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We discuss several versions of the Family Signature Theorem: in rational
cohomology using ideas of Meyer, in KO[ 1

2
]-theory using ideas of Sullivan, and

finally in symmetric L-theory using ideas of Ranicki. Employing recent developments
in Grothendieck–Witt theory, we give a quite complete analysis of the resulting
invariants. As an application we prove that the signature is multiplicative modulo 4
for fibrations of oriented Poincaré complexes, generalizing a result of Hambleton,
Korzeniewski and Ranicki, and discuss the multiplicativity of the de Rham invariant.
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1. Introduction

For an oriented family of manifolds π : E → B, a family signature theorem is an
equation between two classes in the (generalized) cohomology of B. The first should
be local in the total space E, and arise as the image under a fibre-integration map
of a class on E which is locally defined. The second should depend only on the local
coefficient system on B given by the middle cohomology of the fibres, equipped
with its intersection (or linking) form. When the fibres have dimension 4k and B
is a point, it should reduce to Hirzebruch’s signature theorem.

We will discuss several implementations of this idea, in increasing levels of sophis-
tication: firstly in rational cohomology, then in real K-theory localized away from
2, and finally in symmetric L-theory of the integers. Our main contribution is to
do so in what we feel is the correct generality, by interpreting ‘family of manifolds’
to mean ‘topological block bundle’, i.e. block bundles with topological manifold
fibres. Under more restrictive conditions the results are (well) known: for smooth
fibre bundles the rational cohomology statement is due to Atiyah [4, eq. (4.3)],
and for PL fibre bundles the L-theory statement was given by Lück and Ranicki
[34, p. 184] and its proof outlined. As the statement for smooth block bundles in
rational cohomology has seen some recent use [13], and the author will soon need
the statement for topological fibre bundles in L-theory [18], it seems appropriate
to give a detailed stand-alone account.

The highlights are: the three forms of the Family Signature Theorem (theorems
2.6, 3.1, 4.1); triviality of the family signature for families of odd-dimensional
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manifolds (corollary 5.3); multiplicativity of the signature modulo 4 for local
systems over topological manifolds (corollary 2.3) and for fibrations of Poincaré
complexes (corollary 6.4); an analysis of the (non)multiplicativity of the de Rham
invariant (§ 6.3).

2. Meyer

We first give an exposition of the work of Meyer [35], and use it to prove a form of
the family signature theorem for topological block bundles in rational cohomology.
We also use it to prove the multiplicativity of the signature modulo 4 for local
systems of (−1)n-symmetric forms over a topological manifold.

2.1. Twisted signatures

Suppose that n ∈ N, HR is a real vector space and λ : HR ⊗HR → R is a (−1)n-
symmetric bilinear form which is nondegenerate, i.e. such that the adjoint map
λad : HR → HomR(HR, R) is an isomorphism. Let Aut(HR, λ) � GL(HR) denote
the subgroup of those automorphisms of HR which preserve the form λ, considered
as a discrete group. There is a corresponding flat vector bundle, or local coefficient
system, HR → BAut(HR, λ), equipped with a nondegenerate (−1)n-symmetric
fibrewise bilinear form.

If M4k−2n is an oriented closed manifold and f : M → BAut(HR, λ) is a map,
then the bilinear form

H2k−n(M ; f∗HR)⊗H2k−n(M ; f∗HR) �−→ H4k−2n(M ; f∗(HR ⊗HR))

λ−→ H4k−2n(M ; R)
∫

M−→ R,

is symmetric because the cup product and λ are either both symmetric or both
antisymmetric. We may therefore take its signature

σ(M ; f) := σ(H2k−n(M ; f∗HR)) ∈ Z,

and Meyer proves that this depends only on the oriented cobordism class of the
map f : M4k−2n → BAut(HR, λ). This is the twisted signature of (M ; f).

2.2. Meyer’s formula for twisted signatures

Given the flat vector bundle HR → BAut(HR, λ) and the nondegenerate (−1)n-
symmetric fibrewise bilinear form induced by λ, we may choose a Riemannian
metric 〈−, −〉 on this bundle and hence define a fibrewise operator A by λ(x, y) =
〈x, Ay〉 satisfying A∗ = (−1)nA, and use this to form a complex K-theory class
ξ ∈ K0(BAut(HR, λ)) as follows (see [35, §1], [2, pp. 478-9]):

(i) If n is even then A is self-adjoint and its positive and negative eigenspaces
give a decomposition H+

R ⊕H−
R of HR, and we set

ξ := (H+
R−H−

R )⊗ C ∈ K0(BAut(HR, λ)).
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(ii) If n is odd then A is skew-adjoint and J := A/
√
AA∗, formed using the pos-

itive square root of AA∗, determines a complex structure on HR, and we
set

ξ := HR −HR ∈ K0(BAut(HR, λ)),

where HR denotes the complex conjugate bundle.

As the Riemannian metric is not adapted to the flat structure of HR, these virtual
vector bundles need not be flat and can have interesting Chern classes. For f : M →
BAut(HR, λ) with M an oriented smooth manifold Meyer establishes the following
formula

σ(M ; f) =
∫
M

ch(ψ2(f∗ξ)) · L(TM), (2.1)

by applying the index theorem to the signature operator of M twisted in a cer-
tain way by the bundle f∗HR, using its nondegenerate (−1)n-symmetric fibrewise
bilinear form. Here ch denotes the Chern character, ψ2 denotes the second Adams
operation, and L denotes the Hirzebruch L-class.

Remark 2.1. For later use, we observe that the complex K-theory classes ξ have
refinements to real K-theory classes ξR. Namely

(i) If n is even then ξ is visibly the complexification of

ξR := H+
R−H−

R∈KO0(BAut(HR, λ)).

(ii) If n is odd then writing c : KOi(−)→ Ki(−) and r : Ki(−)→ KOi(−) for
the complexification and realification maps, and b ∈ K−2(∗) for the Bott class,
we have b · ξ = c(r(b · HR)), so b · ξ is the complexification of

ξR := r(b · HR) ∈ KO−2(BAut(HR, λ)).

2.3. Divisibility and multiplicativity of the signature

It does not seem to be well-known that the discussion so far can be used to
establish multiplicativity of the signature modulo 4, for example recovering and in
fact strengthening the main theorem of [19]. Although this is not our main goal, we
take a brief excursion in this and the following subsection to explain how. Related
ideas will arise in § 5.3 where we investigate the delicate 2-local structure of the
L-theoretic family signature theorem.

Lemma 2.2. The identity (2.1) holds even if M is an oriented topological manifold.

Proof. Interpreting L(TM) as the topological Hirzebruch L-class the two sides
define homomorphisms MSTop4k−2n(BAut(HR, λ))→ Q, which are equal when
precomposed with MSO4k−2n(BAut(HR, λ))→MSTop4k−2n(BAut(HR, λ)). But
the latter map is an isomorphism after rationalizing, as BSO → BSTop is a rational
equivalence, by [28, p. 246 eq. (5)] and the finiteness of the groups Θn of homotopy
n-spheres for n � 5. �
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Corollary 2.3. If (HR, λ) is a nondegenerate (−1)n-symmetric bilinear form and
f : M4k−2n → BAut(HR, λ) is a map from an oriented topological manifold, then

σ(M ; f) ≡ σ(M) · σ(HR, λ) mod 4.

Proof. We rely on the formula (2.1), which holds in this situation by the previous
lemma. If the manifold M is smooth the the polynomials exhibiting Li(TM) in
terms of the integral cohomology classes pj(TM) are defined over the 2-local integers
Z(2), as the coefficients of the power series x/tanh(x) lie in this ring1 , and so we have
refinements Li(TM) ∈ H4i(M ; Z(2)). If M is a topological manifold then we cannot
make this argument, but its conclusion is nonetheless true by work of Morgan and
Sullivan [37] (see section 7, and the remark at the end of that section). As the
classes Li(TM) are 2-integral, and as ch0(ψ2(f∗ξ)) = f∗ch0(ξ) = σ(HR, λ) if n is
even, to conclude the argument it suffices to show that chi(ψ2(ξ)) are 2-integral
and 2-integrally divisible by 4 for all i > 0.

For any complex vector bundle V we have

chi(ψ2(V )) = 2ichi(V ) = 2i

i! p̄i(c1(V ), c2(V ), . . . , ci(V ))

where p̄i is the polynomial over Z expressing the power sum polynomial ti1 + ti2 +
ti3 + · · · in terms of elementary symmetric polynomials. By Legendre’s formula 2i

i!
is 2-integral and 2-integrally divisible by 2. There are now cases depending on the
parity of n. If n is odd then chi(ξ) = chi(HR −HR) = (1− (−1)i)chi(HR) which
vanishes for i even and is 2chi(HR) for i odd. As chi(HR) is 2-integrally divisible
by 2 by the previous paragraph, this finishes the argument in this case.

If n is even then 2ci(ξ) = 0 for i odd, as ξ is the complexification of a real
vector bundle. This implies that 2p̄i(c1(ξ), c2(ξ), . . . , ci(ξ)) is zero for i odd, as
then each monomial much contain some odd Chern class, and we will now show
that 2p̄2i(c1(ξ), c2(ξ), . . . , c2i(ξ)) is 2-integrally divisible by 4. Writing 2i = 2r · s
with r � 1 and s odd, we have

t2i1 + t2i2 + t2i3 + · · · ≡ (ts1 + ts2 + ts3 + · · · )2r

mod 2

and so 2p̄2i(c1(ξ), c2(ξ), . . . , c2i(ξ)) ≡ 2p̄s(c1(ξ), c2(ξ), . . . , c2i(ξ))2
r

mod 4. But
as s is odd the right-hand side vanishes by the case discussed above, which finishes
the argument in this case. �

2.4. Signatures of fibrations of Poincaré complexes

We consider Poincaré complexes in the sense of Wall [52], i.e. finitely-dominated
CW-complexes enjoying Poincaré duality with respect to a twisted integral funda-
mental class and all systems of local coefficients. Suppose that F d → E → B4k−d

is a fibration of finitely-dominated spaces with Poincaré base and fibre (and hence

1This may be seen as follows. We have x/tanh(x) = 1 +
∑∞

i=1
22iBi
(2i)!

x2i for Bernoulli numbers

Bi defined by x
ex−1

= 1 − 1
2
x +

∑∞
i=1

Bi
(2i)!

x2i. By the von Staudt–Clausen theorem each Bi has

2-adic valuation exactly −1, and by Legendre’s theorem (2i)! has 2-adic valuation � 2i − 1: thus
22iBi
(2i)!

has 2-adic valuation � 2i + (−1) − (2i − 1) = 0, so it is a 2-local integer.
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Poincaré total space too [25, Corollary F], [17]), which is oriented in the sense
that B is oriented, F is orientable, and the local coefficient system Hd(F ; Z) is
trivialized: this induces an orientation of E. Let

Ep,q2 = Hp(B;Hq(F ; R)) =⇒ Hp+q(E; R)

denote the Serre spectral sequence for this fibration. If d = 2n then there is a map

φ : B −→ BAut(Hn(F ; R), λ)

given by the action of the fundamental groupoid of B on the middle cohomology of
the fibres, which preserves the (−1)n-symmetric form λ given by cup product. The
definition of the twisted signature above did not really use that M is a manifold,
only that it has Poincaré duality with all systems of local coefficients: thus we can
define σ(B;φ) in the same way. Meyer shows that there is an identity

σ(E) =

{
σ(B;φ) if d = 2n
0 if d is odd.

(2.2)

Remark 2.4. Combining (2.2) with corollary 2.3 shows that σ(E) ≡ σ(B) · σ(F )
mod 4 as long as B is homotopy equivalent to a topological manifold, generalizing
the main theorem of [19]. This result also follows from Korzeniewski’s thesis [27,
theorem 7.2], which allows the base to be a finite Poincaré complex having trivial
Whitehead torsion (and a topological manifold is an example of this). We will give
a further strengthening of this result as corollary 6.4, which allows B to be an
arbitrary Poincaré complex.

Meyer proves (2.2) in two steps: Firstly σ(E) is related to the signature of E∗,∗
2

taken with respect to the form

E∗,∗
2 ⊗ E∗,∗

2
�−→ E∗,∗

2 −→ R[4k − d, d],

where the latter map denotes the projection to E4k−d,d
2 = H4k−d(B;Hd(F ; R)) =

R. This is done by (i) showing that the signature is unchanged by passing from
one page of the spectral sequence to the next, so is the same as the signature
of E∗,∗

∞ with the analogous form (this is [35, Satz I.1.4]), (ii) observing that the
signature of E∗,∗

∞ is identified with σ(E), as signatures are unchanged under passing
to associated grades. Secondly, by recognizing L :=

⊕
q>d/2E

∗,q
2 as a sublagrangian

of E∗,∗
2 with L⊥ =

⊕
q�d/2E

∗,q
2 , this signature is the same as that of the induced

form on L⊥/L, which is trivial if d is odd and is the form described above on
H2k−d/2(B;Hd/2(F ; R)) if d is even.

Remark 2.5. Meyer assumes various additional hypotheses, most notably that B
and F are homology manifolds. This is because he wishes to allow (non locally con-
stant) sheaf coefficients. For locally constant coefficients being Poincaré complexes
suffices for his argument to go through.

O. Randal-Williams2028
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2.5. The family signature theorem over Q

We may rationalize the twisted signature map σ : Ωfr
∗ (BAut(HR, λ))→ Z on

framed bordism, then use that rational framed bordism is naturally isomorphic
to rational homology, and that rational cohomology is dual to rational homology,
to define rational cohomology classes

σ4k−2n ∈ H4k−2n(BAut(HR, λ); Q).

In other words, if f : W 4k−2n → BAut(HR, λ) is a map from a stably framed man-
ifold, then σ(W ; f) =

∫
W
f∗σ4k−2n. It follows from (2.1), applied to all maps f :

W 4k−2n → BAut(HR, λ) from stably framed manifolds (which have L(TW ) = 1),
that

σ4k−2n = ch2k−n(ψ2(ξ)) = 22k−nch2k−n(ξ). (2.3)

The family signature theorem—in the generality we wish to discuss it in this
note—concerns oriented topological block bundles π : E → |K| with d-dimensional
fibres, as described in [20, section 2.3]. There the base |K| is taken to be the realiza-
tion of a simplicial complex, but one can equally well take it to be the realization of
a semi-simplicial set. This notion then includes the universal block bundle described
in [20, definition 2.3.1] and the proceeding discussion. In [20, section 2.4] it is shown
that there is an associated stable vertical tangent microbundle, given by a map

T sπE : E −→ BTop,

and we write Lk(T sπE) for the pullback of the kth Hirzebruch L-class along this map.
An oriented block bundle also has an associated fibre-integration, or Gysin, map∫
π

: H∗(E)→ H∗−d(|K|) as discussed in [20, section 4.1], and the family signature
theorem is then as follows.

Theorem 2.6 (Family signature theorem over Q). Let π : E → |K| be an oriented
topological block bundle with fibre F d. If d = 2n let φ : |K| → BAut(Hn(F ; R), λ)
classify the local coefficient system Hn(F ; R) over |K| with the (−1)n-symmetric
fibrewise bilinear form given by cup product. Then∫
π

Lk(T sπE) =

{
φ∗(σ4k−d) if d is even
0 if d is odd

=

{
22k−d/2ch2k−d/2(φ∗(ξ)) if d is even
0 if d is odd.

Proof. As rational cohomology is dual to rational framed bordism, by naturality it is
enough to consider the case where |K| = B4k−d is a stably framed smooth manifold
of dimension 4k − d, where the cohomology classes in question are top-dimensional
and are hence determined by their integrals over B.

As B is a stably framed smooth manifold then by [20, lemma 2.5.2] E is a
topological manifold and its stable tangent microbundle satisfies

TE ∼=s π
∗(TB)⊕ T sπE ∼=s R2k−d ⊕ T sπE

so Lk(T sπE) = Lk(TE) by multiplicativity of the total L-class, and hence∫
B

∫
π

Lk(T sπE) =
∫
E

Lk(TE) = σ(E)
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by the defining property of the (topological) Hirzebruch L-classes. A block bundle
determines a fibration with homotopy equivalent fibre, total space, and base, so
by (2.2) we have σ(E) = 0 if d is odd and σ(E) = σ(B;φ) if d is even. To obtain
the first identity observe that as B is stably framed the definition of σ4k−d gives
σ(B;φ) =

∫
B
φ∗(σ4k−d). The second identity then follows from (2.3). �

3. Sullivan

We now explain how Meyer’s work can be combined with ideas of Sullivan [50] to
obtain a Z[12 ]-integral form of the family signature theorem, formulated not in ordi-
nary cohomology but in the generalized cohomology theory KO[12 ], real K-theory
localized away from 2. Useful later references for these ideas are [37] (especially
section 1) and [36] (especially chapter 4.B).

3.1. Cobordism, coefficients and K-theory

Coefficients in an abelian group A can be introduced into the generalized homol-
ogy theory represented by a spectrum E by the device of smashing with the Moore
spectrum MA, i.e. setting E∗(−;A) := E∗(MA ∧ −) = π∗(E ∧MA ∧ −). There is
a corresponding cohomology theory, represented by E ∧MA. When A is a local-
ization of Z, i.e. a subring of Q, the construction of MA as a mapping telescope
shows that E∗(−;A) = E∗(−)⊗Z A, and similarly for the cohomology theory on
finite complexes (but not in general).

Write KO[12 ] := KO ∧MZ[ 12 ] for the spectrum representing real K-theory local-
ized away from 2, with homotopy ring π∗(KO[12 ]) = π∗(KO)⊗ Z[12 ] = Z[ 12 ][a±1],
for a the class of degree 4 which under the complexification map is sent to b2 with
b ∈ π2(K[12 ]) the Bott class. There is an orientation ([50, p. 201])

Δ : MSO −→ KO[12 ]

whose Pontrjagin character satisfies ph(Δ) = L−1 · u ∈ H∗(MSO; Q), where u is the
cohomological Thom class and L ∈ H∗(BSO; Q) is the total Hirzebruch L-class.
These conventions are arranged so that on homotopy groups the map

Δ∗ : MSO∗ −→ KO[12 ]∗ = Z[12 ][a±1]

is given by Δ∗([M4k]) = σ(M) · ak. Sullivan shows, using the results of Conner–
Floyd, that the induced map MSO∗(−)⊗MSO∗ Z[12 ][a±1]→ KO[12 ]∗(−) is an
isomorphism of generalized homology theories. This can also be deduced from
Landweber’s exact functor theorem [29, example 3.4]. Using the way we have
introduced coefficients, and re-writing slightly, it follows that there is an
isomorphism

MSO4∗(−;A)⊗MSO4∗ Z[12 ] ∼−→ KO0(−;A⊗ Z[12 ]) (3.1)

for any A.
Sullivan applies this to show that for X a finite complex, the data of a class

Φ ∈ KO0(X; Z[12 ]) is equivalent to the data of morphisms φQ and φk for each odd

O. Randal-Williams2030
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k such that

commutes, the φk are compatible under divisibility, and such that φQ and φk satisfy

φ(W 4m ×M4n πW→ W
f→ X) = φ(W 4m f→ X) · σ(M4n) (3.2)

for all [W, f ] ∈MSO4∗(X). Here one thinks of Q/Z as given by colimall k Z/k.
A Φ determines such maps φ by applying (3.1) and then evaluating the resulting
KO[12 ]-homology class on Φ. By replacing X by its suspensions, we get a similar
description of elements of KOd(X; Z[12 ]).

3.2. Signatures of Z/k-manifolds

Oriented cobordism with Z/k-coefficients, MSOn(X; Z/k), has an interpreta-
tion as cobordism classes of smooth n-dimensional singular Z/k-manifolds over X
[37, §1]. An oriented Z/k-manifold is the data of a compact oriented n-manifold
W , a closed oriented (n− 1)-manifold βW and an oriented identification b : ∂W ∼→
βW × Z/k. We then write W for the space obtained by identifying the k copies
of βW , and call W its resolution. This may be done in the category of smooth,
PL or topological manfolds. In the smooth case the data (W, βW, b, f : W → X)
represents a class in MSOn(X; Z/k). The notion of cobordism of Z/k-manifolds,
and of maps out of them, is evident.

A 4n-dimensional oriented manifold with boundary (V, ∂V ) still has a signa-
ture σ(V ) ∈ Z defined algebraically as the signature of the (possibly degenerate)
symmetric form

H2n(V, ∂V ; R)⊗H2n(V, ∂V ; R) −→ H4n(V, ∂V ; R)
−�[V,∂V ]−→ R.

The invariant σ(W ) := σ(W ) mod k of a Z/k-manifold W is a cobordism invariant
[37, proposition 1.3], as a consequence of Novikov’s additivity theorem for the
signature and the usual cobordism invariance of the signature.

3.3. The Sullivan orientation

Let MSPLn be the nth space in the oriented PL cobordism spectrum, i.e.
the Thom space of the universal bundle over BSPL(n). Then by PL transver-
sality, MSOn+4i(MSPLn) may be interpreted as cobordism classes of pairs
(M4i+n ⊃W 4i) of an oriented smooth manifold and an oriented PL-submanifold,
and assigning to this the signature σ(W 4i) gives a map

φQ : MSO4∗(MSPL; Q) = colim
n→∞ MSOn+4∗(MSPLn; Q) −→ Q.

The MSO∗-module structure is given by [X] · [M4i+n ⊂W 4i] = [X ×M4i+n ⊂
X ×W 4i], so φQ satisfies (3.2). Similarly, MSOn+4i(MSPLn; Z/k) may be inter-
preted as cobordism classes of pairs (M4i+n ⊃W 4i) of a smooth Z/k-manifold and
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a PL Z/k-submanifold, and assigning to this the signature σ(W 4i) as defined above
gives a map

φk : MSO4∗(MSPL; Z/k) = colim
n→∞ MSOn+4∗(MSPLn; Z/k) −→ Z/k.

These maps are compatible, and determine a homotopy class of maps of spectra

ΔPL : MSPL −→ KO[12 ]

(a priori only well-defined up to phantom maps, as MSPL is not finite, but in
fact unique [36, §5.D]). By the same discussion with MSPL replaced by MSO,
ΔPL restricts to Δ. Furthermore, as the fibre of BPL→ BTop is a K(Z/2, 3)
[28, p. 246], it follows that the fibre of MSPL→ MSTop is 2-local, and so ΔPL

canonically extends to a ΔTop : MSTop→ KO[12 ]. (Alternatively one can repeat
the construction using topological transversality, but we can avoid this for now.)

3.4. Twisted signatures

Returning to a nondegenerate (−1)n-symmetric bilinear form (HR, λ), if f :
W 4i−2n → BAut(HR, λ) is a map from a smooth Z/k-manifold then there is an
associated symmetric bilinear form

H2i−n(W,∂W ; f∗HR)⊗H2i−n(W,∂W ; f∗HR) −→ R

given by cup product, applying λ, then capping with the fundamental class, whose
signature we call σ(W ; f). This number taken modulo k is again Z/k-cobordism
invariant, replacing Novikov additivity and cobordism invariance of the signature
with the analogues [35, Sätze I.3.1, I.3.2] for twisted signatures proved by Meyer.
The assignment [W, f ] �→ σ(W ; f) defines a map

signk : MSO4i−2n(BAut(HR, λ); Z/k) −→ Z/k,

and these are easily checked to be compatible with each other under divisibility,
and compatible with the analogue signQ = σ : MSO4i−2n(BAut(HR, λ))→ Z for
closed manifolds.

Furthermore, if N4j is a smooth oriented closed manifold then we can form the
map W ×N πW→ W

f→ BAut(HR, λ). By the Künneth theorem we have

H2j+2i−n(W ×N, ∂W ×N ; π∗
W f∗HR) ∼=

⊕
a+b=2j+2i−n

Ha(W, ∂W ; f∗HR)⊗Hb(N ; R),

and the sum L of those terms with b > 2j is a sublagrangian with L⊥ given by the
sum of those terms with b � 2j along with the radical, and so with

L⊥/L ∼= H2i−n(W,∂W ; f∗HR)⊗H2j(N ; R) + radical.

We therefore have σ(W ×N ; f ◦ πW ) = σ(W ; f) · σ(N). Similarly for closed mani-
folds.

By the discussion in § 3.1, this data corresponds to a map

sign : BAut(HR, λ) −→ Ω∞+2nKO[12 ],

well-defined up to homotopy and phantom maps.
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3.5. The family signature theorem over KO[1
2
]

As we have already mentioned in § 2.5, a topological block bundle π : E → |K|
with d-dimensional fibres has a stable vertical tangent microbundle T sπE of vir-
tual dimension d, and so a stable vertical normal microbundlebundle νπ of virtual
dimension −d, given by [20, section 2.4]. If the block bundle is oriented, then
these two microbundles obtain orientations. Using the constructions in that section2

there is a Pontrjagin–Thom, or Gysin, map π! : |K| → Ω∞Th(νπ → E) and hence,
Thomifying the map E → BSTop classifying νπ, a map

α : |K| π!−→ Ω∞Th(νπ → E) −→ Ω∞+dMSTop.

Theorem 3.1 (Family signature theorem over KO[12 ]). Let π : E → |K| be
an oriented topological block bundle with fibre F d. If d = 2n let φ : |K| →
BAut(Hn(F ; R), λ) classify the local coefficient system Hn(F ; R) over |K| with
the (−1)n-symmetric bilinear form given by cup product. Then the square

commutes up to homotopy and phantom maps.

Proof. The two ways around the square give two elements of KOd(|K|; Z[ 12 ]), which
we must compare. By the discussion in § 3.1 each of these corresponds to compat-
ible maps MSO4i−d(|K|)→ Z[ 12 ] and MSO4i−d(|K|; Z/k)→ Z/k, and so we shall
compare these.

That the maps MSO4i−d(|K|)→ Z[ 12 ] obtained by going the two ways around
the square agree follows from theorem 2.6 (it is the same as saying that the square
commutes after rationalizing Ω∞+dKO[12 ], whereupon the top composition is the
collection of the

∫
π
Li(T sπE) and the bottom composition is the collection of the

φ∗σ4i−d), so it remains to compare the two maps MSO4i−d(|K|; Z/k)→ Z/k.
Let f : W 4i−d → |K| be a map from a Z/k-manifold; we may homotope it to be

simplicial with respect to some triangulation ofW , giving a topological block bundle
f∗E →W , whose total space f∗E is a topological Z/k-manifold. We would like to
say that the top composition Ω∞+dΔTop ◦ α assigns to (W, f) the signature σ(f∗E)
of the topological Z/k-manifold f∗E, which we have defined to be the signature of
the (possibly degenerate) intersection form on the resolution f∗E , taken modulo k.
This is true, but as the map ΔTop was obtained by obstruction theory from the more

2Specifically, the discussion there shows that we may find an exhaustion |K|0 ⊂ |K|1 ⊂ |K|2 ⊂
· · · of |K|, embeddings E||K|n ⊂ |K|n × Rn, open neighbourhoods Un of these with homeo-

morphisms Un ∼= νn−d to Rn−d-bundles. Then there are collapse maps |K|n+ ∧ Sn → (Un)+ ∼=
Th(νn−d → E||K|n ) with adjoints |K|n → ΩnTh(νn−d → E||K|n ). Furthermore, the discussion
shows that all this data can be chosen compatibly in n, so these maps assemble to the required
Gysin map.
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meaningful map ΔPL : MSPL→ KO[12 ], it requires a small argument. Namely, as
MSPL→ MSTop is a Z[12 ]-equivalence there is an N � 1 such that the element
2Nα∗(W, f) lifts to Ω∞+dMSPL. In other words, the disjoint union of 2N copies of
the topological Z/k-manifold f∗E is topologically cobordant to a PL Z/k-manifold
E′, and ΔTop assigns to this σ(E′) = 2Nσ(f∗E): as we work with 2 inverted, ΔTop

assigns σ(f∗E) to α∗(W, f). (If ΔTop is defined using topological transversality
then we can of course omit this step.)

The block bundle f∗E →W has a relative Serre spectral sequence

Ep,q2 = Hp(W,∂W ;Hq(F ; R)) =⇒ Hp+q(f∗E, ∂f∗E; R).

In parallel to the discussion in § 2.4, by [35, Satz I.1.5] the signature of the form
on E∗,∗

2 is the same as that of E∗,∗
∞ , and the latter is the same as the signature of

f∗E. Furthermore L :=
⊕

q>(4i−d)/2E
∗,q
2 is again a sublagrangian of E∗,∗

2 , and as
in § 3.4 we have L⊥ =

⊕
q�(4i−d)/2E

∗,q
2 + radical and so

L⊥/L ∼= H(4i−d)/2(W,∂W ;Hd/2(F ; R)) + radical.

In particular, if d is odd then this is radical so has signature 0, and if d = 2n then
this has signature signk(W, φ). This is tautologically what the composition sign ◦ φ
assigns to (W, f) too, as required. �

3.6. A formula for twisted signatures

For applications we also want to know how to evaluate the map sign :
BAut(HR, λ)→ Ω∞+2nKO[12 ] in concrete terms: in other words, to have an
analogue of Meyer’s formula (2.1). Such an analogue is as follows, where ξ ∈
K0(BAut(HR, λ)) is the class constructed in § 2.2 which appears in Meyer’s
formula.

Theorem 3.2. The square

commutes up to homotopy and phantom maps.

Proof. We first argue that the map sign factors canonically (up to phantom
maps) as

sign : BAut(HR, λ) −→ BAut(HR, λ)top
sign′
−→ Ω∞+2nKO[12 ],

through the classifying space of the topologized variant

Aut(HR, λ)top ∼=
{
Sp2g(R) � U(g) n odd
Op,q(R) � O(p)×O(q) n even.
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This is certainly necessary, since the lower composition factors over this space, by
replacing ξ by the construction of § 2.2 applied to the non-flat universal bundle HR

over BAut(HR, λ)top.
The map signQ can be interpreted as assigning to a manifold W 4i−2n and a

flat vector bundle V := f∗HR →W with a nondegenerate (−1)n-symmetric bilin-
ear form the index of the operator constructed by Meyer in the proof of [35,
Satz II.4.1], but the definition of this operator does not require V to be flat so
signQ factors through a sign′

Q : MSO4i−2n(BAut(HR, λ)top)→ Z. Similarly, mak-
ing use of index theory for Z/k-manifolds (as in [14], see also [46]) we recognize
signk(W ; f) as the index of the signature operator on the manifold with bound-
ary W twisted, in the same way as by Meyer, by the flat vector bundle f∗HR

with its (−1)n-symmetric structure. This operator is considered with the same
Atiyah–Patodi–Singer boundary conditions on each of the k copies of βW forming
its boundary, and having done so its index is well-defined modulo k. As above,
forming this index does not use the flatness of the vector bundle, so signk fac-
tors through a sign′

k : MSO4i−2n(BAut(HR, λ)top; Z/k)→ Z/k, in total giving the
claimed factorization.

Claim. Maps {
BU(g) n odd
BO(p)×BO(q) n even

−→ Ω∞+2nKO[12 ]

are determined by their rationalizations, i.e. by their Pontrjagin character.

Proof of claim. This may be deduced from the Atiyah–Segal completion theorem as
follows (see [36, theorem 4.29] for a similar argument). We first reduce to the same
statement for K[12 ] and the Chern character, as KO[12 ] is a retract of K[12 ], and then
by Bott periodicity we can remove the Ω2n. Writing G for U(g) or O(p)×O(q),
R(G) for its complex representation ring, I(G) for the augmentation ideal, and
BG(n) for a n-skeleton of BG, by [3, theorem 2.1] the maps

R(G)/I(G)n −→ K0(BG(n))

induce an isomorphism of pro-rings, and K−1(BG(n)) is pro-zero (and hence
Mittag–Leffler). Using Milnor’s lim1-sequence in K[ 12 ]-theory we therefore have

K0(BG; Z[12 ]) ∼= lim
n
K0(BG(n); Z[12 ]) ∼= lim

n
R(G)⊗ Z[12 ]/(I(G)⊗ Z[ 12 ])n.

The claim now follows by direct calculation with a presentation of the representation
rings involved (the fact that O(p)×O(q) is not connected is ameliorated by our
working with 2 inverted). �

By the index theorem applied to Meyer’s signature operator twisted by a non-
necessarily flat vector bundle with a nondegenerate (−1)n-symmetric bilinear form,
we have ph(sign′) = ch(ψ2(ξ)). At this point we invoke the real forms of ξ discussed
in remark 2.1: if n is even then ξ = c(ξR) and if n is odd then ξ = b−1 · c(ξR).
In either case we have bnξ = c(a�n/2	 · ξR) and so using that ψ2(b) = 2b and that
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Adams operations commute with complexification and realification [23, proposition
IV.7.40] we have

ph(r(bnψ2ξ)) = 2−nph(ψ2r(bnξ))

= 2−nch(c(ψ2r(c(a�n/2	 · ξR))))

= 2 · 2−nch(c(ψ2(a�n/2	 · ξR)))

= 2 · 2−nch(ψ2(b2�n/2	c(ξR)))

= 2 · 2−nch(ψ2(bnξ))

= 2ch(bnψ2(ξ))

= 2ch(ψ2(ξ))

and so ch(ψ2(ξ)) = ph(1
2r(b

nψ2ξ)). Thus ph(sign′) = ph(1
2r(b

nψ2ξ)) and so sign′ �
1
2r(b

nψ2ξ). �

4. Ranicki

We now explain the strongest formulation of the family signature theorem for topo-
logical block bundles, as an equation in the generalized cohomology theory given
by the symmetric L-theory of the integers, using Ranicki’s ideas on L-theory and
algebraic surgery (a vast literature, but in particular [45]). Ranicki’s work in this
direction was visionary, but his specific technical implementation is not ideal for
our purposes (see remark 4.9). Instead, we will use the recent framework of Calmès,
Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle [10–12].

4.1. The family signature theorem over Ls(Z)

Let π : E → |K| be an oriented topological block bundle with fibre F d. If d = 2n
thenHn(F ; Z)/tors is equipped with its intersection form λ, which is nondegenerate
and (−1)n-symmetric, and the monodromy of this family gives a map

φ : |K| −→ BAut(Hn(F ; Z)/tors, λ).

If d = 2n+ 1 then torsHn+1(F ; Z) is equipped with its linking form �, which is
nondegenerate and (−1)n+1-symmetric, and the monodromy of this family gives a
map

φ : |K| −→ BAut(torsHn+1(F ; Z), �).

Writing Ls(Z) for the symmetric L-theory spectrum of the integers, and writing
σ : MSTop→ Ls(Z) for the Ranicki orientation (as in [42, proposition 15.8], [43,
p. 287], [45, proposition 16.1], [26, proposition 7.10], [32]; we will give our own
definition in § 4.6), our main result is as follows.
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Theorem 4.1 (Family signature theorem over Ls(Z)). Let π : E → |K| be an
oriented topological block bundle with fibre F d. Then the square

commutes up to homotopy.

The bottom map inc in this diagram arises from considering isomorphisms of
(linking) forms as being cobordisms. We will construct this map in § 4.7, and con-
struct the Ranicki orientation in § 4.6. Our proof of this theorem uses only formal
properties of symmetric L-theory. In § 5 we will explain how the result can be some-
what improved, and interpreted, using non-formal results about the homotopy type
of Ls(Z) and its relation with Grothendieck–Witt theory.

We will obtain theorem 4.1 as the combination of two results, each of which
holds for a class of families π : E → |K| more general than oriented topological
block bundles. Firstly, when π : E → |K| is a Poincaré mock bundle (defined in
§ 4.4) we will define a family signature map |K| → Ω∞+dLs(Z). Secondly, when π
is in fact a manifold mock bundle (defined in § 4.2) we shall explain why the family
signature map factors as Ω∞+dσ ◦ α : |K| → Ω∞+dMSTop→ Ω∞+dLs(Z). Thirdly,
when the Poincaré mock bundle π comes from a fibration with Poincaré fibre (and
in fact even something slightly more general) we will prove that the family signature
map factors as inc ◦ φ. Hence when all these conditions hold, such as for topological
block bundles, we obtain the conclusion of theorem 4.1.

4.2. Manifold mock bundles

We shall describe a model for Ω∞+dMSTop as the classifying space for (oriented,
topological, codimension −d) mock bundles in the sense of [8, §II]. The construction
is similar to the ‘ad theories’ of [32, 41], but we spell things out explicitly.

Write Δp−1
i ⊂ Δp for the (p− 1)-simplex spanned by all vertices except the ith,

and Δp
i (ε) := {(t0, t1, . . . , tp) ∈ Δp | 0 � ti < ε}, with the projection map

πi(ε) : Δp
i (ε) −→ Δp−1

i

(t0, t1, . . . , tp) �−→ ( t0
1−ti ,

t1
1−ti , . . . ,

ti−1
1−ti ,

ti+1
1−ti , . . . ,

tp
1−ti ).

The following is parallel to [20, definition 2.3.1].

Definition 4.2. For d ∈ Z, let Mock(d, n) be the semi-simplicial set with
p-simplices given by locally flat compact topological (d+ p)-dimensional oriented
submanifolds E ⊂ Δp × Rn such that for each i = 0, 1, . . . , p,

(i) E is topologically transverse to each Δp−1
i × Rn,
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(ii) there is an ε > 0 such that

E ∩ (Δp
i (ε)× Rn) = (πi(ε)× Rn)−1(E ∩ (Δp−1

i × Rn)),

(iii) ∂E = E ∩ (∂Δp × Rn).

Define face maps di : Mock(d, n)p → Mock(d, n)p−1 by restricting E to the
ith face Δp−1

i ⊂ Δp, and giving it the induced orientation. Let Mock(d) :=
colim
n→∞ Mock(d, n).

This semi-simplicial set is Kan, by the same discussion as the paragraph after
[20, definition 2.3.1]. The space |Mock(d)| carries a tautological family of manifolds.
Let

E(d)p := {(E; t0, t1, . . . , tp;x) ∈ Mock(d)p ×Δp × R∞ | (t0, t1, . . . , tp;x) ∈ E},
and π(d)p : E(d)p → Mock(d)p ×Δp denote the projection map. The maps π(d)p
assemble to a map

π(d) : E(d) −→ |Mock(d)|
where E(d) := (

⊔
p�0E(d)p)/ ∼ with

(E; t0, t1, . . . , ti−1, 0, ti+1, . . . tp;x) ∼ (di(E); t0, t1, . . . , ti−1, ti+1, . . . tp;x).

This family is tautological in the sense that π(d)−1({E} ×Δp) = {E} × E. If φ :
K → Mock(d) is a semi-simplicial map then we can form the pullback

φ∗π(d) : φ∗E(d) −→ |K|;
this is an (oriented, topological, codimension −d) mock bundle over |K|.

We wish to explain why the spaces |Mock(d)| arise as the dth spaces of an
Ω-spectrum.

Definition 4.3. Let Mock∂(d+ 1, n) have p-simplices given by a (d+ 1 + p)-
manifold Ed+1+p ⊂ Δp × Rn × [0, ∞) satisfying (i) and (ii) from definition 4.2 as
well as

(i’) E is topologically transverse to Δp × Rn × {0}, and writing ∂vE := E ∩Δp ×
{0} there is a δ > 0 such that E ∩ (Δp × Rn × [0, δ)) = ∂vE × [0, δ), and
∂E = (E ∩ (∂Δp × Rn+1)) ∪ ∂vE.

Let Mock∂(d+ 1) := colim
n→∞ Mock∂(d+ 1, n).

As above this semi-simplicial set is Kan, and carries a tautological family
E∂(d+ 1)→ |Mock∂(d+ 1)| of (d+ 1)-manifolds with boundary, whose boundaries
assemble into a family ∂vE∂(d+ 1)→ |Mock∂(d+ 1)| of d-manifolds. Intersecting
with Δp × Rn × {0} gives a semi-simplicial map

res : Mock∂(d+ 1) −→ Mock(d), (4.1)

which is a Kan fibration, and classifies the family ∂vE∂(d+ 1). The fibre of this
map over the empty manifold is isomorphic to Mock(d+ 1) (via a choice of home-
omorphism (0, ∞) ∼= R). One verifies that the connecting map ∂ : πi(Mock(d))→
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πi−1(Mock(d+ 1)) is an isomorphism, as both sides are identified with cobordism
classes of oriented topological (d+ i)-manifolds and this map corresponds to the
identity map. Thus there are equivalences

Ω|Mock(d)| ∼−→ |Mock(d+ 1)|
(and |Mock∂(d+ 1)| � ∗), and so an Ω-spectrum Mock with Ω∞+dMock �
|Mock(d)|.

4.3. Topological transversality

There is a variant Mock′(d, n) of Mock(d, n) in which simplices E ⊂ Δp × Rn

are equipped with a choice of tubular neighbourhood (i.e. a Rn−d-bundle over E
with a homeomorphism to an open neighbourhood of E, both compatible with the
collar structure given by (ii)) and the forgetful and Pontrjagin–Thom collapse maps
give a zig-zag

|Mock(d, n)| ←− |Mock′(d, n)| −→ ΩnTh(γn−d → BSTop(n− d)).
In the limit as n→∞ the leftwards map is an equivalence (by the stable existence
and uniqueness of normal microbundles [28, p. 204] and the Kister–Mazur theorem
[28, p. 159]), and the right-hand side is the space Ω∞+dMSTop, giving a homotopy
class of map

|Mock(d)| −→ Ω∞+dMSTop.

It follows from topological transversality ([28, p. 85], [16, §9.6]) that this map is
a homotopy equivalence. Furthermore this discussion identifies the spectrum Mock
with MSTop, by comparing the analogue of the map (4.1) for manifolds in Rn ×
[0, ∞) with the path-fibration over ΩnTh(γn−d → BSTop(n− d)).

4.4. Poincaré mock bundles

If τ is a simplex, E ⊂ τ × R∞ is a closed subset, and σ is a face of τ , write
Eσ := (σ × R∞) ∩E. Write E∂τ = ∪σ<τEσ, the union over all proper faces.

Definition 4.4. For d ∈ Z, let MockP (d) be the semi-simplicial set with p-simplices
given by pairs of a closed subset E ⊂ Δp × R∞ and a singular chain [Eσ] ∈
Cd+|σ|(Eσ; Z) for each face σ of Δp, such that

(i) each Eσ is homotopy equivalent to a finite CW-complex,

(ii) d[Eσ] =
∑|σ|
i=0(−1)i[Ediσ] ∈ Cd+|σ|−1(Eσ; Z), so that in particular [Eσ] is a

cycle in Cd+|σ|(Eσ, E∂σ; Z),

(iii) the maps

−�[Eσ] : H∗(Eσ; Z) −→ Hd+|σ|−∗(Eσ, E∂σ; Z)

−�d[Eσ] : H∗(E∂σ; Z) −→ Hd−1+|σ|−∗(E∂σ; Z)

are isomorphisms.
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Define face maps di : MockP (d)p → MockP (d)p−1 by restricting E to the ith face
Δp−1
i ⊂ Δp, and taking those [Eσ] with σ � Δp−1

i .

Remark 4.5. It is worth emphasizing that such E’s are not Poincaré complexes
(or -ads) in the sense of [53, Section 2]—and so in the sense we have used earlier in
this paper—as we are only asking for duality with Z-coefficients rather than with
all local coefficients. This is deliberate!

Similarly to the case of mock bundles, the semi-simplicial set MockP (d) is Kan
(the evident analogues of [52, lemma 1.2, theorem 2.1 Addendum] for duality
with Z-coefficients are used for verifying this) and the space |MockP (d)| carries
a tautological family, given by defining

EP (d)p := {(E; t0, t1, . . . , tp;x) ∈ MockP (d)p ×Δp × R∞ | (t0, t1, . . . , tp;x) ∈ E},

and letting π(d)p : EP (d)p → MockP (d)p ×Δp denote the projection maps, which
assemble to π(d) : EP (d) −→ |MockP (d)|. This tautological family can be pulled
back along a semi-simplicial map φ : K → MockP (d) to obtain a Poincaré mock
bundle over |K|.

Just as in the last section, one introduces the evident analogue MockP∂ (d+ 1)
(see the proof of lemma 4.8 below for a definition), to obtain equivalences
Ω|MockP (d)| ∼→ |MockP (d+ 1)| and so an associated Ω-spectrum MockP .

Remark 4.6. The spectrum MockP is equivalent to Levitt’s [31] Poincaré bordism
spectrum. In particular, there is a Pontrjagin–Thom map MockP → MSG but it
is not an equivalence (its fibre is the 0-connected cover of quadratic L-theory, cf.
[45, remark 19.9], explicated in [30, remark 2.3]). The comparison with Levitt’s
theory uses the fact that the present naive definition of Poincaré complexes still
have Spivak normal fibrations [7], which is Levitt’s definition of a Poincaré complex.

Compact oriented topological manifolds with boundary admit fundamental
chains with respect to which they have Poincaré–Lefschetz duality. We may choose
such chains by induction over the skeleta of Mock(d) as follows. For each 0-simplex
E ∈ Mock(d)0 we choose a fundamental cycle for the oriented d-manifold E. Sup-
posing such chains have been chosen for all simplices of Mock(d) of dimension < p,
then for each p-simplex E ∈ Mock(d)p we have a fundamental chain

p∑
i=0

(−1)i[Edi(Δp)] ∈ Cd+p−1(E; Z)

for E∂Δp , which is trivial in homology as this is the boundary of E so we can take
[E] ∈ Cd+p(E; Z) to be a chain with boundary the above, and which also restricts
to a fundamental cycle on any closed components of E. This gives (using also that
compact topological manifolds are homotopy equivalent to finite CW-complexes)
a map Mock(d) −→ MockP (d), unique up to homotopy because at each stage we
have chosen a top-dimensional chain of E which is unique up to a boundary. These
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maps assemble into a map of spectra

Mock −→ MockP

and hence give a map MSTop→ MockP .

4.5. Categorical preliminaries

In subsections 4.5–4.8 we will make extensive use of the definitions and construc-
tions of [10–12]. We will give references for all results that we use, but the reader
will need to be familiar with the general set-up of those papers, which we will not
review.

For a semi-simplicial set K, we will often work in the stable ∞-category

C := Fun(Simp(K)op,Dp(Z))

of functors from the (opposite of the) poset of simplices of K to the derived
∞-category Dp(Z) of perfect Z-modules. On Dp(Z) we have the symmetric her-
mitian structure Ϙ = Ϙs given by Ϙ(X) := HomZ(X ⊗X, Z)hC2 , whose underlying
bilinear functor is B(X, Y ) = HomZ(X ⊗ Y, Z) which is perfect with associated
duality D(X) = HomZ(X, Z). The discussion in [12, construction 6.3.1] shows that
Ϙ induces a hermitian functor ϘK on the cotensoring C, and writing Z for the
constant functor we can express this as

ϘK(X) = HomC(X ⊗X,Z)hC2 ,

where the tensor product in C is formed objectwise. By [12, proposition
6.3.2] its underlying bilinear functor is BK(X, Y ) = HomC(X ⊗ Y, Z), and as
((Simp(K)op)σ/)op is finite (it is the poset of simplices of a fixed simplex σ) this
bilinear functor is nondegenerate with associated duality

DK(X)(σ) = holim
τ∈Simp(σ)

HomZ(X(τ),Z). (4.2)

It is elementary to check that this duality is perfect (alternatively, observe that
this may be checked for each simplex K, and appeal to [12, proposition 6.6.1] for
the finite simplicial complex given by a single simplex), making (C, ϘK) a Poincaré
category.

4.6. The Ranicki orientation

The Ranicki orientation is a certain map of spectra σ : MSTop→ Ls(Z). Its con-
struction was outlined in [42, proposition 15.8] (for PL, rather than topological,
manifolds), but the first rigorous implementation seems to not have been until
[32], where it is constructed as a map of E1-rings. We will give our own construc-
tion of this map, intuitively the same as Ranicki’s but using the definition of the
symmetric L-theory spectrum from [10, section 4.4]. In fact we will construct a
map σP : MockP → Ls(Z), which may be precomposed with MSTop→ MockP to
obtain σ.

The family signature theorem 2041

https://doi.org/10.1017/prm.2022.91 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.91


For any semi-simplicial set K and semi-simplicial map φ : K → MockP (d) we can
form the pullback

φ∗π := φ∗EP (d) −→ |K|,
a Poincaré mock bundle over |K|. For a simplex σ of K we write Eσ := f(σ). This
defines a functor

C : Simp(K)op −→ Dp(Z)

by C(σ) := C∗(Eσ; Z), i.e. an object of the category C described above.
We first explain how C has the structure of a Poincaré object in (C, Ϙ[−d]K ).

Lemma 4.7. There is a canonical morphism [E] : C → S−d ⊗ Z, a ‘fibrewise fun-
damental chain’.

Proof. By adjunction a morphism as indicated is the same as a morphism

hocolim
σ∈Simp(K)op

C(σ) −→ S−d ⊗ Z

in Dp(Z), which is a morphism Sd → holim
σ∈Simp(K)op

HomZ(C(σ), Z). As C(σ) =

C∗(Eσ; Z) = Hom(C∗(Eσ; Z), Z) and C∗(Eσ; Z) is perfect, this is equivalent to a
morphism

Sd ⊗ Z −→ holim
σ∈Simp(K)op

C∗(Eσ; Z).

The data of the compatible fundamental chains {[Eσ]}σ∈K precisely gives such a
d-cycle in this homotopy limit. �

Using this morphism we may form q : C ⊗ C −�−→ C
[E]→ S−d ⊗ Z, which, as the

multiplication on C is commutative, determines a Hermitian form

q ∈ Ω∞Ϙ[−d]K (C) = Ω∞+dHomC(C ⊗ C,Z)hC2 .

To see that this is nondegenerate, note that its adjoint q	 : C → S−d ⊗DK(C)
evaluated at σ is the map

q	(σ) : C∗(Eσ; Z) −→ S−d ⊗ holim
τ⊂σ HomZ(C∗(Eτ ; Z),Z)

given by cap product with the chain [Eσ] and evaluation. There is an equivalence
C∗(Eτ ; Z) ∼→ HomZ(C∗(Eτ ; Z), Z) given by evaluation, which identifies this map
with the map

q	(σ) : C∗(Eσ; Z) −→ S−d ⊗ holim
τ⊂σ C∗(Eτ ; Z) � S−d−|σ| ⊗ C∗(Eσ, E∂σ; Z)

given by cap product with the chain [Eσ], and this is an equivalence by the definition
of Poincaré mock bundle. Thus (C, q) is indeed a Poincaré object in (C, Ϙ[−d]K ).

Let us briefly recall how the L-theory space L(Z, Ϙ[−d]) is defined in [10,
section 4.4]. It is the geometric realization of the simplicial space with p-simplices
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given by the space(=∞-groupoid) of Poincaré objects in the Poincaré category
ρp(Dp(Z), Ϙ[−d]) := (Fun(Simp(Δp)op, Dp(Z)), Ϙ[−d]Δp ).

We may then apply the following ‘coassembly’ construction to (C, q). For each
p-simplex σ : Δp → K we obtain a Poincaré object in ρp(Dp(Z), Ϙ[−d]) by pullback:
the underlying object is the functor

σ∗C : Simp(Δp)op −→ Dp(Z)

given by restriction of C, and it is made into a Poincaré object via the restriction
σ∗q of q. Applying this construction levelwise defines a map

Coass(C, q) : |K| −→ |Pnρ(Dp(Z), Ϙ[−d])| =: L(Z, Ϙ[−d]).

We call this the family signature of the Poincaré mock bundle π : E → |K|. In par-
ticular, for the universal example K = MockP (d) with associated Poincaré object
(Cd, qd) this construction defines a map

Φd : |MockP (d)| Coass(Cd,qd)−−−−−−−−→ L(Z, Ϙ[−d]).

The symmetric L-theory spectrum Ls(Z) as described in the discussion after
[10, corollary 4.4.5] has (−d)th space equivalent to L(Z, Ϙ[−d]) by [10, corollary
4.4.5], and the spectrum MockP has (−d)-th space |MockP (d)|, so the maps Φd can
in principle arise from a map of spectra. They do:

Lemma 4.8. The Φd arise as Ω∞+dσP for a spectrum map σP : MockP → Ls(Z).

We define the composition

σ : MSTop � Mock −→ MockP σP

−→ Ls(Z)

to be the Ranicki orientation. The construction is conceptually the same as the map
constructed in [32], though implemented differently. It is also conceptually the same
as the maps constructed in [42, proposition 15.7], [43, p. 289], [45, proposition 16.1]
and [26, proposition 7.10 (1)], though see remark 4.9.

Proof. We must establish a compatibility between the Φd’s, and to do so we give a
precise definition of MockP∂ (d+ 1). For a simplex τ , a face σ � τ , and a closed subset
E ⊂ τ × R∞ × [0, ∞), write ∂vEσ := (σ × R∞ × {0}) ∩ E. Let MockP∂ (d+ 1) have
p-simplices given by a closed subset E ⊂ Δp × R∞ × [0, ∞) and a singular chain
[Eσ] ∈ Cd+1+|σ|(Eσ; Z) for each face σ of Δp, such that

(i’) each Eσ and ∂vEσ is homotopy equivalent to a finite CW-complex,

(ii’) the chain [∂vEσ] := d[Eσ]−
∑|σ|
i=0[Ediσ] ∈ Cd+|σ|(Eσ; Z) lies in the subgroup

Cd+|σ|(∂vEσ; Z), so [Eσ] is a cycle in Cd+1+|σ|(Eσ, ∂vEσ ∪ E∂σ; Z),

(iii’) the maps

−�[Eσ] : H∗(Eσ; Z) −→ Hd+1+|σ|−∗(Eσ, ∂vEσ ∪ E∂σ; Z)

−�d[Eσ] : H∗(∂vEσ ∪ E∂σ; Z) −→ Hd+|σ|−∗(∂vEσ ∪ E∂σ; Z)

are isomorphisms.
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Assigning to (E, {[Eσ]}) the data (∂vE, {[∂vEσ]}), where the [∂vEσ] are given by
(ii’), defines a semi-simplicial map

res : MockP∂ (d+ 1) −→ MockP (d),

which is furthermore a Kan fibration. (The key calculation is to show that the
maps −� [∂vEσ] : H∗(∂vEσ; Z)→ Hd+|σ|−∗(∂vEσ, ∂vE∂σ; Z), and −� d[∂vEσ] :
H∗(∂vE∂σ; Z)→ Hd−1+|σ|−∗(∂vE∂σ; Z) are isomorphisms, which follows by repeat-
edly using [52, lemma 1.2 and theorem 2.1 Addendum].) The space |MockP∂ (d+ 1)|
carries a tautological family EP∂ (d+ 1) and the map res classifies the associated
family ∂vEP∂ (d+ 1) given by intersecting with R∞ × {0}. The fibre of the map res
over the basepoint (which is the empty space) is isomorphic to MockP (d+ 1) (via
a choice of homeomorphism (0, ∞) ∼= R).

We wish to establish a commutative diagram

in which the rows are homotopy fibre sequences. The lower sequence comes from the
metabolic Poincaré–Verdier sequence [10, example 1.2.5] and the fact that L(−) is
Verdier-localizing and bordism-invariant [10, theorem 4.4.2]. The two middle spaces
are contractible so this will give the desired compatibility.

To obtain the middle vertical map in this diagram observe that Coass(Cd) ◦ |res|
is the construction from above applied with K = MockP∂ (d+ 1) and φ = res, the
map that classifies the family ∂vEP∂ (d+ 1)→ |MockP∂ (d+ 1)|. Recall that Poincaré
objects in Met(Dp(Z), Ϙ[−d]) encode Poincaré objects in (Dp(Z), Ϙ[−d]) equipped
with a lagrangian, so we must equip the Poincaré object (res)∗(Cd, qd) associated
to ∂vEP∂ (d+ 1)→ |MockP∂ (d+ 1)| = |K| with a lagrangian.

This of course comes from the fact that ∂vEP∂ (d+ 1) is canonically the boundary
of the family EP∂ (d+ 1)→ |MockP∂ (d+ 1)|. Define a morphism f : L→ (res)∗Cd in
C by the restriction map

f : L(E) := C∗(E) −→ C∗(∂vE) = ((res)∗Cd)(E)

and choose the nullhomotopy of f∗qd given by the nullhomotopy of the composi-

tion L
f→ (res)∗Cd

[∂vE
P
∂ (d+1)]→ S−d ⊗ Z provided by a fibrewise fundamental chain

[EP∂ (d+ 1)] of the family EP∂ (d+ 1)→ |MockP∂ (d+ 1)| extending [∂vEP∂ (d+ 1)],
constructed as in lemma 4.7. This gives the middle vertical map, and as we chose
a fundamental chain, on (d+ 1)-manifolds without boundary it restricts to a map
homotopic to Coass(Cd+1). �

4.7. The map inc

Recall that L(Z, Ϙ[−d]) is defined as the geometric realization of the simplicial
space [p] �→ Pnρp(Dp(Z), Ϙ[−d]), whose space of 0-simplices is Pn(Dp(Z), Ϙ[−d]), the
space(=∞-groupoid) of Poincaré objects in the Poincaré category (Dp(Z), Ϙ[−d]).
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Suppose first that (H, λ) is a free Z-module H with a (−1)n-symmetric
bilinear form λ : H ⊗H → Z which is nondegenerate, i.e. the adjoint λad : H →
HomZ(H, Z) is an isomorphism. Then there is a Poincaré object in (Dp(Z), Ϙ[−2n])
given by H[−n] equipped with the symmetric form

qλ : H[−n]⊗H[−n] λ−→ Z[−2n].

As H[−n] is concentrated in a single degree, the space of automorphisms
of (H[−n], qλ) in the ∞-groupoid Pn(Dp(Z), Ϙ[−2n]) is homotopy-discrete,
and is equivalent to Aut(H, λ): thus the path-component of (H[−n], qλ) in
Pn(Dp(Z), Ϙ[−2n]) is equivalent to BAut(H, λ). This yields a map

inc : BAut(H,λ) −→ Pn(Dp(Z), Ϙ[−2n]) −→ L(Z, Ϙ[−2n]) � Ω∞+2nLs(Z).

Suppose now that (T, �) is a finite Z-module T with a (−1)n-symmetric
linking form � : T ⊗ T → Q/Z which is nondegenerate, i.e. the adjoint �ad :
T → HomZ(T, Q/Z) is an isomorphism, then there is a Poincaré object in
(Dp(Z), Ϙ[−(2n−1)]) given by T [−n] equipped with the symmetric form

q
 : T [−n]⊗L T [−n] −→ T [−n]⊗ T [−n] 
−→ Q/Z[−2n]
β−→ Z[−(2n− 1)]

where the first map is the truncation and the last is the universal Bockstein. (Before
now we have been working in Dp(Z) and all tensor products have been implicitly
derived: here we indicate that the first is derived and the second is not.) Again, as
T [−n] is concentrated in a single degree the space of automorphisms of (T [−n], q
)
is equivalent to the discrete group Aut(T, �), which as above yields a map

inc : BAut(T, �) −→ Pn(Dp(Z), Ϙ[−(2n−1)]) −→ L(Z, Ϙ[−(2n−1)]) � Ω∞+2n−1Ls(Z).

4.8. Surgery above the middle dimension

Suppose now that π : E → |K| is an oriented Poincaré mock bundle of dimension
d which has the property that the inclusions Eτ ⊂ Eσ are Z-homology equivalences
whenever τ ⊂ σ. (For example, π could be a block bundle.) Then the associated
functor

C : Simp(K)op −→ Dp(Z)

has the property that it sends each morphism to an equivalence. Write Cloc ⊂ C for
the full subcategory of those functors sending each morphism to an equivalence.
It inherits a hermitian structure ϘK,loc from ϘK by restriction, and the associated
bilinear functor is still perfect, with duality DK,loc still given by the formula for
DK in (4.2), as this duality preserves the subcategory Cloc. Furthermore, on this
subcategory the duality simplifies to

DK,loc(X)(σ) � HomZ(X(σ),Z), (4.3)

because the homotopy limit in (4.2) is over a (homotopically) constant diagram.
We will make use of this to do algebraic surgery on (C, q) ∈ (Cloc, Ϙ

[−d]
K,loc), using

the conveniently-packaged result of [11, section 1.3].
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If d = 2n then we consider the usual t-structure on Dp(Z). The duality
D(−) = HomZ(−, Z) associated to the symmetric Poincaré structure satisfies
D(Dp(Z)�0) ⊂ Dp(Z)�−1, as Z has global dimension 1, as well as D(Dp(Z)�0) ⊂
Dp(Z)�0. Applied objectwise, this yields a t-structure on Cloc, and the dual-
ity DK,loc satisfies DK,loc((Cloc)�0) ⊂ (Cloc)�−1 and DK,loc((Cloc)�0) ⊂ (Cloc)�0,
as the expression (4.3) shows that this duality is performed objectwise.3 We
apply the algebraic surgery move of [11, proposition 1.3.1] to the Poincaré object
(C, q) ∈ (Cloc, Ϙ

[−2n]
K,loc), using this t-structure, r =∞, and a = 0, to obtain a cobor-

dism to a (C ′, q′) where C ′ is (−n)-connective. As S−2n ⊗DK,loc(C ′) � C ′, it
follows that C ′ is also (−n)-truncated, so it is an n-fold desuspension of an object in
the heart of this t-structure, i.e. a local coefficient system on K. Contemplating the
surgery move of [11, proposition 1.3.1] shows that H−n(C ′) is the local coefficient
system σ �→ Hn(Eσ; Z)/tors, and the symmetric form q′ on it is that given by cup
product and evaluation against the fundamental class of a fibre.

If d = 2n+ 1 then we will proceed similarly, but use a modified t-structure.
Define a t-structure on Dp(Z) by declaring that X ∈ Dp(Z)�0 if Hi(X) = 0 for
i < −1 and H−1(X) is torsion, and that X ∈ Dp(Z)�0 if Hi(X) = 0 for i > 0 and
H0(X) is torsionfree. This is easily checked to define a t-structure, and the dual-
ity D(−) = HomZ(−, Z) associated to the symmetric Poincaré structure satisfies
D(Dp(Z)�0) ⊂ Dp(Z)�0. Applied objectwise, this yields a t-structure on Cloc, and
as above the duality DK,loc satisfies DK,loc((Cloc)�0) ⊂ (Cloc)�0. We apply the
algebraic surgery move of [11, proposition 1.3.1] to the Poincaré object (C, q) ∈
(Cloc, Ϙ

[−(2n+1)]
K,loc ), using this t-structure, r =∞, and a = −1, to obtain a cobordism

to a (C ′, q′) where C ′ is (−n)-connective with respect to this t-structure. That
is, each chain complex C ′(σ) has Hi(C ′(σ)) = 0 for i < −n− 1 and H−n−1(C ′(σ))
torsion. By the Universal Coefficient Theorem we then have Hi(D(C ′(σ))) = 0 for
i > n, and as q′ induces equivalences S−(2n+1) ⊗D(C ′(σ)) � C ′(σ), it follows that
each C ′(σ) only has homology in degree −(n+ 1). Thus the (n+ 1)-fold suspension
of C ′ is in the heart of the ordinary t-structure, i.e. is a local coefficient system onK.
Contemplating the surgery move of [11, proposition 1.3.1] shows that H−(n+1)(C ′)
is the local coefficient system σ �→ torsHn+1(Eσ; Z), and the symmetric form q′ on
it is that given by the linking form.

In both cases, the coassembly of the cobordism from (C, q) to (C ′, q′) produces
a homotopy Coass(C, q) � Coass(C ′, q′) : |K| → L(Z, Ϙ[−d]), and if F is a typical
fibre of π : E → |K| then the discussion above identifies Coass(C ′, q′) with the
composition

|K| φ−→
{
BAut(Hn(F ; Z)/tors, λ) d = 2n
BAut(torsHn+1(F ; Z), �) d = 2n+ 1

inc−−→ Ω∞+dLs(Z).

This identifies the family signature Coass(C, q) with the lower composition in the
statement of theorem 4.1.

3It is not the case that DK(C�0) ⊂ C�−1; this is the crucial place where the assumption that
each inclusion Eτ ⊂ Eσ is a Z-homology equivalence enters.
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4.9. Proof of theorem 4.1

Suppose now that π : E → |K| is a block bundle, or more generally a mock bundle
such that the inclusions Eτ ⊂ Eσ are Z-homology equivalences whenever τ ⊂ σ,
classified by f : |K| → |Mock(d)|. There is a diagram

in which each region commutes (up to homotopy) tautologically, and by the discus-
sion in the last section the anticlockwise composition agrees with inc ◦ φ, proving
theorem 4.1.

Remark 4.9. The main difficulty in implementing the above in the framework of
[45] is that Ranicki only considers bounded chain complexes of finitely-generated
free (or projective) modules, and (co)chains on a manifold is never equal to such a
thing. The usual solution to this issue seems to have been to pretend otherwise, or to
change definitions but assume that Ranicki’s results are unchanged, or to restrict to
PL manifolds and use simplicial chains for some choice of PL-triangulation instead.

5. Twisted signature formulas in L-theory

We consider theorem 4.1 to be the most natural formulation of the Family Signa-
ture Theorem, but for applications we must also provide tools for understanding the
bottom map inc, just as we did in § 3.6 for the KO[ 12 ]-theory formulation. This will
require significantly more external machinery than the discussion so far. In partic-
ular it relies extensively on the relation between L-theory and Grothendieck–Witt
theory developed in [10–12], and we must now assume more familiarity with these
papers.

5.1. The symmetric L-theory spectrum

Following Hebestreit, Land and Nikolaus [21], the symmetric L-theory spectrum
of the integers may be described as follows: there is a fibration sequence

dR −→ Ls(Z) −→ Ls(R), (5.1)

where π∗(Ls(R)) = Z[x±1] with |x| = 4 and πi(dR) is Z/2 if i ≡ 1 mod 4 and is
zero otherwise. The homotopy groups in degrees 4i detect the signature, and those
in degrees 4i+ 1 detect the de Rham invariant.
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There are equivalences Ls(Z)[12 ] � Ls(R)[12 ] � KO[12 ], and we would like to say
that theorem 3.1 is obtained from theorem 4.1 by inverting 2 and using such an
equivalence. In order for the Sullivan orientation ΔTop to agree (up to phantom
maps) with the Ranicki orientation σ under such an equivalence, it suffices (by
construction of ΔTop) to choose an equivalence inducing the ring map a �→ x :
Z[12 ][a±1] = π∗(KO[12 ])→ π∗(Ls(R)[12 ]) = Z[12 ][x±1] on homotopy groups. Choosing
this isomorphism between their homotopy groups we obtain an isomorphism of
generalized homology theories

KO[ 12 ]∗(−)
∼←MSO∗(−) ⊗

MSO∗
Z[ 12 ][a±1] ∼= MSO∗(−) ⊗

MSO∗
Z[ 12 ][x±1]

∼→ Ls(R)[ 12 ]∗(−),

as the right-hand map can be shown to be an isomorphism using the Landweber
exact functor theorem [29, example 3.4] just as the left-hand map is. This gives an
equivalence of representing spectra KO[12 ] � Ls(R)[12 ] inducing the required map
on homotopy groups.

At the prime 2, following Taylor and Williams [51, Section 2] one can use that
MSO(2) is a generalized Eilenberg–MacLane spectrum to deduce that any module
spectrum over it is too. This applies to Ls(Z)(2) and Ls(R)(2) via the map of homo-
topy ring4 spectra MSO→ MSTop σ→ Ls(Z), and hence to dR = dR(2) using (5.1).
Taylor and Williams produce specific maps

L : Ls(Z)(2) −→
⊕
i∈Z

HZ(2)[4i]

r : Ls(Z)(2) −→
⊕
j∈Z

HZ/2[4j + 1]

which combine to give an equivalence. Pulled back along the Ranicki orientation
they behave as follows. The class σ∗L corresponds under the Thom isomor-
phism with Morgan and Sullivan’s class L ∈ H∗(BSTop; Z(2)) constructed in
[37, section 7], which is in turn characterized by restricting to the inverse of the
Hirzebruch L-class when rationalized, and the square of the total Wu class5 V
when reduced modulo 2. The class σ∗r corresponds under the Thom isomorphism
with

∑
i�0 V2i · Sq1V2i, which is the well-known characteristic class measuring the

de Rham invariant [33]. The composition dR→ Ls(Z)→ Ls(Z)(2)
r→⊕

j∈Z HZ/
2[4j + 1] is necessarily an equivalence, which gives a splitting Ls(Z) � Ls(R)⊕ dR
such that Ls(R)→ Ls(Z)→ Ls(Z)(2)

L→⊕
i∈Z HZ(2)[4i] is a 2-local equivalence.

A more structured approach is also possible. Hebestreit, Land and Nikolaus
describe [21, section 3] an E1-algebra map HZ(2) → MSO(2), which then endows
any MSO(2)-module with a canonical HZ(2)-module structure. Using [21, corollary

4In our construction we have not justified that σ is a map of homotopy ring spectra. We can
appeal to e.g. [32] for this.

5Characterized by Sq(V ) = 1/w for w ∈ H∗(BSTop; Z/2) the total Stiefel–Whitney class. It has
the form V = 1 + V2 + V4 + · · · ; the odd components vanish, by the argument of p. 483 of [37],
using topological manifolds whose Gauss maps M → BSTop are highly connected.
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3.8] it follows that there are unique equivalences of HZ(2)-modules

Ls(R)(2) �
⊕
i∈Z

HZ(2)[4i] dR �
⊕
j∈Z

HZ/2[4j + 1] (5.2)

inducing the identity on homotopy groups. They also show [21, corollary 4.3]
that there is a unique splitting Ls(R)→ Ls(Z) of E1-algebras which 2-locally is
a splitting of HZ(2)-algebras.

Remark 5.1. We do not assert anything about any compatibility between the split-
tings of the previous paragraph and those obtained using the maps L and r above.
Using the discussion in [51, section 2] it seems that this kind of question comes
down to whether the class L ∈ H∗(BSO; Z(2)) is trivial on the bundle classified
by η : τ�2Ω2S3 → BSO.

5.2. Odd dimensions

In § 4.7 we have explained how a nondegenerate (−1)n-symmetric linking form
(T, �) yields a Poincaré object (T [−n], q
) and hence a map

inc : BAut(T, �) −→ L(Z, Ϙ[−(2n−1)]) = Ω∞+2n−1Ls(Z). (5.3)

Theorem 5.2. The map (5.3) is homotopic to a constant map.6

Proof. Firstly, there is a canonical decomposition T =
⊕

p prime Tp of T into its
Sylow subgroups, which is orthogonal with respect to �. This gives a corresponding
decomposition of Aut(T, �), meaning that we may assume that T is a p-group.

Secondly, if (T, �) is a nondegenerate (−1)n-symmetric linking form on a p-
group then consider the subgroup L := (p · T ) ∩ ([p](T )) of p-divisible and p-torsion
elements of T . The restriction of � to L vanishes, as if x = p · x̄, y ∈ L then
�(x, y) = �(px̄, y) = �(x̄, py) = 0 as y is p-torsion. Thus we may do algebraic surgery
to (T [−n], q
) along the map L[−n]→ T [−n], the result of which is the Poincaré
object associated to the linking form (T ′, �′) with

T ′ := ker(�ad : T/L→ HomZ(L,Q/Z))

and �′ the linking form induced by �. This is functorial, giving a map BAut(T, �)→
BAut(T ′, �′), and furthermore the algebraic surgery between these forms is functo-
rial, giving a homotopy between the two maps into Ω∞+2n−1Ls(Z). If L �= 0 then
T ′ is strictly smaller than T , so continuing in this way we may assume that (T, �)
is such that L = 0, i.e. T is an elementary abelian p-group.

When (T, �) is such that T is an elementary abelian p-group, � takes values
in the subgroup of Q/Z generated by 1

p , and identifying this subgroup with Fp

we may consider � : T ⊗ T → Fp as a nondegenerate (−1)n-symmetric form on an

6Though is not in general nullhomotopic, as when 2n + 1 ≡ 1 mod 4 it will land in the path-
component dictated by the de Rham invariant of T , which can be nontrivial.

The family signature theorem 2049

https://doi.org/10.1017/prm.2022.91 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.91


Fp-module. Thus Aut(T, �) is a symplectic or orthogonal group over Fp, and there
is a factorization

inc : BAut(T, �) −→ Ω∞+2nLs(Fp)
∂p−→ Ω∞+2n−1Ls(Z)

where the latter is the map arising in the localization-dévissage sequence⊕
p prime

Σ−1Ls(Fp)
⊕∂p−→ Ls(Z) −→ Ls(Q). (5.4)

Thirdly, suppose that p is odd. We will argue that ∂p : Σ−1Ls(Fp)→ Ls(Z) is
nullhomotopic. As ∂p has a canonical nullhomotopy when mapped to Ls(Q) it also
does when mapped to Ls(R), giving a canonical lift ∂′p : Σ−1Ls(Fp)→ dR which we
wish to show is nullhomotopic.

The target of this map is 2-local, so we can localize all spectra involved at 2 and
make use of the canonical HZ(2)-module structure on Ls(Z)(2)-modules discussed
in § 5.1. We have already discussed how the terms in (5.1) obtain HZ(2)-module
structures, in particular giving an equivalence dR �⊕i∈Z HZ/2[4i+ 1] of HZ(2)-
modules. On the other hand the fibre sequence (5.4) endows Σ−1Ls(Fp) with a
Ls(Z)-module structure (potentially different from that given by Ls(Z)→ Ls(Fp),
though experts tell me it is in fact not) making ∂p into an Ls(Z)-module map. As
p is odd we have

πi(Ls(Fp)) =

{
W (Fp) i ≡ 0 mod 4
0 else

whereW (Fp) is the Witt group of Fp and is either Z/4 or Z/2⊕ Z/2 [44, proposition
4.3.2]. In either case it follows that Σ−1Ls(Fp) is 2-local and with the HZ(2)-module
structure given by (5.4) it is equivalent to

⊕
j∈Z HW (Fp)[4j − 1]. As the nullho-

motopy of ∂p into Ls(R) can be taken to be one of Ls(Z)-modules, via (5.4), the
map ∂′p : Σ−1Ls(Fp)→ dR is one of HZ(2)-modules with the module structures just
described. But

0 =

⎡⎣⊕
j∈Z

HW (Fp)[4j − 1],
⊕
i∈Z

HZ/2[4i+ 1]

⎤⎦
HZ(2)-mod

.

so ∂′p is null.
Fourthly, suppose that p = 2. In this case the map ∂′2 is not trivial, and we instead

argue that the map BAut(T, �)→ Ω∞+2nLs(F2) is homotopic to a constant map,
so that its composition with Ω∞+2nLs(F2)→ Ω∞+2n−1dR is too. As we start with
actual automorphisms of a symmetric form over F2, this map factors through the
Grothendieck–Witt space Ω∞GW(F2; Ϙ), via the map

Ω∞GW(F2; Ϙ) −→ Ω∞L(F2; Ϙ) = Ω∞Ls(F2) = Ω∞+2nLs(F2), (5.5)

where the latter identification holds because Ls(F2) is 2-periodic. (Here Ϙ = Ϙs is
the symmetric structure.) By [11, proposition 3.1.4] the map

GW(F2; Ϙ) −→ K(F2; Ϙ)hC2
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is an equivalence but by Quillen’s calculation [39] of the K-theory of finite fields,
the truncation map K(F2; Ϙ)→ HZ is a 2-local equivalence, so Ω∞GW(F2; Ϙ) is
2-locally equivalent to the discrete space Z. As the target of (5.5) is 2-local, it
follows that (5.5) is homotopic to a constant map as required. �

Corollary 5.3. Let π : E → |K| be an oriented topological block bundle with
d-dimensional fibre, and d odd. Then the composition

|K| α−→ Ω∞+dMSTop Ω∞+dσ−→ Ω∞+dLs(Z)

is homotopic to a constant map.

5.3. Even dimensions

With the choice of equivalence Ls(R)[12 ] � KO[12 ] explained in § 5.1, the
composition

BAut(Hn(F ; R), λ) inc−→ Ω∞+2nLs(R) −→ Ω∞+2nLs(R)[12 ] � Ω∞+2nKO[12 ]

agrees (up to phantom maps) with the map sign constructed in § 3.4, because it
has the same interpretation in terms of signatures on Z/k-bordism.

The new information in theorem 4.1 is therefore at the prime 2. By the discussion
in § 5.1, there is a splitting Ls(Z) � Ls(R)⊕ dR induced by the composition dR→
Ls(Z) r→⊕

j∈Z HZ/2[4j + 1] being an equivalence, and this induces an equivalence
Ls(R)(2) �

⊕
i∈Z HZ(2)[4i] such that the composition

MSTop σ−→ Ls(Z) −→ Ls(R)(2) �
⊕
i∈Z

HZ(2)[4i]

corresponds under the Thom isomorphism to Morgan and Sullivan’s class L .
The following theorem is the analogue of theorem 3.2, and stating it requires a
preparatory lemma.

Lemma 5.4. There are unique classes p̃hi ∈ H4i(BO; Z(2)) rationalizing to 22iphi
and for i > 0 reducing to zero modulo 2.

Furthermore, for i > 0 these classes are in fact divisible by 4.

Proof. As the integral cohomology of BO only has Z/2-torsion the uniqueness is
clear. For existence, as in corollary 2.3 we use that 2j/j! is 2-integral and even
2-integrally divisible by 2 so that c̃hj = 2jchj is a 2-integral cohomology class on
BU which reduces to zero modulo 2. Pulling c̃h2i back to BO gives the required
classes phi. The second part follows identically to the case n even of the proof of
corollary 2.3. �

To state the following, we use the real form ξR of ξ from remark 2.1.
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Theorem 5.5. If (HR, λ) is a nondegenerate (−1)n-symmetric bilinear form then
the square

commutes up to homotopy and phantom maps.

Proof. We can verify this after inverting 2, and after completing at 2. After inverting
2 we are working rationally, and the equivalence

KO(0) � Ls(R)(0) �
⊕
i∈Z

HQ[4i] (5.6)

obtained by further localizing the equivalences Ls(R)[12 ] � KO[12 ] and Ls(R)(2) �⊕
i∈Z HZ(2)[4i] sends ak ∈ π4k(KO)(0) to 1 ∈ π4k(

⊕
i∈Z HQ[4i]). As a was chosen

to map to the square of the Bott class b2 ∈ π4(K) under complexification, and the
Chern character takes the value 1 on b, it follows that the equivalence (5.6) is
induced by the Pontrjagin character. By theorem 3.2 the clockwise composition is
then rationally ph(1

2r(b
nψ2ξ)) which is calculated in the proof of that theorem to

be ch(ψ2ξ) which is the same as p̃h(ξR).
To deal with the 2-complete case we use the fact that, up to a translation of

path-components, the maps inc and ξR commute with the map BAut(HR, λ)→
BAut(HR ⊕H ′

R, λ⊕ λ′) given by stabilizing by a form (H ′
R, λ

′). As the square
does commute at the level of π0 by the previous case, by choosing (H ′

R, λ
′) to have

large rank (and opposite signature to (HR, λ) if n is even) this allows us to assume
that (HR, λ) is a hyperbolic form of arbitrarily large rank. Then, by a version [24,
p. 260] of the stable Milnor conjecture for the groups Sp2g(R) or7 Og,g(R) the map

BAut(HR, λ) −→ BAut(HR, λ)top �
{
BU(g) n odd
BO(g)×BO(g) n even

induces an isomorphism on cohomology with all finite coefficients in a range of
cohomological degrees tending to∞ with g. It therefore also induces an isomorphism
with 2-adic coefficients in such a range.

If n is odd it follows that in each degree in the stable range H∗(BAut(HR, λ); Z2)
is a finitely-generated free Z2-module, so by the Bockstein sequence the map

H∗(BAut(HR, λ); Z2) −→ H∗(BAut(HR, λ); Q2)

is injective. As the diagram in the statement of the theorem commutes over Q it
also does over Q2, and by this injectivity it also does over Z2.

7Karoubi writes O2n(R) but this seems to mean what we call On,n(R), the automorphism group
of the hyperbolic form.
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If n is even it follows that in the stable range H∗(BAut(HR, λ); Z2) is a sum of a
finitely-generated free Z2-module and a finite Z/2-module. Elements are therefore
detected by their images with Q2- and Z/2-coefficients. With Q2-coefficients we
proceed as above. With Z/2-coefficients the composition Ω1−(−1)n

p̃h ◦ ξR is trivial,
as the classes p̃hi are trivial modulo 2. To show the other composition is trivial, we
use that

Z/2[w1, w2, . . . wg, w
′
1, . . . , w′

g]
∼→ H∗(BAut(HR, λ)top; Z/2)→ H∗(BAut(HR, λ); Z/2)

is an isomorphism in the stable range, and that this is detected on the subgroup

{±1}g × {±1}g ⊂ Aut(HR, λ)

given by acting by a sign in each basis vector, in some basis given by bases for a
choice of positive and negative definite subspaces. As the map inc is additive with
respect to orthogonal sum of forms, this reduces us to considering

inc : BC2 = BAut(R, (1)) −→ Ω∞+2nLs(R),

or its negative-definite analogue, which can be treated similarly. To evaluate this we
can use the family signature theorem, because the complex conjugation involution
on CP

2 gives a splitting BC2 → BDiff+(CP
2)

φ→ BAut(R, (1)) and so we may apply
theorem 4.1 to say that the map in question is homotopic to

BC2 → Ω∞Th(−TπE → E)→ Ω∞+4MSTop
σ−→ Ω∞+4Ls(Z)

L−→ Ω∞+4

(⊕
i∈Z

HZ(2)[4i]

)
,

where the first map is the parameterized Pontrjagin–Thom map for the smooth
oriented fibre bundle π : E := EC2 ×C2 CP

2 → BC2, and the second is given by
Thomifying the map E → BSTop classifying −TπE. As the reduction of σ∗(L)
modulo 2 corresponds under the Thom isomorphism to the square of the total
Wu class, as a spectrum cohomology class on Th(−TπE → E) it corresponds to
u−TπE · V (−TπE)2. This satisfies

Sq(u−TπE · V (−TπE)2) = Sq(u−TπE) · (Sq(V (−TπE)))2

= u−TπE · w(−TπE) · ( 1
w(−TπE) )

2

= u−TπE · w(TπE).

This cohomology class is supported in degrees � 0, so when pulled back to Σ∞
+ BC2

along the adjoint of the parameterized Pontrjagin–Thom map it only has a com-
ponent of degree 0 (namely, the characteristic number

∫
CP2 w4(TCP

2) = 1). But as
Sq is invertible, the pullback of u−TπE · V (−TπE)2 to Σ∞

+ BC2 must also be trivial
in positive degrees, as required. �

The remaining information at the prime 2 concerns the de Rham invariant map
r : Ls(Z)→⊕

j∈Z HZ/2[4j + 1]. We have already mentioned that r ◦ σ corresponds,
under the Thom isomorphism, with the class

∑
i�0 V2i · Sq1V2i. Theorem 5.6 below

determines the corresponding cohomology classes on the intersection form side.
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During the proof we will explain that H3(BSp∞(Z); Z/2) = Z/2 and the unique
nontrivial element r3 of this group provides, by stabilizing, a characteristic class
for all local systems of skew-symmetric lattices. Relatedly, we will explain why the
function r1 : Aut(HZ, λ)→ Z/2, which assigns to an automorphism φ the number
dimZ/2(Z/2⊗ tors HZ

(Id−φ)HZ

) modulo 2, is a homomorphism.

Theorem 5.6. If n is even so (HZ, λ) is symmetric then

BAut(HZ, λ) inc−→ Ω∞+2nLs(Z) Ω∞+2nr−−−−−→ Ω∞+2n

⎛⎝⊕
j∈Z

HZ/2[4j + 1]

⎞⎠
is the cohomology class given by r1 in degree 1, and is trivial in all other degrees.

If n is odd so (HZ, λ) is skew-symmetric then

BAut(HZ, λ) inc−→ Ω∞+2nLs(Z) Ω∞+2nr−−−−−→ Ω∞+2n

⎛⎝⊕
j∈Z

HZ/2[4j + 1]

⎞⎠
is the cohomology class r3 in degree 3, and is trivial in all other degrees.

To begin the proof of this theorem, the map inc tautologically factors over (Ω∞

of) the map

bord : GWs(Z; (−1)n) −→ Ls(Z; (−1)n)

so it suffices to analyse the map

Ω∞
0 GWs(Z; (−1)n) Ω∞bord−−−−−→ Ω∞+2n

0 Ls(Z) Ω∞+2nr−−−−−→ Ω∞+2n

⎛⎝⊕
j∈Z

HZ/2[4j + 1]

⎞⎠ ,

which is an infinite loop map. The following lemma shows that there are not so
many such maps which refine to infinite loop maps.

Lemma 5.7. The cohomology suspension map

H∗(τ>0GWs(Z; (−1)n); Z/2) −→ H∗(Ω∞
0 GWs(Z; (−1)n); Z/2)

has trivial image in degrees congruent to 1− 2n mod 4, except for degree 1 if n is
even or degree 3 if n is odd.
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Proof. Berrick and Karoubi [5] establish a 2-adically cartesian square

where the left-hand terms are (the 0-connected covers of) the classical symmetric
Grothendieck–Witt spectra. There is a zig-zag

GWs
cl(Z[12 ]; (−1)n) −→ τ�0GWs(Z[12 ]; (−1)n)←− τ�0GWs(Z; (−1)n)

whose left-hand map is an equivalence by [11, 1.3.15] (using [22, theorem A]), and
whose right-hand map is a 2-adic equivalence by [11, 3.1.11]. Combined with theo-
rems IV.2.4 and IV.5.4 of [15] this gives fibre sequences of (implicitly 2-completed)
spectra

τ>0GWs(Z; +) −→ bo⊕ bo −→ bso

τ>0GWs(Z;−) −→ bu −→ bsp
(5.7)

where the right-hand maps are bo⊕ bo +→ bo
ψ3−1→ bso and bu→ bsp

ψ3−1→ bsp respec-
tively. These spectra are the deloopings of BO, BSO, BU and BSp, and their
Z/2-cohomology as left modules over the Steenrod algebra A follows from the
calculations of [49], as

H∗(bo) = A{ι1}/(Sq2ι1) H∗(bso) = A{ι2}/(Sq3ι2)

H∗(bu) = A{ι2}/(Sq1ι2,Sq3ι2) H∗(bsp) = A{ι4}/(Sq1ι4,Sq5ι4),

where ιr denotes a class of degree r, and here and in the rest of this proof all
cohomology is taken with Z/2-coefficients.

The map ψ3 − 1 : bsp→ bsp induces multiplication by 8(= 32 − 1) on the lowest
homotopy group π4(bsp) = Z2, so by the above it induces the zero map on Z/2-
cohomology.

The based map BO(1) L−1→ BO
ψ3−1→ BSO, where L is the tautological real

line bundle over BO(1), is nullhomotopic as ψ3(L) = L⊗3 = L. Thus the adjoint

Σ∞BO(1)→ bo
ψ3−1→ bso is nullhomotopic too, but the first map sends the generator

ι1 ∈ H1(bo) to w1(L) ∈ H1(BO(1)) and so sends H2(bo) = Z/2{Sq1ι1} isomorphi-
cally to H2(BO(1)) = Z/2{w1(L)2}. Thus the map ψ3 − 1 : bo→ bso is zero on
H2(−), and so on all Z/2-cohomology.

We obtain extensions of A-modules

A{ι1}/(Sq3ι1)←− H∗(τ>0GWs(Z; +))←− A{ι′1}/(Sq2ι′1)⊕A{ι′′1}/(Sq2ι′′1)

A{ι3}/(Sq1ι3,Sq5ι3)←− H∗(τ>0GWs(Z;−))←− A{ι2}/(Sq1ι2,Sq3ι2)

and so find that H∗(τ�0GWs(Z; +)) is generated as an A-module by three elements
of degree 1, and H∗(τ�0GWs(Z;−)) is generated as an A-module by an element of
degree 2 and an element of degree 3.
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In the second case the right-hand term vanishes in total degree 3, so there is a
unique lift ῑ3 of the generator ι3 of the left-hand term. This must satisfy either
Sq1(ῑ3) = 0 or Sq1(ῑ3) = Sq2(ι2). The latter can be ruled out by assuming that this
is the case and then using the Adams spectral sequence to calculate π3(GWs(Z;−)),
which one finds to be Z/4. But it is in fact seen to be Z/16 by calculating with (5.7)
(cf. the corresponding table in [11, section 3.2]). Writing unsM for the unstable
quotient of an A-module M , we therefore find that

unsH∗(τ>0GWs(Z; +)) ∼= unsA{ι1, ι′1, ι′′1}
unsH∗(τ>0GWs(Z;−)) ∼= unsA{ι2, ῑ3}/(Sq1ι2,Sq1ῑ3).

In the first case a basis for unsA{ι1} is given by those Sqi1 · · · Sqir ι1 which are
admissible and have excess � 1, i.e. the Sq2i · · · Sq2Sq1ι1, having degrees 1 + 1 +
2 + 22 + · · ·+ 2i. This is only congruent to 1 modulo 4 for the class ι1 itself. The
same goes for the summands generated by ι′1 and ι′′1 .

In the second case, unsA{ι2}/(Sq1ι2) has basis given by those Sqi1 · · · Sqir ι2
which are admissible, have excess � 2, and have ir � 2, i.e. the Sq2i · · · Sq22

Sq2ι2.
These all have even degree. On the other hand unsA{ῑ3}/(Sq1ῑ3) has basis given
by those Sqi1 · · · Sqir ι2 which are admissible, have excess � 3, and have ir � 2.
These have the form Sq2j(2i+1) · · · Sq2(2i+1)Sq2i+1Sq2i−1 · · · Sq2ι3 for some i � 1
and j � −1 (correctly interpreted), and some checking of cases shows that such
elements have degree congruent to 3 modulo 4 only in the case of ι3 itself. �

Lemma 5.8. If n is even, so (HZ, λ) is symmetric, then on π1 the map

BAut(HZ, λ) inc−→ Ω∞+2nLs(Z) −→ τ�1Ω∞+2nLs(Z) = K(Z/2, 1)

assigns to an automorphism φ of (HZ, λ) the number dimZ/2(Z/2⊗ tors HZ

(Id−φ)HZ

)
modulo 2. In particular this function r1 is a homomorphism, and the map in
question is the cohomology class given by r1.

Proof. Given a φ ∈ Aut(HZ, λ), we are required to evaluate the de Rham invariant
of the algebraic mapping torus Tφ of φ : HZ[−n]→ HZ[−n]. Fortunately the value
of this invariant does not depend on the symmetric structure but only on the
underlying chain complex Tφ � (HZ[−n]

1−φ−−−→ HZ[−n− 1]), and is given by

dimZ/2(Z/2⊗ torsH−n−1(Tφ; Z)) = dimZ/2(Z/2⊗ tors HZ

(Id−φ)HZ

). �

Remark 5.9. Using the first fibration in (5.7) and the calculation of the groups
H1(τ>0GWs(Z; +); Z/2) from the proof of lemma 5.7, we find that

H1(Ω∞
0 GWs(Z; +); Z) ∼= Z/2⊕ Z/2⊕ Z/2. (5.8)

We may describe this as follows.
Negation gives automorphisms i+ and i− of (Z, (1)) and (Z, (−1)) respectively,

and there is an automorphism irot of the positive definite form
(
Z2, ( 1 0

0 1 )
)

given
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by the rotation
(

0 −1
1 0

)
. In parallel we have the maps

(det+,det−) : H1(Ω∞
0 GWs(Z; +); Z) −→ H1(Ω∞

0 GWtop(R; +); Z) = Z/2⊕ Z/2

which assign to an automorphism of a symmetric form the sign of the determinant
of the induced map on positive and negative definite subspaces of its realification,
as well as the de Rham invariant r1 : H1(Ω∞

0 GWs(Z; +); Z)→ Z/2 as described
in the proof of Lemma 5.8. It is easy to check that r1 is nontrivial on each of
i+, i−, irot, and that det+(i+) and det−(i−) are nontrivial but all other values of
det± on i+, i−, irot are trivial. Thus i+, i−, irot give a basis for the left-hand side
of (5.8), and det+, det−, r1 give a dual basis for it.

The following lemma finishes the proof of theorem 5.6.

Lemma 5.10. If n is odd then the composition

Ω∞
0 GWs(Z;−) −→ Ω∞+2nLs(Z)

Ω∞+2nr−−−−−−→ Ω∞+2n

⎛⎝⊕
j∈Z

HZ/2[4j + 1]

⎞⎠ −→ K(Z/2, 3)

given by projecting to the lowest degree summand is the unique nontrivial element
of H3(Ω∞

0 GWs(Z;−); Z/2) = H3(BSp∞(Z); Z/2).

Proof. We implicitly 2-complete everywhere, and work in Z/2-cohomology. Firstly,
taking infinite loop spaces of the second fibration in (5.7) and looping it up gives a
fibration

Sp −→ Ω∞
0 GWs(Z;−) −→ BU,

which is pulled back from a fibration Sp→ Ω∞
0 GWs(F3;−)→ BSp. By [15, propo-

sition I.4.2] the Serre spectral sequence for the latter fibration collapses, so that of
the former does too. It follows that H3(Ω∞

0 GWs(Z;−)) = Z/2, and in terms of the
notation introduced in the proof of lemma 5.7 it is generated by Ω∞ῑ3. We need to
show that the map in the statement of the lemma is the nontrivial element of this
group.

By the Main Theorem of [10] (and that fact that π1(Σ−2nLs(Z)) = 0) there is a
homotopy fibre sequence of 0-connected covers

τ>0((S2σ−2 ⊗K(Z))hC2) −→ τ>0GWs(Z;−) −→ τ>0Σ−2nLs(Z) (5.9)

where σ denotes the sign representation of C2. On cohomology the right-hand map
has the form

H∗(τ>0GWs(Z;−))←− A{ι2}/(Sq1ι2)⊕A{ι3}
in degrees � 3, and in terms of the calculations in the proof of lemma 5.7 we must
have ι2 �→ Aι2 and ι3 �→ Bῑ3 for some A, B ∈ Z/2. We need to show that B = 1,
which we shall do by analysing the cohomology of τ>0((S2σ−2 ⊗K(Z))hC2) in low
degrees.

The unit map S→ K(Z) induces an isomorphism on homotopy groups in degrees
� 2, and induces an injection Z/24 = π3(S)→ π3(K(Z)) = Z/48. Thus the map
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(S2σ−2)hC2 → (S2σ−2 ⊗K(Z))hC2 has fibre F which is 1-connected and has π2(F) =
Z/2. Taking 0-connected covers gives a fibration sequence

F −→ τ>0((S2σ−2)hC2) −→ τ>0((S2σ−2 ⊗K(Z))hC2). (5.10)

By the Thom isomorphism we have

H∗((S2σ−2)hC2) ∼= H∗(BC2) · u = Z/2[x] · u

with A-module structure determined by Sq(u) = w(2σ − 2) · u = (1 + x2) · u , the
Cartan formula, and the usual action of Steenrod operations on H∗(BC2) = Z/2[x].
In degrees � 3 this means that the only nontrivial operations are

Sq1(xu) = x2u Sq2u = x2u Sq2(xu) = x3u.

Using the fibre sequence τ>0((S2σ−2)hC2)→ (S2σ−2)hC2 → HZ we deduce that
Hi(τ>0((S2σ−2)hC2)) is trivial for i = 0 and 1-dimensional for i = 1, 2. Com-
bined with (5.10), we find that Hi(τ>0((S2σ−2 ⊗K(Z))hC2)) is trivial for i = 0,
1-dimensional for i = 1, and at most 1-dimensional for i = 2. Returning to (5.9),
as H1(τ>0((S2σ−2 ⊗K(Z))hC2)) = Z/2 it follows that A = 0, but then we have an
exact sequence

0→ Z/2{ι2} → H2(τ>0((S2σ−2 ⊗K(Z))hC2))→ Z/2{ι3} B·−→ Z/2{ῑ3} → · · ·

and as H2(τ>0((S2σ−2 ⊗K(Z))hC2)) has dimension at most 1 it follows that B = 1,
as required. �

The following lemma shows that the de Rham invariants vanish in the presence
of a quadratic structure.

Lemma 5.11. If (HZ, λ) is a nondegenerate (−1)n-symmetric form and μ : HZ →
Z/(1− (−1)n) is a quadratic refinement of it, then the composition

BAut(HZ, λ, μ) −→ BAut(HZ, λ)
inc−−→ Ω∞+2nLs(Z)

Ω∞+2nr−−−−−−→ Ω∞+2n

⎛⎝⊕
j∈Z

HZ/2[4j + 1]

⎞⎠
is nullhomotopic.

Proof. The composition of the first two maps agrees with

BAut(HZ, λ, μ) inc−→ Ω∞+2nLq(Z) −→ Ω∞+2nLs(Z),

but by [51, eq. (1.10)] the composition Lq(Z)→ Ls(Z) r→⊕
j∈Z HZ/2[4j + 1] is

null. �
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6. Examples and applications

6.1. Multiplicativity of the signature

Normal L-theory Ln(Z) fits into a fibration sequence

Lq(Z) −→ Ls(Z) −→ Ln(Z),

where the first map encodes the forgetful map from quadratic to symmetric
L-theory. Its homotopy groups are therefore

πi(Ln(Z)) =

⎧⎪⎨⎪⎩
Z/8 i ≡ 0 mod 4
Z/2 i ≡ 13 mod 4
0 i ≡ 2 mod 4.

It is in fact a ring spectrum and Ls(Z)→ Ln(Z) is a ring map, which may be seen
by tracing through the definitions in [42, p. 384]; as it is 2-local, it follows as in
§ 5.1 that Ln(Z) is an Eilenberg–MacLane spectrum. Taylor and Williams produce
specific maps

L̂ : Ln(Z) −→
⊕
i∈Z

HZ/8[4i]

r̂ : Ln(Z) −→
⊕
j∈Z

HZ/2[4j + 1]

and Σk : Ln(Z)→⊕
k∈Z HZ/2[4k + 2] exhibiting it as an Eilenberg–MacLane

spectrum, whose precompositions with Ls(Z)→ Ln(Z) are L mod 8, r, and 0
respectively.

Ranicki has constructed [42, p. 385] a normal signature map σn such that

commutes up to homotopy; here MSG is the Thom spectrum of the universal
spherical fibration over BSG, and is a model for the cobordism theory given by
Quinn’s normal spaces [38, 40]. Furthermore, Taylor and Williams construct L̂ so
that L̂ ◦ σn corresponds under the Thom isomorphism to the characteristic class
of stable spherical fibrations l ∈ H4∗(BSG; Z/8) constructed by Brumfiel–Morgan
[6, §8]. Using this we can apply the results of the previous section to oriented fibra-
tions with finite Poincaré fibre as follows. (It is likely that this can be extended
to Poincaré fibres which are merely finitely-dominated, but we do not pursue this
here.)

Proposition 6.1. If F d → E
π→ B is an oriented fibration with finite Poincaré

fibre and finitely-dominated base then it has a fibrewise Spivak normal fibration νπ,

The family signature theorem 2059

https://doi.org/10.1017/prm.2022.91 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.91


and ∫
π

l(νπ) =

{
0 d odd
(Ω1−(−1)n

p̃h)(ξR) d even
∈ H4∗−d(B; Z/8).

Proof. By pulling back to a finite CW-complex dominating B we may assume
without loss of generality that B = |K| is the realization of a finite semi-simplicial
set. By induction on the simplices of K we may construct a U ⊂ |K| × RN and
compatible maps

ψ|σ : U |σ := U ∩ (σ × RN ) ∼−→ E|σ
for each simplex σ of K, such that each U |σ ⊂ σ × RN is a codimension 0 compact
submanifold with boundary ∂(U |σ) = (U |∂σ) ∪ ∂0(U |σ). The inclusions U |τ → U |σ
for τ � σ are equivalences, as E|τ → E|σ are, and it follows from Poincaré duality
and induction over simplices that (for N large enough) the inclusions ∂0(U |τ )→
∂0(U |σ) are equivalences too. As the inclusions ∂0(U |σ)→ U |σ have homotopy
fibre a (N − d− 1)-sphere when σ is a 0-simplex, by Spivak’s theorem [48,
proposition 4.6], it follows that the same is true for all simplices. Then

∂0U :=
⋃
σ∈K

∂0(U |σ) −→
⋃
σ∈K

U |σ = U � E

also has homotopy fibre a (N − d− 1)-sphere so gives the required oriented spherical
fibration νπ. Collapsing the complement of U gives a Pontrjagin–Thom collapse map

|K|+∧SN −→ U/∂0U � Th(νπ → E)

which can be composed with the Thomification of the map E → BSG classifying
the oriented spherical fibration νπ to obtain α : |K| → Ω∞+dMSG. The mani-
folds U |σ ⊂ σ × RN can inductively be equipped with singular chains representing
(ψ|σ)−1

∗ [E|σ, E|∂σ] ∈ Hd+dim(σ)(U |σ, U |∂σ; Z) in order to define a semi-simplicial
map f : K → MockP (d).

We can then form the diagram

in which all regions commute up to homotopy tautologically, apart from the leftmost
trapezium, which commutes up to homotopy by surgery below the middle dimension
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as explained in § 4.8. The claimed formula then follows by combining this diagram
with theorem 5.5. �

Remark 6.2. The fibrewise Spivak fibration νπ exists without assuming that
the fibre is finite; constructions are given in [38, proposition 1.8] and [25,
Addendum C].

Remark 6.3. Taylor and Williams do not settle what characteristic class r̂ ◦ σn
corresponds to in H4∗+1(BSG; Z/2) under the Thom isomorphism, but if we call it
ρ for now then there is a corresponding identity for

∫
π
ρ(νπ). It would be interesting

to determine what this ρ is.

As a consequence we obtain the following generalization of the result explained
in remark 2.4. It generalizes [27, theorem 7.2] in that the base can be an arbitrary
Poincaré complex, not necessarily simple.

Corollary 6.4. Let F d → E4k π→ B4k−d be an oriented fibration of oriented
Poincaré complexes with finite fibre. Then

σ(E) ≡ σ(B) · σ(F ) mod 4.

Proof. Writing νX for the Spivak normal fibration of a Poincaré complex X, and νπ
for the fibrewise Spivak normal fibration of π, there is an identity νE � π∗(νB) ∗ νπ
(see [25, theorem I]). Using the properties of the characteristic class l given in [6,
theorem I] we calculate

σ(E) ≡
∫
E

l(νE) mod 8

≡
∫
E

π∗l(νB) · l(νπ) mod 4

≡
∫
B

l(νB)
∫
π

l(νπ) mod 4

but by proposition 6.1 and the last part of lemma 5.4 we have
∫
π
l(νπ) ≡ σ(F )

mod 4 and so the above becomes σ(B) · σ(F ) mod 4. �

This line of reasoning will give, in principle, information about σ(E)− σ(B) ·
σ(F ) mod 8. There will be additional terms coming from (i) the characteristic
class l not exactly being multiplicative modulo 8 [6, theorem I (iii)], and (ii) the
classes p̃hi not necessarily vanishing mod 8. It would be interesting to compare this
with the formula of [47].

6.2. Fibrewise Stiefel–Whitney classes

As a further application of proposition 6.1 we have the following vanishing result
for fibre integrals of fibrewise Stiefel–Whitney classes.
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Corollary 6.5. If F → E
π→ B is an oriented fibration with finite Poincaré fibre,

then ∫
π

wi(−νπ) =

{
χ(F ) i = d

0 else.

This is obvious for fibre bundles, as the vertical tangent bundle has dimension
d and so wi(−νπ) vanishes for i > d. But for fibrations with Poincaré fibre it does
not seem obvious.

Proof. The Brumfiel–Morgan class l reduces modulo 2 to the square of the Wu class
[6, theorem I (ii)], so as the p̃hi reduce to zero modulo 2 for i > 0 we obtain from
proposition 6.1 the identity

∫
π
V (νπ)2 ≡ σ(F ) mod 2 which is also χ(F ) mod 2.

As in the proof of theorem 5.5 we take the total Steenrod square of this to obtain

χ(F ) mod 2 ≡ Sq
(∫

π

V (νπ)2
)

=
∫
π

w(−νπ)

as required. �

6.3. Multiplicativity of the de Rham invariant

We can make a similar analysis of the de Rham invariant d, though it turns out
to not be multiplicative in general: however, the failure to be multiplicative gives
an interpretation of the cohomology classes r1 and r3 appearing in theorem 5.6.
See [1] for a special case, and [9] for a related result on the R-semicharacteristic.

Proposition 6.6. Let F d → E4k+1 π→ B4k+1−d be an oriented block bundle of ori-
ented topological manifolds. If d is odd then d(E) = σ(B) · d(F ). If d is even with
monodromy φ : B → BAut(Hd/2(F ; Z)/tors, λ) then

d(E) = d(B) · σ(F ) +
∫
B

w(TB) · φ∗Sq(r2−(−1)d/2).

Proof. We have V (νE) = 1 + V2(νE) + V4(νE) + · · ·+ V2k(νE), so

d(E) =
∫
E

V2k(νE) · Sq1V2k(νE) =
∫
E

V (νE) · Sq1V (νE).

The stable isomorphism TE ∼=s π
∗TB ⊕ T sπE gives V (νE) = π∗V (νB) · V (νπ),

using which we can rewrite this as∫
E

π∗(V (νB) · Sq1V (νB)) · V (νπ)2 + π∗(V (νB)2) · V (νπ) · Sq1V (νπ)

=
∫
B

V (νB) · Sq1V (νB)
∫
π

V (νπ)2 +
∫
E

π∗(V (νB))2 · V (νπ) · Sq1V (νπ).

As in the proof of corollary 6.5 we have
∫
π
V (νπ)2 ≡ σ(F ) mod 2 and so the first

term simplifies to d(B) · σ(F ) (which is trivial unless d ≡ 0 mod 4). Abbreviating
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Vi := Vi(νπ) we have

V (νπ) · Sq1V (νπ) =
∑
i

V2i · Sq1V2i +
∑
i<j

V2i · Sq1V2j + V2j · Sq1V2i

=
∑
i

V2i · Sq1V2i + Sq1

⎛⎝∑
i<j

V2i · V2j

⎞⎠
and so the second term in the above equation can be written as

∫
B

V (νB)2 ·
∫
π

∑
i

V2i · Sq1V2i +
∫
E

Sq1

⎛⎝π∗(V (νB))2 ·
∑
i<j

V2i · V2j

⎞⎠ .

The latter term is zero, as E is by assumption oriented so Sq1 into its top cohomol-
ogy is zero. Furthermore

∫
π

∑
i V2i · Sq1V2i is the family de Rham class, so is equal

to the scalar d(F ) if d is odd by theorem 5.2, and is equal to the class r1 or r3 if d is
even by theorem 5.6. Combining this with the fact that

∫
B
V (νB)2 ≡ σ(B) mod 2

if B is even-dimensional, and with
∫
B
V (νB) · − =

∫
B

Sq(−), gives the claimed
formulas. �

Example 6.7. Let CP
2 → E4k+1 π→ RP

4k−3 be the standard fibering of the Dold
manifold, i.e. E = S4k−3 ×C2 CP

2 where the involution acts antipodally on S4k−3

and by complex conjugation on CP
2. The generator of π1(RP

4k−3) = Z/2 acts on
the intersection form (Z, (1)) of CP

2 by a sign, so it follows as in remark 5.9 that
φ∗r1 = x ∈ Z/2[x]/(x4k−2) = H∗(RP

4k−3; Z/2). We have∫
RP4k−3

w(TRP
4k−3) · Sq(x) =

∫
RP4k−3

(1 + x)4k−2 · (x+ x2) = 1,

and so d(E) = d(RP
4k−3) · σ(CP

2) + 1 = 1, as RP
4k−3 has de Rham invariant 0.

In contradistinction with this example, the following shows that for topological
fibre bundles with fibres of dimension 2 mod 4 the invariant φ∗r3 is trivial (so e.g.
the de Rham invariant is multiplicative for such bundles, by proposition 6.6).

Proposition 6.8. If F 4k+2 → E
π→ B is an oriented topological fibre bundle, with

φ : B → BSp2g(Z) classifying the associated local system of symplectic forms, then
φ∗r3 = 0 ∈ H3(B; Z/2).

Proof. Writing V (νπ) = 1 + V2 + V4 + V6 + · · · , by theorem 5.6 and the Family
Signature Theorem we have φ∗r3 =

∫
π
V2k+2 · Sq1V2k+2. Without loss of generality

we may suppose that B is a (not necessarily orientable) 3-manifold, whereupon
we wish to show that

∫
B
φ∗r3 =

∫
E
V2k+2 · Sq1V2k+2 vanishes.

The Wu class of B has the form V (νB) = 1 + x for x of degree 1, so writ-
ing V (νE) = 1 + V̄1 + V̄2 + · · ·+ V̄2k+2 the identity V (νE) = V (νB) · V (νπ) implies
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that V̄2i = V2i and V̄2i+1 = x · V2i, so in particular V2i = 0 for i > k + 1. Thus

w(TπE) = Sq(V (νπ)) = 1 + (V2) + (Sq1V2) + (V4 + V 2
2 ) + · · ·+ (Sq2k+1V2k+2) + (V 2

2k+2)

and as TπE has dimension 4k + 2 it follows that 0 = w4k+3(TπE) = Sq2k+1V2k+2.
Using the Adem relation

Sq2Sq2k+1 = Sq2k+2Sq1 +

{
Sq2k+3 k odd
0 k even

and instability, we deduce that Sq2k+2Sq1V2k+2 = 0 too. But then by definition of
the Wu classes of E and the relation V̄2k+2 = V2k+2 we find that

0 =
∫
E

Sq2k+2Sq1V2k+2 =
∫
E

V̄2k+2Sq1V2k+2 =
∫
E

V2k+2Sq1V2k+2

as required. �

6.4. Integrality

For an oriented topological block bundle π : E → |K| with d-dimensional fibres
the discussion in § 5.3 shows that there is a 2-integral refinement L(T sπE) ∈
H∗(E; Z(2)) of the Hirzebruch L-class, and that its fibre integral satisfies∫

π

L(T sπE) =

{
p̃h(φ∗ξR) d is even
0 d is odd

∈ H∗(|K|; Z(2)).

At odd primes p a similar result is available in a range of degrees: for this we can
work either with KO[12 ] or Ls(Z); lets take the former for concreteness. As the
first torsion in π∗(S(p)) is in degree 2p− 3, it follows from the Atiyah–Hirzebruch
spectral sequence that there is a unique homotopy class

τ�0KO(p) −→
�(2p−4)/4	⊕

k=0

HZ(p)[4i]

which on homotopy groups sends ak to 1 for 0 � k � �(2p− 4)/4�. Pulled back
along the Sullivan orientation ΔTop these cohomology classes correspond under the
Thom isomorphism to canonical p-local classes Lk ∈ H4k(BSTop; Z(p)) defined for
4k < 2p− 3, whose rationalizations are the usual topological L-classes. If d = 2n
then looped 2n times and pulled back along sign : BAut(HR, λ)→ Ω∞+2nKO(p)

these classes correspond to 22k−nch2k−n(ξ) by theorem 3.2 and its proof (note that
(2k − n)! is a p-local unit as 2k < p− 1, so ch2k−n is indeed defined p-integrally).
Theorem 3.1 then gives the p-integral identity∫

π

Lk(T sπE) =

{
22k−nch2k−n(φ∗ξ) d is even
0 d is odd

∈ H∗(|K|; Z(p))

for 4k < 2p− 3.
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