
J. Functional Programming 10 (3): 245–268, May 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

245

A functional reactive animation
of a lift using Fran

SIMON THOMPSON

Computing Laboratory, University of Kent,

Canterbury, Kent, CT2 7NF, UK

(e-mail: S.J.Thompson@ukc.ac.uk)

Abstract

This paper uses the Fran system for functional reactive animation to give a simulation of

a lift – or elevator – with many floors. The paper first introduces a two-floor version, and

then indicates in detail how this is extended to give a simulation with an arbitrary number of

floors and featuring more realistic animated graphics. The paper introduces those aspects of

Fran relevant to the simulation, making it a self-contained tutorial on parts of Fran and how

it is applied in practice. The full code for the system is available on the World Wide Web.

Capsule Review

The functional approach embodied in Fran (functional reactive animation) allows highly

modular specification of reactive behavior and animation, but requires a way of thinking that

is quite different from the conventional imperative approach. Simon Thompson presents and

explains Fran in an instructive and insightful manner, by means of a simple executable speci-

fication of an elevator’s behavior and appearance. By means of this example, he demonstrates

a design style for creating functional animations and the practical use of this style in Fran.

1 Introduction

This paper uses the Fran system for functional reactive animation (Elliott and

Hudak, 1997; Elliott, 1999) to give a simulation of a simple lift or elevator. Fran

is a substantial library extending the Haskell (Hughes and Peyton Jones, 1999)

functional programming language on Windows platforms. The work discussed here

has been developed using the Hugs interpreter (1999); compiled support is available

using the Glasgow Haskell Compiler (1998). The main architect of the Fran system

is Conal Elliott of Microsoft Research, whose earlier work used C++ as a vehicle

for similar ideas (Elliott et al., 1994).

The functional approach of Fran is justified by the fact that the authoring medium

for animations ought to “. . . give the author complete freedom of expression to

say what an animation is, while invisibly handling details of discrete, sequential

presentation. In other words [it] must be declarative . . . ” (Peterson et al., 1997).

This approach is familiar to the functional programmer; one can see it in influential

work on ‘functional graphics’ (Henderson, 1982) some 15 years ago, as well as in

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

246 S. Thompson

more recent approaches to describing music in a declarative form (Hudak et al.,

1996), to name but two examples.

Fran provides two complementary modelling abstractions. First, Behavior X is

the type of time-dependent values of type X. A time-dependent image is a graphical

animation, for instance. On their own these behaviours are effectively predetermined:

once initiated they evolve autonomously. In order to react to internal or external

events of various sorts, Fran provides Event types, which can model, for instance,

user input, timers and signals between concurrent components of an animation.

In this paper the Fran system is introduced in stages, and this is interleaved with

a description of a version of the lift problem in section 3.1 together with a top-down

description of the lift simulation itself in sections 3.3, 4.2, 5.1, 6.2 and 6.3. After

completing the two floor case study, we examine in section 8 how the system is

extended to accommodate an arbitrary number of floors, and also give an overview

of the animation of various graphical aspects of the system. This is followed in

section 9 by a brief ‘look under the bonnet’ to see some of the primitives used to

define the operators used in the case study.

The introduction to Fran given here is intended to make the paper self-contained;

a more comprehensive introduction is available in the papers cited above and in

animated form in Elliott (1997).

It is interesting to observe the positive benefits of embedding Fran in the declara-

tive framework of the Haskell programming language. Beyond providing a natural

home for a declarative modelling tool, the library is able to exploit features such as

polymorphism and type classes. In writing this simulation we also have been able to

exploit the power of the language in writing general building-blocks for graphical

interface components (section 7); it is also possible to define ‘finite’ or ‘terminating’

simulations in this way (section 10).

It is also interesting to observe the beneficial effect of working in a typed environ-

ment: particularly when working with the libraries for Events, it was often possible

to find the right component of the library by its type. Moreover, in nearly all cases,

if a piece of code passed the type checker it was correct. It is all too easy to imagine

what would happen in an untyped or weakly-typed language.

2 Behaviours

This section looks at the way that continuously-evolving behaviours can be described

in Fran.

2.1 Time-dependent values: Behaviors

Behaviours or time-dependent values of type X are given by the type Behavior X.

These can be thought of as functions of type

Time -> X

where Time is the domain of real numbers.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 247

Fig. 1. The behaviour wiggle.

How are Behaviors implemented? Full details can be found in (Elliott and Hudak,

1997; Elliott, 1998) but a simple-minded model is to think of animations as being

given by sampling the values of functions at a series of points; under this model an

animated image would be made up of a sequence of distinct images generated at the

sampling points. The complexity of the Fran implementation comes in representing

reactivity by events; we examine those below.

Among the types we shall use in our solution are

type RealB = Behavior Double

and ImageB. An example value of type RealB is the wiggle illustrated in figure 1,

which is defined by

wiggle = sin (pi * time)

using the built in time of type RealB, which can be thought of as the identity

function.1

Primitive graphical objects include circles, rectangles, polylines, polygons, and

so forth. Pure graphical animations can be built from these and various library

functions, some of which are discussed now.

moveXY :: RealB -> RealB -> ImageB -> ImageB 2 The first two arguments

give the x- and y-coordinates of the position that the ImageB should take at each

time. Note that it is not simply an image that is moved; it is an ImageB which

can itself be moving, changing shape or colour, and so on.

over :: ImageB -> ImageB -> ImageB This supports the superimposition of

the first image over the second, giving a form of concurrency – we discuss this

further in Section 5.2.

stretch :: RealB -> ImageB -> ImageB This scales an ImageB according to

a RealB, so allowing the size of animated objects to vary with time.

withColor :: ColorB -> ImageB -> ImageB The effect of this function is to

change the colour of an ImageB according to the time-dependent colour supplied.

An example behaviour is given by

1 Note here how the type class mechanism of Haskell supports overloading and in this case the use of
sin and pi over RealB rather than Double. This overloading makes Fran programs substantially more
readable.

2 The double colon, ::, should be read ‘is of type’, and the type here is a function taking three arguments.
Functions in Haskell are in fact ‘curried’ so that strictly moveXY takes a single argument and returns a
function as result.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

248 S. Thompson

moveXY wiggle 0 pic1

‘over‘

moveXY 0 waggle pic2

in which pic1 ‘wiggles’ from left to right, pic2 ‘waggles’ (cosine) up and down and

‘over‘ is the infix form of the function over, and so superimposes the two ImageBs,

which are themselves moving and may indeed be evolving in other ways.

Using these functions it is possible to build graphical animations of the non-

reactive aspects of a lift simulation, such as graphics of a lift whose doors are

opening, a lift whose doors are closing, a lift in motion and so forth, since these are

built from blocks of colour of changing size and position.

2.2 Rate-based animation

Suppose we want a numerical quantity f to change with time as part of an animation.

One way of doing this is to specify f as a function of time, as indeed we did with

wiggle above. Fran provides an alternative, by which we specify the rate of change

(or derivative) of the quantity, f’ say, and using the atRate function f can be given

as the integral of f’.

A simple example is given by position and velocity: a linear change in position

is given by a constant velocity, for instance. This example reflects the general

observation that it is often easier to describe the derivative of a function rather than

the function itself, and we shall see an example of this in our simulation.

3 The case study: lift simulation

This paper addresses the first of the problems set for a workshop on ‘Challenges for

Executable Temporal Logics’ (ETL, 1998), namely that of simulating the operation

of a lift (or elevator). The problem as originally stated requires an arbitrary number

of floors; in this paper, we approach the problem by giving the full solution for the

two floor case, and then by giving a detailed overview of the general case. In the

introduction we have also stripped down the graphics to concentrate on the control

aspects of the problem, which in the case of Fran are the aspects demanding the

most effort to implement.

In our first attempt we control the operation of the lift using the mouse buttons.

We show how to modify our solution to include a more general graphical control

scheme in section 7 and section 8 explores the n-floor problem.

3.1 The two floor problem

The scenario for the two floor lift simulation is as follows:

The aim is to provide a graphical animation of the operation of a lift between two floors

of a building. The lift can be called from the upper floor to request travel downwards; a call

from the lower floor is taken to be a request to travel upwards. Because of this interpretation,

there is no need explicitly to model buttons inside the lift itself. Input is taken from the mouse

buttons: a left button click generates an ‘up’ request and the right a ‘down’. In the solution

presented, the lift is represented by a red blob, rather than any more complicated animation.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 249

There is a twist to the problem which makes its solution more complex than might

be first envisaged. This is the fact that while the lift is travelling upwards there can

be a further request to travel upwards, which can only be discharged by a journey

back down and then back up again. In other words, some ‘memory’ is required to

solve even the case of a two-floor simulation, and this shows that our simplification

contains most of the essential elements of the n-floor problem.

3.2 The User argument

Any animation which uses time information in a non-trivial way or which interacts

with the user will be defined as a function which takes a User argument and, on

the basis of this argument, returns a Behaviour of some sort. The User argument

consists of a timed stream of mouse button presses, key presses, mouse positions

and other user data. It also gives the time at which the animation begins and other

real-time information.

To exhibit such a user-driven animation in action we use the Fran function

displayU :: (User -> ImageB) -> IO ()

which ‘runs’ an animation, by supplying it with the user input stream as its User

argument, and produces primitive Haskell IO as a result.

3.3 Case study part 1: the top-level solution

We shall give the solution to the lift problem top-down, with the full code for the

solution appearing in the Appendix. At the top level we define a function over a

User argument, as explained in section 3.2:

liftSim :: User -> ImageB

The simulation consists of a moving image of a lift,

liftSim u

= moveXY xPos yPos image

where xPos and image are constants.3 The definition of yPos and the auxiliary

behaviours and events which determine it are local to the definition of the function,

and thus appear in a where clause. Note that the result depends upon the User

argument u which will be used in a number of the definitions which follow.

As we explained in section 2.2 it is often simpler to model phenomena by derivative

rather than directly, and this we do here for the yPos:

yPos = lower + atRate dy u

where the velocity – dy – is piecewise constant and can take one of three values:

zero, making the lift stationary; the positive value upRate, signifying that the lift

3 In a more complex simulation image would itself evolve. Its definition would follow the pattern of
that for yPos; more details are given in section 8.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

250 S. Thompson

is ascending and the negative value downRate for descent. We have to look at how

events are modelled to see how dy is defined and this we do in the next section.

Observe also that the User argument u is passed to the atRate function to

provide the timing information – such as when the animation begins – needed by

the integration.

4 Events

We have seen in section 2 how certain simple time-dependent behaviours can be

defined, but to define behaviours which respond to internal conditions or external

events the model needs to be extended by the Event type.

An Event X is a sequence of timed occurrences, each of which is associated with

a value of type X, so it is possible to think of Event X as a list of type

[(Time,X)]

sorted on its first components. Each of the elements, (t,x) say, is called an event

occurrence, with the whole structure being the event.4 (As was the case for behaviours,

the implementation is somewhat more complicated than this, but for the purposes

of this paper this will suffice.)

4.1 Handling events

The system provides substantial support for handling and modifying occurrences of

events. In our model we only perform simple transformations on events.

Each event occurrence in a stream str of type Event a will have the form (t,x),

where t::Time and x::a. In every case we are interested in as a part of the case

study, our aim will be to convert the value x to a fixed value c::w, thus converting

the pair to (t,c). The resulting stream will be written

str -=> c :: Event w

The effect on a stream [(t0,x0),(t1,x1),...,(tn,xn),...] is therefore to pro-

duce the result [(t0,c),(t1,c),...,(tn,c),...].

In the general case, the event occurrence produced by the event handler corre-

sponding to (t,x) may depend upon x,5 t and the remaining part of the Event (after

the expired event occurrences are removed). Further details of the event handling

mechanism handleE can be found in section 9 and Elliott (1999).

Streams of event occurrences can be merged, time-wise, using the operation

.|. :: Event a -> Event a -> Event a

These two capabilities allow us to proceed further with our lift case study.

4 This terminology appears to be in conflict with the more usual ‘event’ (for ‘event occurrence’) and
‘(event) stream’ (for ‘event’); we will use the Fran terminology in this account.

5 In which case the operation is similar to the map function over lists.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 251

upRate

downRate

0

Fig. 2. An example event.

4.2 Case study part 2: top-level events

The movement of the lift is controlled by a number of Events generated internally

stop, goUp, goDown :: Event ()

which are intended to give the obvious values to the velocity of the lift, dy. () is

the trivial type, whose only member is also denoted (); it is used in a situation

where the value contained in the Event occurrence is of no significance and only

the Time value is relevant, as is the case here. The Events will themselves be defined

in section 6.3.

The definition of dy uses setRate :: Event Double given by

setRate = stop -=> 0

.|.

goUp -=> upRate

.|.

goDown -=> downRate

The effect here is to convert all occurrences of stop to occurrences with the value

0; all occurrences of goUp to event occurrences with the value upRate and so on.

These are merged, and so give an Event Double of the form

[(2.3 , upRate) , (4.9 , 0) , (8.6 , downRate) ...]

in which upRate is the value returned at the occurrence at time 2.3 and so forth.

This is depicted in figure 2. To define dy this timed stream of values needs to be

converted to a piecewise-constant behaviour, and this we investigate now.

4.3 Converting Events to Behaviors

Behaviours evolve in continuous time, while (occurrences of) events take place at

discrete points in time. The power of the Fran model lies in the way in which these

two types are linked. This section addresses one simple way in which Events can

be converted to Behaviors; other more complex (and more fundamental) ways

are examined elsewhere (Elliott, 1999). We need to convert the event setRate to a

behaviour. This is done by the Fran function

stepper :: a -> Event a -> Behavior a

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

252 S. Thompson

upRate

downRate

0

Fig. 3. An example behaviour defined from an event.

which is parametrised by a starting value and an Event, and builds a piecewise

constant Behavior from these inputs. With the starting value 0 and the event as

above we have the behaviour illustrated in figure 3, so we define

dy = stepper 0 setRate

This shows the mechanism by which we convert streams of ‘internal messages’ –

goUp and so forth – into a behaviour, and completes the top-level definition of the

simulation. We now need to look at how these messages are themselves defined, but

before that we investigate how to model system states.

5 Modelling states in Fran

As mentioned in section 3.1, the implementation of the lift will need to contain some

element of memory to keep track of requests for travel that are still to be fulfilled. In

an earlier version of the solution, a state monad (Wadler, 1995) was used to model

the state, but this caused complications, particularly in conjunction with handling a

User argument (which could itself be seen as giving rise to a monad).

There is a much more straightforward view of a state variable of type X, and that

is as a Behavior X – an X value which varies with time. We thus get a declarative

model of state in Fran.

5.1 Case study part 3: pending requests as ‘variables’

Our model contains three ‘Boolean variables’

upPending, downPending, pending :: Behavior Bool

which keep track of whether there is pending a request to travel up, down or in either

direction. pending is the pointwise disjunction of upPending and downPending

pending = upPending ||* downPending

Here ||* is the lifting of the Boolean disjunction operation || to Behavior Bool;

other operations such as == are lifted to behaviours in a similar way below.

The state upPending is defined from an Event using stepper as above.

upPending = stepper False (setUp .|. resetUp)

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 253

The initial value of the variable is False; it is set to True by a request to travel

upwards, and reset to False by the lift starting an upward journey, as signalled by

goUp:

setUp = upButton -=> True

resetUp = goUp -=> False

The state variable downPending is defined in a similar way.

5.2 Concurrency in the Fran model

The model presented thus far appears to contain elements which evolve concurrently,

in some sense at least. This section attempts to explain the nature of the concurrency

in the system.

Animations – including sound as well as images – can be combined using the

‘over’ function which places one animation on top of another, so we have a form

of concurrency here.

Examining the implementation developed thus far, we appear to have Behaviors

evolving in parallel in the lift simulation: the system contains state variables which

are controlled by messages from other parts of the system, for instance. The concur-

rency here is completely implicit: various interdependent values – both Behaviors

and Events – are defined in a single scope, and so can be thought of as evolving

concurrently. This concurrency is clearly supported by the sample/display model

which underlies Fran.

Under this interpretation of Fran, event occurrences can be seen as signals which

communicate between concurrently-evolving behaviours.

6 Predicates

Looking at the case study thus far, we have a model of the lift in which external

stimuli are provided by mouse button presses. We need, however, to find a way of

generating the ‘control’ messages, goUp and so forth – which are of type Event ()

– from the Behaviors in the system. The way in which we convert from behaviours

to events gives the last piece of the Fran model used here.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

254 S. Thompson

6.1 The predicate function

To complete the simulation, the crucial pieces of information which we need are

when we have arrived at the top or the bottom of lift shaft. We could keep an

internal record of the time of departure and calculate offsets from that, but here we

choose instead to check when we have arrived by means of a logical condition on

behaviours. This Behavior Bool can be made to generate an event by means of the

function

predicate :: BoolB -> User -> Event ()

which takes a Boolean behaviour and the User argument (for timing information)

and returns an Event. We have to look for an appropriate BoolB with which to test

having arrived at the top. Candidates include

yPos ==* constantB upper Given the sampling model, it is possible that the

system will miss the point at which the condition is True. A fuller discussion of

this issue can be found in Elliott and Hudak (1997), which makes it plain that

implementations of predicate have changed with different releases of Fran.

yPos >=* constantB upper This condition will possibly be True over an interval

of time, or in a more problematic way may become True arbitrarily often over a

short period of time, giving rise to an ‘event burst’ as it were. This was indeed a

problem in an early version of the solution.

yPos >=* constantB upper &&* dy >* 0 Adding the condition that the lift is in

motion – dy >* 0 – gives this condition a transitory property: we shall see in

section 6.3 that the Event to which it gives rise will ensure that it becomes False

immediately afterwards, thus avoiding the problems of the previous possibility.

We can now put together the final parts of the solution of the case study.

6.2 Case study part 4: conditions and predicates

The conditions of being at the top, and waiting stationary (at the top) are given by

atTop, stopped, waitingTop :: BoolB

atTop = (yPos >=* upper)

stopped = (dy ==* 0)

waitingTop = atTop &&* stopped

The Event of arriving at the top is defined by

arriveTop :: Event ()

arriveTop = predicate (atTop &&* dy >* 0) u

and similar definitions can be found for the bottom case.

6.3 Case study part 5: control Events

Recall that the top level of the simulation is driven by the ‘control’ Events goUp,

stop and goDown. Now that we have a definition of the Event generated by arriving

at the top (and bottom) we can define the control events.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 255

We have seen earlier that button presses have an indirect effect on the operation

of the lift by setting the pending variables; they can also have a direct effect by

setting it into motion when it is stationary. We therefore define

upButton, downButton, eitherButton :: Event ()

upButton = lbp u

downButton = rbp u

eitherButton = upButton .|. downButton

so that the eitherButton event corresponds to the press of either button.

When should the lift go down; that is, when should there be occurrences of the

goDown event? There are two cases.

• The lift can arrive at the top (arriveTop) when there is a request pending for

travel in either direction (pending), or,

• either button can be pressed (eitherButton) while the lift is waiting at the

top (waitingTop).

In both cases there is a condition on the event occurrences. Using the function

whenE :: Event a -> BoolB -> Event a

the expression

ev ‘whenE‘ cond

selects from ev precisely those occurrences at which the condition cond is True.6

The definitions of goDown and stop are then

goDown = arriveTop ‘whenE‘ pending

.|.

eitherButton ‘whenE‘ waitingTop

stop = (arriveTop .|. arriveBottom)

‘whenE‘ notB pending

It is not hard to see that the lift will stop in the situation of arriving either at the top

or the bottom when no request is pending. goUp is defined by analogy with goDown.

This completes the definition of the Fran lift simulation for a two floor lift. The

full code is contained in the Appendix.

7 A graphical interface

This section outlines the way in which the implementation can be given a graphical

interface.

The lift is controlled by the mouse buttons in the solution presented thus far. We

can modify this to include two on-screen buttons, as in the illustration

6 whenE acts rather like the standard function filter over lists.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

256 S. Thompson

which shows the lift in motion with a pending request for travel downwards. This

modification is made with minimal changes to the code presented thus far. As well

as having to modify the code already written, we have to add to the code a block

of buttons and for this we use a function buttonBlock of type

Geom ->

[(String,Event (),a)] ->

(User -> Event ()) ->

User ->

(ImageB,Event a)

where the arguments consist of:

• the geometry of the buttons;

• information for each button:

— its textual form,

— the event which resets it, and

— the value identifying it as having been pressed in occurrences of the Event

generated by the button block;

• the event which presses the button;

• the User input.

The result consists of the image of the block paired with the Event which it

generates.

This function is not part of the Fran library, and it is noteworthy that it can be

implemented from scratch in about a hundred lines of code. This is a benefit of

embedding the Fran library in a general purpose, higher-order language like Haskell.

Taking input from on-screen buttons is obviously a way of animating the input

for the n-floor problem, to which we turn now.

8 The n-floor problem

This section gives a design overview for the n floor lift and inter alia suggests a

taxonomy by which the elements of a Fran program can be classified. The fully-

commented code can be downloaded from

http://www.cs.ukc.ac.uk/people/staff/sjt/Fran/

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 257

8.1 The scenario

The scenario for the n-floor problem is described thus.

The lift has floors numbered from 0 to topFloor. Requests to travel to these floors are

given by typing a single digit at the keyboard.7

The lift changes direction of motion only when this is necessary: if the previous direction

of motion was upward, then after stopping at a floor, the lift will continue upwards if there

are any outstanding requests to visit floors higher up.

This is a simple expedient to ensure that all requests are eventually discharged, assuming

only that the lift is not held at a particular floor by someone repeatedly re-opening the doors

before they close. A strategy of always going to the closest floor irrespective of direction

would not necessarily process all requests in all circumstances.

On arriving at a floor to which a visit is pending, the lift doors open and then close to

discharge and receive passengers. Should a request to travel to that floor be received during

this process, the doors re-open from their current position and close again.

The remainder of this section presents an overview of the n-floor lift, first looking

at its vertical motion in sections 8.2–8.7 and then at the graphical animation of its

doors in section 8.8.

8.2 Vertical motion: basics

Exactly as in the two floor design, the vertical motion of the lift is modelled using its

vertical velocity, dy, which is integrated to give the vertical position yPos. Moreover,

dy will be controlled using the stepper applied to the event setRate, which is itself

defined as before from the events stop, goUp and goDown. It is the re-definition of

these events that solves the n-floor problem.

The program which models the lift is made up of behaviours and events; it is

useful to further classify these components.

8.3 Continuous and piecewise constant behaviours

Behaviours in the lift model come in two sorts. Continuous behaviours model physical

quantities, like the vertical position of the lift (yPos) and the position of the edge of

the doors (doorEdge). Other behaviours are piecewise constant, as illustrated earlier

in figure 3, and these correspond to various state variables of the system. In this

model the state variables include

currentFloor Int the ‘current floor’ or, when the lift is moving, the last

floor to have been passed or visited by the lift;

pending [Int] the (ordered) list of floors to be visited;

lastUp Bool the value indicating whether or not the last

vertical motion of the lift was upwards;

dy Double the vertical velocity of the lift.

7 This is a non-essential simplification of the case in which requests to travel up or down are made at
each floor, whilst specific floor choices are made in the lift. Modelling this requires an extra component
in the state and is left as an exercise for the reader. It is also a straightforward exercise to build a more
flexible input component which processes input by button presses, say, and which would model a lift
with more than ten floors.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

258 S. Thompson

8.4 Controlling state variables

In the two floor solution, the state variables such as upPending have only two

values. This means that when they are reset the new value is independent of the

current value of the state variable. This will not be the case for the state variables

here; for instance, the value of currentFloor will be incremented or decremented

by one on reaching the next floor above or below the previous one.

Instead of using the stepper to define a behaviour from an event, we will use the

function

accumCB :: (a -> b -> a) -> a -> Event b -> Behavior a

to manage the states.

The crucial argument to accumCB is the function of type a -> b -> a; this

function is used to generate the new value of the state from the current value of the

state variable (of type a) and the value of type b contained in an event occurrence.8

For example, the currentFloor is defined by

currentFloor :: Behavior Int

currentFloor = accumCB (\n b -> if b then n+1 else n-1) 0 arrival

which defines the currentFloor which is incremented or decremented depending

upon the Boolean value returned by the arrival event, signalling whether the

arrival is in an upward or downward direction.

A second example is given by the list of pending floors. A floor is added when

the corresponding key is pressed; the first argument to accumCB in this case will be

a function to insert a floor number into the ordered list of floors to be visited.

8.5 External and internal events

The lift simulation contains two different kinds of event. It is a reactive simulation

and so one class of events are external and are produced by the user of the

simulation. In this particular case they will be key presses, which are translated into

the event

selectFloor :: Event Int

in which the value contained in an event occurrence is the floor requested.

Events provide a way of determining behaviours by means of the stepper and

accumCB functions. The external event of selecting a floor will affect the state variable

pending, but other effects are produced by events which are internal to the system.

An event is internal to the system if is it generated from other events or behaviours

in the system. Among the most important are the primitive events generated by

certain conditions becoming true, using the predicate operation of Fran. In the

n-floor lift these include

8 The function accumCB is analogous to the scanl function from the Haskell prelude. Fran provides a
similar function stepAccum so that accumCB f c e is given by stepAccum c (e ==> flip f).

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 259

arrivalUp, arrivalDown Int arriving at a floor, travelling up or down;

the value returned is the floor reached;

doorOpen, doorShut () the door becoming fully open or fully shut.

Other internal events are derived from other events; events can be merged, can have

occurrences selected according to predicates,9 and can have values transformed by

-=>. The derived internal events include

setRate Double the event determining the

vertical velocity;

which uses the events which follow . . .

goUp, goDown, stop () . . . events governing changes in vertical

motion

arrival Bool arriving at a floor; the value True indicates

arrival from below.

waitingDown, waitingUp () events signalling the transition from waiting

to moving down or up;

8.6 Event definitions

The main events in the model are arrival at a floor and stop, goDown and goUp

which determine changes in vertical velocity.

To determine arrival at a floor, we use the predicate operation and define

arrivalUp of type Event Int

arrivalUp

= snapshot_ (predicate (yPos >=* newFloorPosition &&* dy >* 0) u)

newFloor

where

newFloor = currentFloor + 1

newFloorPosition = lift1 floorPosition newFloor

The currentFloor variable keeps a record of the last floor to be visited or passed;

on the basis of this it is possible to calculate the newFloor and its position,

newFloorPosition. Arrival at the floor is signalled by an inequality, exactly as in

section 6.1.

A novel feature here is the Fran function snapshot_ which captures the floor

number by taking a ‘snapshot’ of the value of newFloor at the time of arrival,

making this the value returned by the event occurrence.

When is the lift supposed to stop? When it reaches a floor which is an element of

the pending list: this is expressed clearly by the definition

stop = whenSnap arriveFloor pending elem -=> ()

The lift will start to go down under two circumstances,

9 akin to the filter function of Haskell

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

260 S. Thompson

goDown = doorShut ‘whenE‘ downCond

.|.

waitingDown

represented by a merge of two events.

• The first occurs when the doors shut and the condition for downward motion

holds. The condition for going downwards, downCond, is a Boolean behaviour

calculated on the basis of the state variables which record the current floor,

the pending floors and the last direction of motion.

• The second occurs when a button is pressed for a floor below the current one

and the lift is waiting:

waitingDown

= whenSnap selectFloor currentFloor (<) -=> () ‘whenE‘ waiting

The corresponding events for upward motion are defined in a similar way.

8.7 Inter-component dependencies

It is instructive to examine the dependencies between the various events and be-

haviours which make up the lift simulation. An analysis shows that almost all the

behaviours and internal events are inter-dependent – technically they form a single

strongly connected component of the function call graph – with only the external

event of floor selection being independent of them.

This information may go some way to show why the system can be somewhat

slow in execution. The simulation is a tightly-coupled system in which it is not

possible to divide the functionality into rather more independent components.

8.8 The doors

At the top level of the program for the n-floor lift the lift image is given by

moveXY xPos yPos image

but in contrast to the two floor case, the image is itself animated:

image = frame ‘over‘ doors

The frame is a constant image, whilst the doors open and close. The position of

the doors is given by integrating their velocity, which is itself a Behaviour given by

stepper from the event changeDoorVel.

changeDoorVel

= doorOpen -=> (-vel)

.|.

doorShut -=> 0

.|.

openDoors -=> vel

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 261

The events doorOpen and doorShut signal when the doors become fully open or

fully shut; they are defined using a predicate over the position of the doors, like

the way in which arrivals were defined earlier by reference to the vertical position

of the lift.

The event openDoors signals when the doors are to be opened.

openDoors

= whenSnap arriveFloor pending elem -=> ()

.|.

(whenSnap selectFloor currentFloor (==)) ‘whenE‘ stationary -=> ()

This definition has the effect that they are opened either

• when the lift arrives at a pending floor, or
• when the current floor is selected (the whenSnap) and the lift is stationary

(given by the ‘whenE’).

In the latter case, this mean that doors are re-opened if the ‘up’ button is pressed

while the doors are closing.

On execution the simulation will appear as

in which the current values of lastUp, currentFloor and pending are also shown

for diagnostic purposes. In the figure, the doors are closing on level 1, with levels

1, 2 and 4 to be visited, and the previous direction of motion having been upwards

(indicated by the Boolean value True). As soon as the doors close, the value 1 will

be removed from the pending list.

8.9 Conclusion

The development of the n-floor lift shows how general state variables can be

modelled by behaviours, and thus shows that Fran can provide a foundation for

concurrent, state-based but declarative animation of systems.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

262 S. Thompson

9 A glimpse under the bonnet

Up to this point we have used a high-level subset of the facilities provided by

Fran. Behaviours which evolve have been defined using stepper, which turns an

Event a – that is a timed sequence of values from type a – into a piecewise-constant

Behavior a. We have also handled event occurrences in a simple-minded way, using

the -=> operator to transform occurrences (t,v) of the event ev into occurrences

(t,c) of the event ev -=> c.

How in general can the occurrence of an event cause a change in behaviour; how

in general are events handled? In this expository section we explain how the Fran

system defines the two operations handleE and untilB which provide a primitive

interface to behaviours and events, and we see as examples how to define stepper

and ev -=> c from these primitives.10

9.1 Handling Events

Recall from section 4 that an Event a is a sequence of timed occurrences, each of

which has associated with it a value of type a. In general, three values characterise

an event occurrence:

• the time of the occurrence;

• the value of the occurrence, and

• the remainder of the Event, after removing the occurrences up to and including

the occurrence in question.

To handle an event occurrence, we transform these three values to a value, of type

b, say. This is accomplished by a function of type

Time -> a -> Event a -> b

and we can apply such a function to each occurrence in a stream of occurrences to

give a stream of occurrences of type b, that is an Event b. That is the effect of the

general event handler,

handleE :: Event a -> (Time -> a -> Event a -> b) -> Event b

As a special case of handleE in which the handler function is constant Fran defines

-=> thus:

(-=>) :: Event a -> b -> Event b

ev -=> c = ev ‘handleE‘ (_ _ _ -> c)

Also of interest is the Event-equivalent of map,

(==>) :: Event a -> (a -> b) -> Event b

ev ==> f = ev ‘handleE‘ (_ v _ -> f v)

which when applied to the timed stream [(t0,x0),(t1,x1),...,(tn,xn),... and

the function f gives the result [(t0,f x0),(t1,f x1),...,(tn,f xn),....

10 This section is included for completeness of exposition, but obviously owes much to Elliott (1999).

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 263

9.2 Modifying Behaviors

How can one sequence behaviours, so that one follows another? A simple solution

is provided by

seqB :: Behavior bv => bv -> Event () -> bv -> bv

so that seqB bh1 ev bh2 behaves as bh1 until the first occurrence of ev, and after

that behaves as bh2. One can also lift this sequencing to operate over behaviours

dependent upon a User argument to give

seqUB :: Behavior bv => (User -> bv) -> (User -> Event ()) ->

(User -> bv) -> (User -> bv)

and so forth. In fact, Fran provides a different primitive, untilB, which generalises

these. It is, however, instructive, to see how seqB is defined from untilB. The

function untilB has the type

Behavior bv => bv -> Event bv -> bv

and the effect of bh ‘untilB‘ ev is to behave as bh until the first occurrence of the

event ev; after that the behaviour is whatever value is returned by that first event

occurrence, which does indeed return a value of type bv. We can then see that

seqB bh1 ev bh2 = bh1 ‘untilB‘ (ev -=> bh2)

so that seqB separates the event and the continuation behaviour which are combined

in the second argument to untilB. In a similar way, we define

seqUB ub1 uev ub2

= \u -> ub1 u ‘untilB‘ (nextUser_ uev u ==> ub2)

where the Fran function nextUser_ is used to age Users in the appropriate way. The

effect of nextUser_ uev u ==> ub2 is thus to pass the aged User to the User-lifted

behaviour ub2, and so to continue the computation as required.

9.3 Using handleE and untilB to define the stepper

The Fran function stepper produces piecewise constant behaviour from a stream

of values of type a and a starting value of that type.

stepper :: a -> Event a -> Behavior a

In what follows we show how the result stepper start ev is defined in a number

of stages. Initially, the behaviour will be the constant behaviour with value start,

that is

constantB start

If we think of ev as an infinite list, we then want recursively to call stepper on

(head ev) and (tail ev). We cannot do this directly, but we can indirectly using

handleE. The Fran function

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

264 S. Thompson

withRestE :: Event a -> Event (a,Event a)

withRestE ev = ev ‘handleE‘ (_ head tail -> (head,tail))

returns the stream of ‘head, tail’ pairs from the event occurrences in ev. To apply

stepper to each of these pairs, we ‘map’ it along withRestE ev using the ==>

operator, as follows

withRestE ev ==> uncurry stepper

where note that we have to uncurry the stepper function to accept its argument

as a pair rather than ans two separate arguments. Putting all the parts together, we

have

stepper start ev

= (constantB start) ‘untilB‘ (withRestE ev ==> uncurry stepper)

This example shows how the exception handling mechanism of handleE gives a

flexible way of dealing with Events – as timed streams of event occurrences – and

also how the primitive untilB turns a stream of Behaviors into a single behaviour.

Note that in Fran stepper is in fact defined using the more general switcher

function; the definition of this generalises the definition of stepper given here.

As we have seen, using the primitives handleE and untilB together with special-

izations of them and a number of other utility programs such as nextUser_ it is

possible to define a variety of powerful programs; in the section which follows we

reflect on other aspects of using Fran.

10 Reflection

The solution presented in this paper is the result of a number of iterations which

reflect a growing understanding of the capabilities of the Fran library as well as

different approaches to the design of the simulation itself.

Terminating behaviours

For instance, in an earlier design the components of the solution were represented

as terminating behaviours, which were sequenced together to form the overall

simulation – a ‘monadic’ approach. Embedding Fran in a functional language with

general-purpose capabilities makes modelling these terminating behaviours as pairs

(bv , Time -> User -> Event ())

a straightforward matter: the second components of these pairs are used to signal the

termination of the behaviour in the first component. Such behaviours are sequenced

using the analogue of seqUB from the previous section. This approach is the natural

choice in situations in which behaviours are finite. A complex animation might be

built by sequencing a number of simpler animations, such as the doors of a lift

opening and then closing.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 265

Recursion

The solution we have presented here relies heavily on recursion. For example,

goUp depends upon pending and pending depends upon upPending which in turn

depends upon goUp. The implementation of Fran uses lazy evaluation heavily, so

the recursive definition of structures is possible (we have done it here), but some

recursions can lead to non-termination, which in some circumstances can be non-

interruptable.

This reflects a general phenomenon for which evidence is apparent in earlier

approaches to functional I/O (see, for example, Thompson (1990)) and which led to

the definition of sets of (monadic) combinators to handle I/O in a more disciplined

manner (Thompson, 1990; Hughes and Peyton Jones, 1999).

Verification

One of the attractions of declarative programs is that it is substantially easier to

reason about how they behave. The Fran library supports a declarative approach

to behaviours which evolve in time, and a temporal logic (Emerson, 1990; Zhou

Chaochen, 1994) can be used to prove properties of systems defined in Fran. Work

in this direction is reported elsewhere (Thompson, 1999).

11 Conclusion

In this paper, we have shown that Fran can be used to give a simulation of a lift,

and we have argued that it is well suited to the task for two reasons. First, it allows

us to build a declarative model of the lift, with entities of the system representing

behaviours and events recognisable in the statement of the problem.

A second advantage of Fran is that it is embedded in a general-purpose functional

programming language, namely Haskell. This allows extensions of the library to be

constructed with relatively small effort, and also allows those extensions to use

features of Haskell – such as higher-order functions, polymorphism and type classes

(for overloading) – in an essential way.

Other applications of the Fran model are reported in Cameron et al. (1999) and

a logical view of Fran is explored in Thompson (1999).

Acknowledgements

I am very grateful indeed to Conal Elliott, who has answered my numerous questions,

made suggestions about improvements to programming style and generally encour-

aged me in this enterprise. Erik Poll has made a number of very useful comments

on the presentation of the material, and the referees have made a number of helpful

suggestions. Finally, I would like to thank Howard Bowman, Helen Cameron and

Peter King for their collaboration in our work on describing multimedia artifacts

which has led to my looking at Fran.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

266 S. Thompson

Appendix: Complete program for the two floor lift

liftSim :: User -> ImageB

liftSim u

= moveXY xPos yPos image

where

image :: ImageB

image = stretch 0.3 circle

xPos,yPos,dy :: RealB

xPos = constantB 0

yPos = lower + atRate dy u

dy = stepper 0 setRate

setRate :: Event Double

setRate = stop -=> 0

.|.

goUp -=> upRate

.|.

goDown -=> downRate

atBottom, atTop, stopped, waitingBottom, waitingTop :: BoolB

atBottom = yPos <=* lower

atTop = yPos >=* upper

stopped = (dy ==* 0)

waitingBottom = atBottom &&* stopped

waitingTop = atTop &&* stopped

arriveBottom, arriveTop :: Event ()

arriveBottom = predicate (atBottom &&* dy <* 0) u

arriveTop = predicate (atTop &&* dy >* 0) u

upButton, downButton, eitherButton :: Event ()

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

Lift animation in Fran 267

upButton = lbp u

downButton = rbp u

eitherButton = upButton .|. downButton

upPending, downPending, pending :: Behavior Bool

pending = upPending ||* downPending

upPending = stepper False (setUp .|. resetUp)

downPending = stepper False (setDown .|. resetDown)

setUp, setDown :: Event Bool

setUp = upButton -=> True

setDown = downButton -=> True

resetUp, resetDown :: Event Bool

resetUp = goUp -=> False

resetDown = goDown -=> False

goDown, goUp, stop :: Event ()

goDown = arriveTop ‘whenE‘ pending

.|.

eitherButton ‘whenE‘ waitingTop

goUp = arriveBottom ‘whenE‘ pending

.|.

eitherButton ‘whenE‘ waitingBottom

stop = (arriveTop .|. arriveBottom) ‘whenE‘ notB pending

References

Cameron, H., King, P. and Thompson, S. (1999) Modelling Reactive Multimedia: Events and

Behaviours. http://www.cs.ukc.ac.uk/people/staff/sjt/Fran.

Elliott, C. (1997) Composing Reactive Animations. Available:

http://www.research.microsoft.com/twidconal/fran.

Elliott, C. (1998) Functional implementations of continuous modeled animation. Proc. Joint

Conference PLILP/ALP. Springer-Verlag.

Elliott, C. (1999) An embedded modelling language approach to interactive 3D and multime-

dia animation. IEEE Trans. Softw. Eng., 25.

Elliott, C. and Hudak, P. (1997) Functional Reactive Animation. Proc. ACM SIGPLAN

International Conference on Functional Programming ICFP97. ACM Press.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

268 S. Thompson

Elliott, C. et al. (1994) TBAG: A high-level framework for interactive, animated 3D graphics

applications. Proc. SIGGRAPH ’94. ACM Press.

Emerson, E. A. (1990) Temporal and Modal Logic. In: van Leeuwen, J. (ed.), Handbook of

Theoretical Computer Science, Volume B: Formal Models and Semantics. Elsevier/MIT Press.

ETL (1998) Challenges for Executable Temporal Logics. Further details:

http://www.cs.waikato.ac.nz/twiddsmith/CHALLENGES/.

Glasgow Haskell Compiler (1998) The Glasgow Haskell Compiler. Available:

http://www.dcs.glasgow.ac.uk/fp/software/ghc/.

Henderson, P. (1982) Functional Geometry. Proc. ACM Symposium on LISP and Functional

Programming. ACM Press.

Hudak, P. et al. (1996) Haskore music notation – An algebra of music. J. Functional Pro-

gramming, 6.

Hughes, J. and Peyton Jones, S. (eds.) (1999) Report on the Programming Language Haskell

98. http://www.haskell.org/report/.

Hugs98. (1999) The Hugs 98 System. http://www.haskell.org/hugs/.

Peterson, J., Elliott, C. and Ling, G. S. (1997) Fran Users’ Manual. Available:

http://www.haskell.org/fran.

Thompson, S. (1990) Interactive functional programs: a method and a formal semantics.

In: Turner, D. A. (ed), Research Topics in Functional Programming, pp. 249–285. Addison-

Wesley.

Thompson, S. (1999) Verifying Fran Programs. Available:

http://www.cs.ukc.ac.uk/people/staff/sjt/Fran.

Wadler, P. (1995) Monads for functional programming. In: Jeuring, J. and Meijer, E. (eds.),

Advanced Functional Programming: Lecture Notes in Computer Science 925. Springer-Verlag.

Zhou Chaochen (1994) Duration Calculi: An Overview. In: Bjørner, D. et al. (eds.), Formal

Methods in Programming and their Applications: Lecture Notes in Computer Science 735.

Springer-Verlag.

https://doi.org/10.1017/S0956796800003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003671

