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Abstract

A group G satisfies the second Engel condition [X, Y, Y ] = 1 if and only if x commutes with x y , for
all x, y ∈ G. This paper considers the generalization of this condition to groups G such that, for fixed
positive integers r and s, xr commutes with (x s)y for all x, y ∈ G. Various general bounds are proved
for the structure of groups in the corresponding variety, defined by the law [Xr , (X s)Y ] = 1.

2000 Mathematics subject classification: primary 20F19, 20F12, 20F45; secondary 20E10, 20D60,
20D10.
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1. Introduction

Let G be a group. Suppose that in every conjugacy class of G, every two elements
commute. Hence [x, x y

] = 1 for all x, y ∈ G. This clearly is equivalent so saying
then every element x ∈ G generates an Abelian normal subgroup of G, which in turn
is equivalent to the second Engel Condition [y, x, x] = 1 for all x, y ∈ G. It is known
that groups satisfying one of these equivalent conditions is nilpotent of class at most
three.

The above notion has been generalized in various directions. For example, every
two-Engel group for every integer n satisfies the following conditions discussed in [7]
and [2]:

[xn, y] = [x, y]n (n-Levi property),

[xn, y] = [x, yn
] (n-Bell property).

In this paper, we consider another generalization of two-Engel groups. Clearly, if x
and x y commute, then so do all powers xr and (x y)s where r, s are integers.

For positive integers r, s, let

O(r, s)= {G | G satisfies the law [Xr , (X s)Y ] = 1}
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denote the class of all groups with this property. This class clearly is a variety defined
by one single law.

In the second section, we present typical examples for groups in O(r, s) for various
values of r and s, while the third one contains various general bounds for the structure
of groups in O(r, s). In the final section, structural results on finite groups in O(r, s)
are proved in case where the defining parameters r and s are ‘small’ in some sense.

We use standard notation throughout. All commutators are left-normed. In addition,
by o(x) we denote the order of the element x , and G = [N ]Q indicates that the group
G is a split extension of a normal subgroup N of G by a complement Q. The class
of all Abelian groups will be denoted by A, and the class of all finite nilpotent groups
by N .

2. Examples

Assume that the order of every element x ∈ G either divides r or s or maybe both
(where r and s are fixed positive integers). Then we have the disjunction xr

= 1 OR

x s
= 1 for all elements x ∈ G. In particular, G ∈O(r, s). This idea was used in [3] to

determine a basis for the laws of of PSL(2, 5).
Clearly, O(r, s) contains all groups of exponent dividing r or s. Moreover, it

contains all Abelian groups.
If xr commutes with all conjugates of x s , then conversely, all conjugates of xr

commute with x s . Thus O(r, s)=O(s, r) for all r, s.

EXAMPLE 1. O(1, 1) is the class of all groups with the law [X, XY
] = 1, thus O(1, 1)

is the class of all groups satisfying the second Engel condition.
If G is second Engel, then for all x, y ∈ G we have that xr commutes with (x s)y ,

and so G ∈O(r, s). Hence O(r, s) contains all second Engel groups. Thus, the classes
O(r, s) generalize the second Engel groups.

EXAMPLE 2. We have AAr ⊆O(r, s) and AAs ⊆O(r, s) for all r, s.

PROOF. Let G ∈AAr , and let N be an Abelian normal subgroup of G such that G/N
is Abelian of exponent dividing r . For all x, y ∈ G,

[xr , (x s)y
] = [xr , x s

[x s, y]] = [xr , [x s, y]].

As xr
∈ N and [x s, y] ∈ G ′ ≤ N and N is Abelian, we get [xr , (x s)y

] = 1. This shows
G ∈O(r, s). The second claim follows in the same way. 2

We now consider another typical example in which one can read off the exponents r
and s from the group.

EXAMPLE 3. Let G = [N ]Q be a Frobenius group, and set r = exp(N ) and s =
exp(Q). As every element of G \ N is contained in some conjugate of Q, we see
that G ∈O(r, s). If N is Abelian, then G ∈O(1, s). Indeed, if x ∈ N , then x y

∈ N ,
and so [x, x y

] = 1. If x ∈ G \ N , then x s
= 1.
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3. Some general bounds

We first collect some absolutely basic properties of groups in O(r, s).

LEMMA 4. Let G be a group in O(r, s). Then we have the following results.

(a) For every element x ∈ G, we have xr
∈ CG(〈x s

〉
G) and x s

∈ CG(〈xr
〉

G).
(b) For all x, y ∈ G, we have [y, x s, xr

] = 1.
(c) For all positive integers λ, µ, we have G ∈O(λr, µs).
(d) Let n = lcm(r, s). For all x, y ∈ G, we have [y, xn, xn

] = 1 and [xn, (xn)y
]= 1.

(e) If o(x) is finite and coprime to rs, then [x, xg
] = 1 and [g, x, x] = 1 for all

elements g ∈ G.
(f) Every torsion (rs)′-subgroup of G is a second Engel group, hence nilpotent of

class less than or equal to three.
(g) Assume that G has a unique minimal normal subgroup N. If xr

6= 1 for some
element x ∈ G, then x s

∈ CG(N ).

PROOF. Part (a) is clear. For (b), note that we have

[y, x s, xr
] = [(x−s)y x s, xr

] = [(x−s)y, xr
]
xs
= 1.

For (c), let r ′ = λr and s′ = µs. As G ∈O(r, s), for all x, y ∈ G the elements a = xr

and b = (x s)y commute. Clearly, also the powers aλ = xr ′ and bµ = (x s′)y of a and b
commute. This shows G ∈O(r ′, s′).

For (d), write n = λr and n = µs for some positive integers λ, µ. By (c), we have
G ∈O(n, n), and this by (b) implies [y, xn, xn

] = 1 for all x, y ∈ G.
For (e), we can find integers λ, µ such that rλ≡ sµ≡ 1 mod (o(x)). As xr and

(xg)s commute, so do their powers (xr )λ = x and ((xg)s)µ = xg . Part (f) is obvious
from (e).

For (g), let R = 〈(xr )G〉. As xr
6= 1, we have R 6= 1, and so, from the hypothesis,

we get N ≤ R. By (a), we have x s
∈ CG(R)≤ CG(N ). 2

As we have seen in Example 2, the class O(2, 3) contains AA2 and AA3. This, in
some sense, is worst possible because of the following result.

THEOREM 5. Let G be a group.

(a) Let G ∈O(r, s), and set n = lcm(r, s). Then exp(G/F(G)) divides n, where
F(G) denotes the Hirsch–Plotkin radical of G.

(b) Let r = pe and s = q f be prime powers. If G ∈O(r, s) is finite, then G is
soluble, and exp

(
G/F(G)

)
divides rs.

PROOF. For (a), let x ∈ G. By Lemma 4(d), every two conjugates of xn in G
commute. Hence xn generates an Abelian normal subgroup of G, thus xn

∈ F(G).
Thus, G/F(G) is of exponent dividing n. For (b), note that G/F(G) by (a) is of
exponent dividing rs = peq f . Hence G is soluble. 2
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COROLLARY 6. Every group in O(1, 2) is locally supersoluble.

PROOF. Let G ∈O(1, 2). By Theorem 5, G2 is locally nilpotent. Let H be a finitely
generated subgroup of G. Then H/H2 is finite, so that H2 is finitely generated hence
nilpotent. This implies that H is supersoluble. 2

In view of Corollary 6 one might ask whether every group in O(1, 2) is even
metabelian. This, however, is not the case as we shall now show the following result.

EXAMPLE 7. Let p be an odd prime, and let N = 〈a, b〉 be the relatively free
two-generator group of exponent p and class two. Then |N | = p3, and N has an
automorphism z with az

= a−1 and bz
= b−1. Note that z is of order two, and z

centralizes c := [a, b]. Let G = [N ]〈z〉 be the canonic split extension. Then G ′ = N
is nonabelian, so that G is not metabelian.

Note that z inverts N/〈c〉, so that every subgroup of N containing c is normal in G.
We claim G ∈O(1, 2). For this, let x, y ∈ G. If x ∈ N , then the above comment
shows 〈xG

〉 ≤ 〈x, c〉, so that 〈xG
〉 is Abelian. Hence [x, (x2)y

] = 1. Next, assume
x ∈ G \ N . Then x = nz for some n ∈ N . As z inverts N/〈c〉, this yields x2

∈ 〈c〉. As
〈c〉 = Z(G), we arrive at [x, (x2)y

] = 1 as claimed.

QUESTION Is every 2-group in O(1, 2)metabelian? Is every group in O(1, 2) centre-
by-metabelian?

COROLLARY 8. All finite groups in O(r, s) are supersoluble if and only if r ≤ 2 and
s ≤ 2.

PROOF. Let G ∈O(r, s). If r ≤ 2 and s ≤ 2, then by Theorem 5(a), we have that
G/F(G) is of exponent two, and hence G is supersoluble. For the converse, assume
r ≥ 3. By Example 2, we have AAr ⊆O(r, s). As AAr contains finite groups which
are nonsupersoluble (for example the wreath product Zp wr Zr for a prime p not
dividing r with p 6≡ 1 mod r ), we have a contradiction. The result follows. 2

COROLLARY 9. All groups (finite or infinite) in O(r, s) are nilpotent if and only if
r = s = 1.

PROOF. Clearly, every group in O(1, 1) is nilpotent of class ≤ 3. For the converse,
Corollary 8 implies that we have r ≤ 2 and s ≤ 2. It suffices to note that S3 ∈

O(1, 2)=O(2, 1) and S3 ∈O(2, 2). 2

In the situation of Theorem 5(a), we conjecture that Gn is even a second Engel
group. We can prove this in a special case.

COROLLARY 10. Let G ∈O(r, s), and set n = lcm(r, s). If G is torsion free, then Gn

is nilpotent of class two.

PROOF. Let x, y, z ∈ Gn , and let H = 〈x, y, z〉. By Theorem 5(a), we know that H
is nilpotent Let p be a prime with p - 3n. Then H is residually a finite p-group. By
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Lemma 4(f), every such finite quotient is second-Engel, hence of class two (here we
use p 6= 3). This shows [x, y, z] = 1. Hence Gn is of class two. 2

Note that the derived length of groups in O(r, s), in general is not bounded by
some function of r and s. For example, every group of exponent four is in O(1, 4),
and by [8] there are such groups of arbitrary derived length.

COROLLARY 11. There exists a function f with the following property. If G ∈O(r, s)
is finite and soluble, then the Fitting length of G is less than or equal to f (r, s).

PROOF. By Theorem 5(a), it suffices to show that the Fitting length of a finite soluble
group H of exponent rs is bounded. Let K be a two-generator subgroup of H . By
the solution of the restricted Burnside problem (see [9, 10]), K is of bounded order,
thus of bounded Fitting length less than or equal to f0(r, s), say. By [4], also H is of
Fitting length less than or equal to f0(r, s). 2

The following shows that simple groups G ∈O(r, s) have bounded structure. In
particular, the element orders of G can be recovered from r and s.

COROLLARY 12 (See [3]). Let G ∈O(r, s) be a nonabelian simple group (possibly
infinite). Then every element of G has finite order dividing r or s. In particular, the
exponent of G is finite.

PROOF. Suppose the corollary is false. Then there exists x ∈ G with xr
6= 1 and

x s
6= 1. Let N = 〈(x s)G〉. By Lemma 4(a), we have xr

∈ CG(N ). As x s
6= 1,

we have N 6= 1. As N is normal in G and G is simple, we get N = G, and so
1 6= xr

∈ CG(N )= Z(G). Hence we have a contradiction. 2

COROLLARY 13. For every pair r, s of positive integers, the class O(r, s) contains
only finitely many nonabelian finite simple groups.

PROOF. By Corollary 12, the exponent of a simple group in O(r, s) is bounded by rs.
It is well known from the classification, that there are only finitely many nonabelian
finite simple groups of exponent dividing rs. 2

4. Small values for r and s

We now consider finite groups in O(r, s) where r and s are particularly simple. For
this, we need to consider some very specific groups that occur naturally as minimal
counterexamples.

LEMMA 14 (See [1]). Let K be a subgroup-closed formation of finite soluble groups,
and let G be a finite soluble group all of whose proper subgroups and quotients are
in N K, but G 6∈N K. Then G = [N ]Q where N = CG(N )= F(G) is the unique
minimal normal subgroup of G. Moreover, Q 6∈K, but every proper subgroup of Q
belongs to K.
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The following result determines further properties of a group in O(r, s) which has
the structure as in Lemma 14.

LEMMA 15. Let G = [N ]Q be group where N = CG(N ) is the unique minimal
normal subgroup of G. Assume that G ∈O(r, s). Then we have the following results.

(a) Let x ∈ G. If xr
6= 1, then x s

∈ N.
(b) For every x ∈ Q, we have xr

= 1 or x s
= 1.

(c) Assume that r and s are coprime. Then for all x ∈ G \ N, we have xr
= 1 or

x s
= 1.

PROOF. (a) By Lemma 4(g), we have x s
∈ CG(N )= N .

(b) Assume xr
6= 1. By (a), we have x s

∈ Q ∩ N = 1.
(c) Let x ∈ G \ N . By way of contradiction, suppose xr

6= 1 and x s
6= 1. By

Lemma 4(a), we have x s
∈ N and xr

∈ N . By hypothesis, r and s are coprime, so
there exist λ, µ ∈ Z with λr + µs = 1. We arrive at x = xλr+µs

= (xr )λ(x s)µ ∈ N ,
against the hypothesis x ∈ G \ N . 2

COROLLARY 16. Under the hypothesis of Lemma 15, let x ∈ Q, x 6= 1. If o(x) and
|N | are coprime then x acts fixed point freely on N, that is, CN (x)= 1.

COROLLARY 17. Under the hypothesis of Lemma 15, assume that r and s are powers
of two distinct primes. Then every element of G is of prime power order.

We now discuss when one of the classes O(r, s) is contained in another. Note that
a sufficient condition is contained in Lemma 4(c): for all r, s and all λ, µ, we have
O(r, s)⊆O(λr, µs). We now consider whether the converse of this might be true.

COROLLARY 18. Let r and s be positive integers. If O(r, s)⊆O(r ′, s′) for some
positive integers r ′, s′, then r divides r ′ or s′, and s divides r ′ or s′.

PROOF. The result is clear for r = 1, so let r > 1. Let G = [N ]Q be a Frobenius group
where Q = 〈x〉 is cyclic of order r , and |N | = p ≡ 1 mod r where p is a prime.

By Example 3, we have G ∈O(r, 1)⊆O(r, s), hence the hypothesis yields G ∈
O(r ′, s′). From Lemma 15(b), we get xr ′

= 1 or x s′
= 1. Hence r = o(x) divides

either r ′ or s′ as claimed. The second assertion follows from an analogous argument. 2

QUESTION Suppose that O(r, s)⊆O(r ′, s′). Does it follow that r |r ′, s|s′ or
r |s′, s|r ′?

We can now set out to determine properties of the class O(r, s) where r and s are
‘small’ in some sense. First we consider the case when r = 1.

THEOREM 19. Let pe be a prime power, and let G ∈O(1, pe) be a finite group.

(a) If p 6= 2, then G/F(G) is an Abelian p-group.
(b) If p = 2, then G/F(G) is a 2-group of class ≤ e.
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PROOF. Note that by Theorem 5, we have that exp(G/F(G)) divides pe, so that G is
soluble. Let K be the class of all finite Abelian p-groups if p 6= 2 and the class of all
finite 2-groups of nilpotent class ≤ e if p = 2. In both cases, K is QSD-closed.

Let G be a counterexample to (a) or (b) of least possible order. By minimality,
every proper subgroup and quotient of G is in N K. As G is soluble, it has the form
G = [N ]Q as described in Lemma 14.

By Lemma 15(c), every element in G \ N has order dividing pe. Now N is an
elementary Abelian q-group for some prime q , say. Clearly, q 6= p. Hence every
element 6= 1 of Q acts fixed point freely on N (otherwise, G \ N would contain
elements of order pq), so Q is a Frobenius complement. We now use the classification
of Frobenius complements (see [5, p. 505]). If p 6= 2, then the p-group Q is cyclic
thus G/F(G)= Q is Abelian against minimality. If p = 2, the 2-group Q is cyclic or
generalized quaternion of exponent dividing 2e. Thus, Q is nilpotent of class ≤ e and
Q ∈K. But this is against minimality. 2

The following shows that the bound given in (b) of the above theorem is best
possible.

EXAMPLE 20. Let q be a prime with q ≡ 1 mod 2e, and let Q be a Sylow 2-subgroup
of SL(2, q). Then Q is a generalized quaternion group of exponent 2e. Let N be the
elementary Abelian group of order q2, and let G = [N ]Q be the natural split extension.
Then G is a Frobenius group with kernel N and complement Q. In particular, every
element of G \ N is of order dividing 2e. Example 3 yields G ∈O(1, 2e), and
G/F(G) is of class e precisely.

The next case is when r = 1, and s = pq is a product of two primes.

THEOREM 21. Let p and q be primes, and let G ∈O(1, pq), G finite. Then G is
metanilpotent.

PROOF. For p = q , the result follows immediately from Theorem 5, so let p 6= q.
Note that G by Theorem 5 is soluble. Let G be a counterexample of least possible
order. By Lemma 14, we have G = [N ]Q where N = CG(N ) is the unique minimal
normal subgroup of G, and Q is minimal nonnilpotent.

By Lemma 15(c), every element of G \ N is of order dividing pq. Let r be the
prime dividing the order of N . First, assume r 6∈ {p, q}. As G \ N does not contain
any element of order divisible by r , the group Q must act fixed point freely on N . As
exp(Q) divides pq , the structure of Frobenius complements (see [5, p. 505]) shows
that Q is cyclic, hence Abelian, so that we have a contradiction. Hence r ∈ {p, q}.
By symmetry, we may assume r = p. Let P be a Sylow p-subgroup of G. By
Lemma 15(c), every element of P \ N is of order p, so exp(P)= p. An appeal to
Hall and Higman’s Theorem B (see [6, p. 451f]) shows that G is of p-length one. As
N = CG(N ), we have Op′(G)= 1, so P � G, and G/P is a q-group. Here, G is
metanilpotent, a final contradiction. 2
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Note that groups in O(1, 2p) generally need not be metabelian as can be seen from
Example 7. Moreover, every faithful extension of an elementary Abelian 2-group by
the nonabelian group of exponent p 6= 2 and order p3 is of exponent 2p, hence lies in
O(1, 2p). But this group does not have a nilpotent derived subgroup.

We now consider the case where r and s are prime powers.

THEOREM 22. Let r = pe1
1 and s = pe2

2 be prime powers, and let G ∈O(r, s) be a
finite group.

(a) G/F(G) is supersoluble.
(b) If p1 - p2 − 1 and p2 - p1 − 1, then G is metanilpotent.
(c) If e1 = e2 = 1 and p1 6= p2, then G/F(G) is Abelian.

PROOF. If p1 = p2, then by Theorem 5(a), the quotient G/F(G) is a p1-group, and
so (a) and (b) hold. We thus may assume p1 6= p2.

(a) By Theorem 5(b), the group G is soluble. Let G be a counterexample of least
possible order. By Lemma 14, we have that G = [N ]Q where N = F(G) is the unique
minimal normal subgroup of G. Moreover, N = CG(N ), and every proper subgroup
of Q is supersoluble, but Q is not supersoluble. A result of Doerk (see [5, p. 721])
yields that Q = [A]B where A is a noncyclic normal Sylow subgroup of Q, and B acts
irreducibly on A/8(A) which is a noncyclic chief factor of G.

As Q acts faithfully and irreducibly on N , we have (|N |, |A|)= 1. By
Lemma 15(c), every element in G \ N is of prime power order. Hence CN (a)= 1
for all a ∈ A, a 6= 1. By the classification of Frobenius complements (see [5, p. 505])
A is either cyclic or generalized quaternion. However, A/8(A) is noncyclic, so that
the first case does not occur. Let A be generalized quaternion. As B acts irreducibly
on A/8(A), we see that B induces on A an automorphism of order three which clearly
centralizes the involution in A. In particular, Q contains elements of order six. But all
elements of G \ N are of prime power order, so we have a contradiction.

(b) Let G be a counterexample of least possible order. As in (a), we have
G = [N ]Q where N = CG(N ), and every proper subgroup of Q is nilpotent. By (a),
the complement Q is supersoluble.

By the structure of minimal nonnilpotent groups (see [5, p. 281]), we get Q = [A]B
where A and B are cyclic. By Lemma 15(c), every element in G \ N is of order
dividing pe1

1 or pe2
2 . So π(Q)= {p1, p2}. As Q is nonnilpotent, this implies p1|p2 − 1

or p2|p1 − 1 against the hypothesis.
(c) Let G be a counterexample of least possible order. As in (a), we have G = [N ]Q

where N = CG(N ), and every proper subgroup of Q is Abelian. By (a), we know
that Q is supersoluble.

First, assume that Q is nilpotent, thus a p-group for some prime p. By
Lemma 15(c), every element in G \ N is of order p1 or p2, so exp(Q)= p ∈ {p1, p2},
and Q does not contain any subgroup ∼= Zp × Zp. This implies that Q ∼= Zp is
Abelian, so we have a contradiction.

We may assume p1 > p2. As exp(Q) divides p1 p2, the minimal nonabelian
group Q is isomorphic to the nonabelian split extension of Zp1 by Zp2 . Assume that N
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is a q-group for the prime q . If q 6∈ {p1, p2}, then Q would be a Frobenius complement
of G, but this is against the well-known structure of these. As Q acts faithfully and
irreducibly on N , we have q 6= p1. Hence N is a p2-group. Now consider a Sylow
p2-subgroup P of G. By Lemma 15(c), every element of G \ N is of order p1 or p2,
so every element of P \ N is of order p2. Hence exp(P)= p2. By Hall and Higman’s
Theorem B (see [6, p. 451f]), G is of p2-length one. As Op1(G)= 1, the group G is
p2-closed, so we have a contradiction. 2

REMARK 23.

(a) Part (c) of Theorem 22 is no longer true in the case when p = q . Indeed, let G
be an extension of an Abelian normal subgroup by a group of exponent p. Then
G ∈O(p, p), but G/F(G) is not necessarily Abelian if p > 2. Moreover, for
large p, there exist infinite simple groups of exponent p, and so, in general, G
need not even be soluble. Here, one cannot dispose with that hypothesis that G
is finite.

(b) Part (c) of Theorem 22 is no longer true for arbitrary e1, e2. Indeed, the
symmetric group G = S4 has elements of orders one, two, three and four. Hence
we have G ∈O(3, 4). But G/F(G)∼= S3 is nonabelian.

QUESTION Assume that all finite groups in O(r, s) are metanilpotent. What can be
said about r and s?

Acknowledgement

The material has been presented at the Conference ‘Ischia Group Theory 2008’ on
2nd–4th April, 2008. The author is grateful to the organizers for their most generous
support.

References
[1] R. Brandl, ‘Zur Theorie der untergruppenabgeschlossenen Formationen: Endliche Varietäten’,
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