas in terms of risk aversion.
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1. INTRODUCTION

Experience rating in group life insurance arose because of the threat of self-
insurance on the part of the "good risks." This antiselection was — and still is
— prevented by offering to the policyholder a profit-sharing plan in which it is
stipulated that the insurer will refund some part of the profit he makes on that
particular policy. This profit-sharing usage is also commonly used in most non-
life insurances and in reinsurance where the greater uncertainty about the total
claim distribution is reflected in higher safety loadings and therefore in higher
potential profits.

The repayment is defined by a dividend formula which expresses the refund in
terms of the claim experience. Several formulas are conceivable, but there are two
designs that are frequently used and have been studied by BERNHARDT and
ENDRES (1979), DRUDE and NIEDERHAUSEN (1973-1974), JONES and GERBER

(1974), SCHMUTZ (1985), STRICKLER (1982) and ZOPPI (1982):

(1) lV=(aP'-S)+, a^\

(2) W=0(P'-SU, 0 < 1

where H/=the refund

P' = P{\ + 6) with P the net premium
and d the safety loading

S = the total claim amount

and (x)+ = max(0, x).
In (1), the insurer refunds that part of the profit that exceeds some predeter-

mined constant (1 - a)P', whereas in (2) the profit (P' - S)+ is divided accord-
ing to some proportional rule.
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Further restrictions on the parameters are obtained by stating that the expected
result of the insurer must satisfy a given solvency requirement. The parameter
values actually used are mostly a matter of bargaining.

The choice between the two designs is harder to tackle in a theoretical context.
One of the possible ways to deal with competing preferences is using utility func-
tions and looking for a Pareto-optimal solution (i.e. a solution such that it can
not be improved for one of the two competitors without harming the other).

JONES and GERBER (1974) proved that the Pareto-optimal solution responds
to formula (1), in case the insured is risk-neutral and the insurer has a concave
utility function. The Pareto-optimal solution for the general case, which allows
both the insured and the insurer to have a concave utility function, will be derived
in this paper with the aid of optimal control theory.

As was pointed out by the referees, this result can also be obtained as a special
case of the theorem of Borch. This approach will be demonstrated in the
Appendix.

2. NOTATIONS AND DEFINITIONS

Denote the utility function of the policyholder by u(x) and assume that the condi-
tions u'(x) > 0 and u"(x) ^ 0 are satisfied. Analogously, let v(x) be the utility
function of the insurer, with v'(x) > 0 and v"(x) ^ 0. Thus, both the insured and
the insurer are supposed to be risk-averse or risk-neutral. Their risk-aversion can
be measured by

(3) R,,(x)= • and R,(x)= — .
W'(A-) V'(X)

Let S denote the total claim amount and X=(P' - S)+ the profit in the con-
sidered period. Note that the premium P' is the risk premium supplemented by
a safety loading but without any loading for administration costs. The refund
that corresponds to gain x will be represented by W(x).

Denote by fx(x) and /y(s) the probability density functions of X and S. There
exists a close relationship between these two functions:

fx(0) = | fs(s) ds and fx(x) = fs(P' ~ x) for x > 0.

With these notations, and denoting by wu the initial capital of the policyholder
and by wv the capital of the insurer, it is possible to express the conditions for
a Pareto-optimal solution in a more formal way.

DEFINITION 1. The dividend formula W(x) is Pareto-optimal if, for every
other refund formula W(x) for which

E[u{w,, - P' + W(X))} > E[u(w» - P' + W(X))] and

E[v(wv + P' -S- IV(X))] ^E[v(wv + P' -S~

both ^ signs can only be equalities.
It is easy to see that this is equivalent to the following definition.
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DEFINITION 2. The solution to the following optimization problem is Pareto-
optimal: maximize E[u(wu - P' + W(X))] subject to the constraint
E[v(wL•+ P' - S- W{X))} ) c (c an arbitrary constant), over the feasible
set of refund formulas.

One natural constraint on the set of all possible designs for W{x) is

0 < W(x) s£ x

as the insured will not pay a surplus in case of bad experience and the insurer will
not pay more than he gains in order to stay solvable.

Using the notation introduced above, the problem can be stated as follows:

Max u{wu- P' + W{P' - s))fs(s)ds + \ u(w,,-P')fs(s)ds
IC Jo J />'

subject to

J
Jo

0 s? W(x) sC x
P' j ioo

v(wL- + P' - s - W{P' -s))fs(s)ds + v(wv + P' -s)fs(s)ds ^ c

where c must be smaller than or equal to E[v(wv+ P' - S)] in order to get a
non-empty feasible set of refund formulas.

An equivalent formulation of this problem is:

fp'
(4) Max u(wu- P' + W(x))fx(x)dx

w Jo
subject to

(5) 0 ^ W(x) < x

(6) v(wv + x~ W(x))fx(x)dx > k

Jo

and

r'3'
(7) A:^ v(wv+P' -s)fs(s)ds

Jowhere

k = c- \ v(wv+ P' -s)fs(s)ds.
J pf

In the following section we will derive the solution to this problem, where the
maximum is sought over the family of all piecewise continuous functions on
[ 0 , P'].

3. THE PARETO-OPTIMAL DESIGN

THEOREM. Depending on k, the solution to the problem (4) under the con-
straints (5), (6) and (7) takes one of two possible forms in which the k*, x* and
x* will be defined in the proof.

https://doi.org/10.2143/AST.18.1.2014959 Published online by Cambridge University Press

https://doi.org/10.2143/AST.18.1.2014959


50 VANDEBROEK

Ifk<k*

W{X) = X X^xt

0 ^ W(x) ^x x > xf

where W(x) is determined by the differential equation

Rv(wv + x- W(x))(9) W(x) =
Ru(wu - P' + W(x)) + Rv(wv + x- W(x))

with the boundary condition W{xf) = xf.
Ifk^k*

W(x) = 0 x < x*
(10)

0 «S W(x) ^x x > x*

where W(x) is also determined by the differential equation (9) but with the
boundary condition W(x*) = 0.

PROOF. The problem can easily be solved via optimal control theory, see e.g.
KAMIEN and SCHWARTZ (1981), if we rewrite the constraint (6) as:

z'(x) = v(wv+ x - W(x))fx{x) with ^(0) = 0 and z(P')>k.

The Lagrangian for this problem is:

L = u(wu -P' + W(x))fx(x) + \(x)v(wv +x- W(x))fx(x)

+ t3(WW + (3()(- W(x))

where \(x) is a continuous function and |8i(x) and faix) are piecewise con-
tinuous functions, such that for all x€ [0, P' ] where the (3, are continuous, the
following conditions are satisfied:

(12) X ' ( * ) = - ^

(13) \(P')^0 and X(P') = 0 if z(P')>k

(14) 01(xW(x) = O, / 3 , ( j f ) ^ 0

(15) 02(x)(x-fV{x)) = O, (32(x)^0.

As all the concavity requirements are satisfied, the optimal W(x) is then found
by maximizing L.

We will assume in the sequel that fx(x) > 0, because the values of x where
fx(x) = 0 are of no interest to this problem. It follows from (11) and (12) that
\(x) is a constant function of x because the Lagrangian does not depend on z.
We will denote this constant by X.

We must distinguish two cases.

(a) If constraint (6) is not binding, then it follows from (13) that X = 0. The con-
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dition to maximize L with respect to W is then:

(16) u'iWu-P'

From (14) and (15) it is immediate that W(x) = 0 can never be optimal in this case
and that W(x) = x will be the optimal solution. This is to be expected: if the
restriction that the insurer puts on his expected utility is not binding, the utility
of the policyholder will be maximized by refunding as much as possible,
(b) Now consider the more realistic case that (6) is binding, then X is uniquely
determined by the equation

(17) v{wv+x-W(x))fx{x)dx = k
Jo

where the optimal solution W(x) is expressed in terms of X. Then W(x) = x will
be optimal if

(18) Hl(x) = u'(wu- P' +x)- \v'(wv)^0

and W{x) = 0 is optimal if

(19) H2(x) = u'{yvu - P')- \v'(wv+x) ^ 0.

Because H\ is a continuous decreasing function in x and Hz is a continuous
increasing function in x, and since Hi(0) = H2(0), (18) and (19) can not occur
simultaneously and one of these conditions has to be satisfied up to some x. So
either

W{x) = x for x ^ x? where x* is the solution of

(20) Hi(x) = 0

or

W(x) = 0 for x $C x* where x* is the solution of

(21) H2(x) = 0.

If 0 < W(x) < x then the solution is determined by

(22) u'(wu- P' + W(x))- \v'(wv+x- W(x)) = 0.

Differentiating (22) with respect to x, the following equation is obtained

(23) u"(wu- P' + W(x))W'(x)-\v"(wv+x-

By solving (22) for X and inserting this expression for X in (23), (9) is obtained.
As W(x) is a decreasing function of X and of k, X is increasing with k. So we

can translate the conditions for the different solutions in terms of k. Denote by
k* the /r-bound belonging to the special case

(24) //,(0) = //2(0) = 0 or X = " ' ( H ' " ~ P ) .
v'(wv)

Then the conditions (18) and (19) are equivalent with k < k* and k ^ k*, which
proves the theorem.
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REMARK. It may not be clear how this solution can be computed, because of the
unknown X. As the relationship between k and X is rather complex, the easiest
way to obtain the solution is as follows: express x* or x* and the solution of the
differential equation (9) in terms of X. Insert this solution in constraint (6) and
by trial and error the value of X belonging to the given Abound can be found.

4. SPECIAL CASES

In the special case where the insured is risk-neutral, Ru(x) = 0, the solution is
given by

W (x) = 1 or W(x) = x + constant for x ^ x*.

From W(x) ^ x it follows that the constant has to be negative.
If k ^ k* the constant must be zero, whereas for k > k* the boundary condi-

tion is W(x*) - 0 and thus the constant must equal - x*. So in any case the first
design (1) is optimal, which is the result that was found by JONES and GERBER
(1974).

For the more realistic case, where the insurer is assumed to be risk-neutral and
the insured is risk-averse, the optimal dividend formula is derived from
W (x) = 0, and thus W(x) = constant for x > x*. So the optimum takes the form
of

W(x) = x x ^ x*
W(x) = x* x> x?

with the limiting case

W(x) = 0 for all x.

Note that this case, which corresponds to the most intuitive ideas with respect to
the utility functions of an insurer and an insured, has a Pareto-optimal solution
that has not been considered before.

5. EXAMPLE

We assume that both the insured and the insurer have exponential utility
functions:

, . 1 - exp( - ax) , , „ 1 - exp( - bx)
u(x) = — and v (x) = — -.

a b

In this case the risk aversion coefficients are constant:

Ru{x)=a and Rv(x) = b.
It follows from the theorem that a Pareto-optimal refund formula is either of the
type

X X ^ X*

W(x) =
• xt + (x - x*) x > xt

a + b
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W(x)

FlCiURli 1.

or of the type

W(x) =
0

a + b

These results are illustrated in Figure 1.

X ^ X2

X > X2.
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APPENDIX

We will demonstrate how the same result can be derived by applying Theorem
2 of BUHLMANN and JEWELL (1979) which generalizes Borch's theorem to
exchange functions that are subject to constraints.

Denote by X\(x) and Xi{x) the amounts the policyholder and the insurer get
in case the gain is x and there is no profit sharing. Analogously, denote by yi (x)
and Y2(x) the amounts after the profit sharing (cfr risk exchange). Remark that
we have to consider only the cases where there is profit and thus can denote
everything in terms of x. Table 1 gives an overview of the situation. Denote by
Q(Y,(x)) = u(wu- P' + y,(x)) and by v(Y2(x)) = v(w0+Y2(x)).

For the unconstrained case, Borch's theorem provides us with the optimum as
the solution of
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TABLE 1

Xi(x) Yi(x) Constraints on Yt(x)

Policyholder 0 W(x) 0^Y,(x)^x
Insurer x x- W(x) 0 $ Y2(x) ^ x

where k\ and k2 are positive constants. Differentiating this equation, we obtain

ki W (x)u"(wu - P' + W(x)) = ki(\-W(x))v"(wv + x - W(x)).

If we divide this equation by the former, we get

w, (x) = Rv(Wv + x-W(x))
K> Ru(wu-P' + W(x)) + Rv(wv + x - W(x))'

For the constrained case Theorem 2 of BUHLMANN and JEWELL (1979), page
249, states that W(x) is an optimal solution if and only if there exists a positive
function A(x) such that

kiii'{Yi(x)) = A(x) if 0< yi(x)< x
k2v'{Y2(x)) = A(x) if 0 < r2(x) < x

kiu'{Yi(x))^A(x) if ri<jf) = 0
k2v'(Y2(x)) ^ A(x) ify2(Jf) = 0

kiu'(Y,(x))^A(x) ifYi(x) = x
k2v'(Y2(x)) ^ A(x) ifY2(x) = x.

Remark that some signs are reversed compared with their theorem because we are
dealing with utility functions instead of disutility functions.

Let W(x) be a solution of the differential equation in the unconstrained case
and let

W(x) =
0
W(x)
X

if
if
if

0 ^
x <

W(x)
W(x)

W(x).

< 0
^ x

It is easy to see that W(x) fulfills the above theorem with A(x) = k\H'(iV(x)).
Hence W(x) is an optimal solution.

Note that 0 < W(x) < 1 and that therefore W(x) will attain either the bound-
ary /(x) = x or else the boundary f(x) = 0 at some point. Thus the solutions are
of the same type as described by our theorem.
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