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Abstract

Let S(p) be the family of holomorphic functions / defined on the unit disk D , normalized
by /(0) = f{0) - 1 = 0 and univalent in every hyperbolic disk of radius p. Let C(p)
be the subfamily consisting of those functions which are convex univalent in every hyperbolic
disk of radius p . For p = oo these become the classical families 5 and C of normalized
univalent and convex functions, respectively. These families are linearly invariant in the sense
of Pommerenke; a natural problem is to calculate the order of these linearly invariant families.
More precisely, we give a geometrie proof that C(p) is the universal linearly invariant family
of all normalized locally schlicht functions of order at most coth(2/>). This gives a purely
geometric interpretation for the order of a linearly invariant family. In a related matter, we
characterize those locally schlicht functions which map each hyperbolically &-convex subset of
D onto a euclidean convex set. Finally, we give upper and lower bounds on the order of the
linearly invariant family S(p) and prove that this class is not equal to the universal linearly
invariant family of any order.

1991 Mathematics subject classification (Amer. Math. Soc.): 30 C 99, 30 C 45, 30 C 50, 30 D
45.

1. Introduction

Pommerenke ([14], [15]) initiated the study of linearly invariant families of
locally schlicht (univalent) holomorphic functions denned in the unit disk
D = {z: \z\ < 1}. (We shall use the words "schlicht" and "univalent" inter-
changeably throughout this paper.) A family &~ of locally univalent func-
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402 Wancang Ma and David Minda [2]

tions holomorphic on the unit disk D is called linearly invariant if each
function / e f? is normalized by /(0) = f(0) - 1 = 0 , and also, for each
/ £ & and any conformal automorphism T of D the Koebe transform of

f ( , = f(T(z))~f(T(0))
JTK ' f(T(0))T'(0) '

also belongs to &. For T(z) — (z + a)/(I + az) we write f(z, a) in place
of fT. Explicitly,

Let Aut(D) denote the group of conformal automorphisms of D. A locally
schlicht holomorphic function / on D with /(0) = /'(O) - 1 = 0 is called
linearly invariant if the linearly invariant family &~(f) = {fT: T € Aut(D)}
of all Koebe transformations of / has finite linearly invariant order, which
is defined by

T e Aut(D) 1.

The order of a linearly invariant function satisfies «(/) > 1 and equality
holds if and only if / is a normalized convex univalent function [14]. The
order of a linearly invariant family & is defined by

ZGD|=SUP

For a > 1, let ^ ( a ) be the linearly invariant family consisting of all linearly
invariant functions with linearly invariant order less than or equal to a . For
a linearly invariant family &" one often wishes to determine its order and to
obtain growth, distortion and covering theorems for the family. Pommerenke
[14] derived a number of sharp growth, distortion and covering theorems for
the family &~(a). He also showed that ^(a) is a compact, normal family.

Linear invariance is closely related to the concepts of uniform local uni-
valence and uniform local convexity. These latter two notions are defined
relative to hyperbolic geometry on D. The density for the hyperbolic metric
is AD(z) = 1/(1 — \z\ ) . The hyperbolic distance function on D induced by
this metric is

d. {a, b) = arctanh = .
1 — ab

The hyperbolic disk in D with hyperbolic center a e D and hyperbolic radius
p, 0 < p < oo, is defined by Dh(a, p) = {z e D: dh(a, z) < p). For an
analytic function / in D we let p(z, f) be the hyperbolic radius of the
largest hyperbolic disk in D centered at z in which / is univalent. Note
that p{z, f) can be zero or infinite. Define p(f) = inf{/?(z, / ) : z e D}.
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[3] Euclidean linear invariance 403

A function / is called uniformly locally univalent (in the hyperbolic sense)
in D provided p(f) > 0. For 0 < p < oo, let S(p) be the family of all
locally univalent holomorphic functions / in D normalized by /(0) = 0,
f(0) = 1 and satisfying p(f) > p. Then S(p) is a linearly invariant family
since a conformal automorphism of D maps a hyperbolic disk onto another
hyperbolic disk with the same hyperbolic radius and S = S(oo) is the usual
class of normalized univalent functions. For a locally schlicht holomorphic
function / we define

pc(f) = sup{/>: / is univalent in Dh(a, p) and f(Dh(a, p))

is convex for all a e D}.

Clearly, pc(f) < p(f). A locally univalent holomorphic function / is
called uniformly locally convex (in the hyperbolic sense) provided pc(f) >
0. Clearly, every convex function is uniformly locally convex. Let C(p),
0 < p < oo, be the class of normalized uniformly locally convex functions /
such that pc(f) > p. Then C(p) is a linearly invariant family and C(oo)
is the usual class C of normalized convex univalent functions.

It is not difficult to verify that the three families \J{&~(a): a > 1},
U{5(/>): p > 0} , and \J{C(p): p > 0} are all equal. In words, a function /
is linearly invariant if and only if it is uniformly locally univalent, or if and
only if it is uniformly locally convex. In [7], we presented two extensions of
the notion of linear invariance to general planar regions, one involving the
hyperbolic metric and the other the quasihyperbolic metric. We related these
concepts of linear invariance to uniform local univalence relative to each of
these metrics. In this paper we will focus our attention on the special case of
the unit disk.

Pommerenke [14] proved that C(oo) = ^"(1) and ^(coth(2/>)) c C(p).
Harmelin [7] gave the inclusion C(p) c &~(co\\i(p)). In Section 4 of this
paper, we investigate the relationship between the families C(p) and ^(a).
We show that C(p) — ^"(coth(2^)). More precisely, we show that pc(f) =
p if and only if a ( / ) = coth(2/>). So the order of the linearly invariant
family C(p) is coth(2^>). This gives a geometric characterization of linearly
invariant functions and provides a geometric interpretation for the order
a(f) of a linearly invariant function.

It is then natural to inquire about the relationship between the fami-
lies S(p) and ^(a). On one hand, Pommerenke [14] proved &~(a) c
S(arctanh(5)/2), where s is defined by

/ *
Jo
JO i - r «

On the other hand, it is easy to see that S(p) c ^"(2 coth(/?)). This inclusion,
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together with Hurwitz's Theorem, shows that S(p) is a compact normal
family. In Section 5, we will establish a stronger inclusion. Also, unlike the
family C(p), we show that S(p) is not equal to &~(a(p)), where a(p) is
the order of the linearly invariant family S(p).

One interesting aspect of the class S(p) is that there exist both a necessary
and a sufficient condition for / e S(p) in terms of the Schwarzian derivative
Sf of / , where

/"(z)
S { z ) =

The sufficient condition is that if / is holomorphic and locally univalent in
D with

where p > 0, then / e S(p) ([1], [9]). This result is sharp for all p > 0. On
the other hand, the following elementary necessary condition for / € S(p),

(l-\z\2)2\Sf(z)\<6/tmh2(p),

has been noted a number of times ([6], [9], [12], [18] and [20]). For finite p,
the known upper bound is not sharp. Also, in Section 5, we use our inclusion
result to improve this known upper bound on the Schwarzian derivative.

We want to thank the referee for carefully reading the paper and offering
useful suggestions that helped clarify the paper.

2. Examples

We now investigate two examples of classes of functions that will be needed
in the remainder of the paper.

EXAMPLE 1. First, we consider a function ka in J?"(a) which is known
to be extremal for a number of problems. We determine those values of a
for which this function belongs to either C{p) or S(p). For a > 1 set

It is not difficult to show that the order of the function ka is a . Note that
k2 is the Koebe function z/(l - z)2 and kx(z) = z/(l - z).

First, we determine when ka belongs to S(p). The density of the hyper-
bolic metric on the right half-plane M = {z: Re z > 0} is AH(z) = 1/2 Re(z)
and the hyperbolic distance is

dh{a, b) = arctanh
a + b
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[5] Euclidean linear invariance 405

The hyperbolic disk in H with center a and radius p is Dh(a, p) = {z:
dh{a, z) < p} . If R = tanh(p), then in euclidean terms

Dh(a,p) = \z: z - ilma
\-R2 <

2R

which is a euclidean disk. Now, for each a e i ,

sup{arg(z,/z2): z{, z2e Dh(a, p)}

= 2arcsin{2i?Rea[(l +i?2)2(Rea)2 + (

< 2arcsin{2i?/(l + R2)} = 4 arctan .R.

For a > 1, notice that
a f l + z

and that (1 + z)/(l — z) is a conformal map from D onto H that maps
hyperbolic disks in D with hyperbolic radius p onto hyperbolic disks in H
with hyperbolic radius p. We see that ((1 + z)/( 1 - z))a is univalent in every
hyperbolic disk in D with hyperbolic radius p if and only if 4aarctani? <
271. Thus for R = tanh(/?), ka e S{p) if and only if 4a arctan R <2n . In
particular, ka € S(p) for a = n/(2 arctan R).

Next, we determine when ka e C(p). Note that (z + a)/(l +az) is a con-
formal automorphism of D that maps {z: \z\ < R = tanh(/9)} conformally
onto Dh(a, p). Now, / belongs to C{p) if and only if for every a e D,
the function f(z, a) is convex in \z\ < R = tanh(/>). It is easy to verify
that for a e D,

1 +
, a)

where u; = z(l - a ) / ( l - a ) and e
w = Re1?> and eiew - Re(> . Then

= z(l +a)/(l +a). For |z| =R, let

= (1 -R 2 ){ \ + R2 + R(a - l)cos<p + R(a+ 1)cosy/},

which is nonnegative for all <p and y/ if and only if a < coth(2/o). In
particular, ka e C(p) for a = coth(2/>).

EXAMPLE 2. For p > 0 set

exp(ygz) - 1
«

^ 2

2"
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Then h „ is a normalized entire function which is univalent in every euclidean
disk with radius n/fi, but not in any larger disk.

Now we regard hg as defined just on D and determine a(hB) and p(hB).
It is an elementary calculation to show that for /? > 1

- * ( ' • * ) •
a(hfi)

Consequently, h B e ^"(a) when 0 — a + v a2 - 1. For a fixed p > 0,
each hyperbolic disk Dh(a, p) in D is a euclidean disk which attains its
maximal euclidean radius tanh(/>) at the origin. Therefore, for ft > n,
p(hfi) - arctanh(7t//J) and hp

3. Euclidean invariant differential operators

We introduce invariant differential operators for holomorphic functions
mapping the unit disk into the complex plane.

DEFINITION. Suppose / is holomorphic in D. Set

Dlf(z) = (l-\z\2)/(z),

and
D2f(z) = (1 - |z|2)2/"(z) - 2z(l - | z | 2 ) / (z) .

Note that Z>,/(0) = / ( 0 ) and D2f(0) = / ' ( 0 ) . In terms of these differ-
ential operators the linearly invariant order of a locally schlicht function /
is

For a € D set Ta(z) = (z — a)/(l — az). Then Ta is a conformal au-
tomorphism of D which sends a to 0, T_a = T~l and T'a(0) = 1 - \a\2,
7^(a) - 1/(1 - \a\2). Also, for * e C, set Sb{z) = z - b. Note that
5_fc = S^1. If / — Sf,a, o / o r_fl , then / is a holomorphic function on
D with /(0) = 0. It is straightforward to verify that Dxf{a) = / ( 0 ) and
D2f(a) — / " (0 ) . We next establish an invariance property of these differen-
tial operators relative to the group Aut(D) of conformal automorphisms of
D and the subgroup Euc(C) of Aut(C) consisting of euclidean motions.

THEOREM 1. Suppose f is holomorphic in D. If R e Euc(C) and S e
Aut(D), then
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[7] Euclidean linear invariance 407

PROOF. Fix a e D and set b = S{a), g - Ro f o S. We establish
this result only in the case j = 1; the case j = 2 is virtually identical.
Then DJ(b) = / ( 0 ) , where / = Sf{b) o / o T_b and Dxg{a) = g(0),

where g = 5 , . o g o r_fl. Note that the functions / and g both fix
the origin. It suffices to show that 1/(0)1 = |Jr'(O)|. This is elementary
because g = R o / o S, where R = S , . o R o S_f,b, is a rotation of C and

S = TboSoT_a is a rotation of D.

There is a close connection between these invariant differential operators
and hyperbolic curvature. The hyperbolic curvature of a path y: z = z(t) in
D is

where K^(Z, y) denotes the euclidean curvature,

Note that Ke(0, y) = Kh(0, y). In words, the hyperbolic curvature and eu-
clidean curvature coincide at the origin. Recall that hyperbolic curvature is
invariant under the group Aut(D), that is, Kh(S(z), S o y) = Kh{z, y) for
any S1 € Aut(D). For more details, see [2], [5] and [10]. Similarly, euclidean
curvature is invariant under the group Euc(C).

EXAMPLE 3. If y is the positively oriented boundary of the hyperbolic
disk Dh(a, p), then Kh(z, y) = 2coth(2/>).

The formula for the change of euclidean curvature under a locally schlicht
holomorphic function / is [2]

Now we derive an analogous formula for the change from hyperbolic curva-
ture to euclidean curvature under a locally schlicht holomorphic function.

THEOREM 2. Suppose f is holomorphic and locally schlicht in D. Then

Ke(f(z), foy)\Dxf{z)\ = Kh{z, y) + Im | ffig ^ j .

PROOF. Fix a e D. Set / = Sf{a) o f o T_a and y = Ta o y. If y

is parametrized by z = z(r) and z(t0) — a, then y is parametrized by
z = z{t) = Ta o z(t) and z(t0) = 0 . Also, note that the unit tangent
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to y at a and the unit tangent to y at 0 are equal since T'a(a) > 0; in
symbols, z'(to)/\z'(to)\ = z(to)/\z(to)\. Because hyperbolic curvature is in-
variant under Aut(D), euclidean curvature is invariant under Euc(C) and
foy — Sf( N o / o y, from Theorem 1 it suffices to show that

or equivalently,

K(f(0),f°y)\f(0)\ = K(0, f/'(0)
1/(0)

But this is just the formula for the change of euclidean curvature under a
locally schlicht holomorphic function.

4. Uniform local convexity

Now, we relate linear invariance and uniform local convexity in a precise,
quantitative manner.

THEOREM 3. Suppose f is locally schlicht in fl). Then a(f) = coth(2 pc(f)).
In particular, C(p) = ^"(coth(2/>)).

PROOF. First, we show that a(f) < coth(2/?c(/)). Fix zQ € D. It suffices
to show that

We need only consider the case in which D2f(zQ) ^ 0. Then there is a
unique point a e D such that zQ e dDh{a, pc{f)) and

Im
D2f(z0) z\tQ) 1

DJ(z0)

Let y: z = z(t) be a parametrization of dDh(a, pc(f)) and z{tQ) - zQ.
Then foy is a euclidean convex curve, so Ke(f(zQ), / o y) > 0. Hence,

0 < K e ( f ( z Q ) , foy)\Dxf{z0)\ = Kh(z0 ,y) + Im
D2f(zQ) z'(t0)
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or,

Here we have used Example 3.
Next, we establish coth(2pc(f)) < a(f). Determine p from coth(2/>) =

a(f) > 1 • For any a in D let y = dDh(a, p). Then from Theorem 2 we
see that for z ey,

Ke(f(z),foy)\Dlf(z)\ = Kh(z,y) + Ir->D2f{z) Z {t) l

> 2 coth(2/?) -

'""T""\JV(z) 1̂ (01.
D v ^ > 2(coth(2/?) - <*(/)) = 0.
DJ{z)

Thus, Ke(f(z), f o y) > 0, so f(Dh(a, ^)) is a euclidean convex set. Since
a € D is arbitrary, this yields pc{f) > p, which is equivalent to coth(2/?c(/))

Part of Theorem 3 follows from the work of Pommerenke [14]; we have
given our geometric proof since the proof of both halves of the theorem are
similar. From Theorem 3 and Pommerenke's results on ^"(a) we can obtain
a number of sharp growth, distortion and covering theorems as well as some
coefficient estimates for functions in the class C(p), the first subclass of S(p)
for which we can get some sharp results.

Next we relate linear invariance and uniform local convexity to hyperbolic
fc-convexity. A region Q in D is hyperbolically k-convex relative to D if for
any pair of distinct points a, b eQ, there exist two shortest arcs of constant
hyperbolic curvature k in Q connecting a and b. Note that curves in D of
constant hyperbolic curvature are circular arcs. This notion was introduced
independently by Flinn and Osgood [2] and Mejia [8]. If Q is a region in D
such that d£l is a closed Jordan curve of class C2 and Kh(z, dil) > k for
all z e dn, then Q is hyperbolically A>convex (see [2] and [8]).

EXAMPLE 4. Dh(a, p) is hyperbolically fc-convex if 2 coth(2/?) > k. This
follows easily from Example 3 and the sufficient condition given above.

DEFINITION. Suppose / is locally schlicht in D. Let k(f) = inf{k: f
maps each hyperbolically ^-convex subset of D injectively onto a euclidean
convex set}.

EXAMPLE 5. Let g(z) = z/(l - z). We show that k(g) = 2. The work of
Heins [4] and Pommerenke [16] implies that k(g) < 2 since every convex
univalent function maps each hyperbolically 2-convex subset of D confor-
mally onto a euclidean convex set; see also [2]. Next, we show that k(g) > 2.
Fix r > 1. Let Q = Dfl D(r/2, r/2) and assume the relative boundary
y = D n dD(r/2, r/2) is parametrized by y: z = z(t) so that Q lies to the
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left and 2(0) = 0. Note that z'(0) = -i. Then y has constant hyperbolic
curvature 2/r and Q. is hyperbolically (2/r)-convex. Because

= - - 2 < 0 ,

it follows that g(Q) is not euclidean convex. Hence, k(g) > 2/r. Since
r > 1 is arbitrary, we obtain k(g) > 2.

LEMMA. Suppose f is locally univalent in D. Then k(f)>2 with equality
if and only if f is convex univalent in D.

PROOF. We first show that

2coth(2/>c(/)) < max{fc(/), 2} = k'.

We may assume that k(f) < oo without loss of generality. For any e > 0,
determine p — p(e) from 2coth(2/>) = k' + e. Note that Dh(a, p) is
hyperbolically (k' + e)-convex from Example 4. It follows that / is convex
univalent in Dh(a, p). As a e D is arbitrary, pc{f) > p, which is equivalent
to 2coth(2pc(f)) < k' + e. Since e > 0 is arbitrary, this establishes the
inequality. Observe that if k(f) < 2, then k' — 2 and so pc(f) = °° • Thus,
k{f) < 2 implies that / is convex univalent in D.

All that remains is to show that if / is convex univalent in D, then
k(f) > 2. Suppose / is convex univalent in D; then a(f) = 1 [14]. This
implies that there exist points an € D and 6n e R such that if Tn(z) —
eien(z-an)/{l-a^z),then ^. '(0)->2. Set gn = fT. Note that each gn is
a normalized convex univalent function and the family of all such functions is
compact relative to local uniform convergence. By passing to a subsequence
if necessary, we may assume that the sequence {gn} is locally uniformly
convergent. The condition g'^(0) —• 2 implies that the limit function must
be the function g(z) = z/(l - z). Clearly, k(f) = k{R o f o S) whenever
R € Aut(C) and S e Aut(D), so k{gn) = k(f) for all n. Now we show
k{f) > 2. Let k > k(f) and suppose Q, is any hyperbolically fc-convex
subset of D. Fix a, b e Q. Let y{ and y2 be the two shortest arcs of
hyperbolic curvature k joining a and b. Then y^ c Q (7 = 1,2) since Q
is hyperbolically fc-convex. Also, y = yx U y2 is a closed Jordan curve whose
interior belongs to ft and foy is a euclidean convex curve. Hence, gn°y
is also a euclidean convex Jordan curve. Because gn —> g locally uniformly,
it follows that g o y is still euclidean convex. This implies that the line
segment [g(a), g(b)] lies in g(il). Hence, g(Q) is euclidean convex and
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g maps every hyperbolically A;-convex set onto a euclidean convex set. Since
k > k(f) is arbitrary, it follows that 2 = k(g) < k(f).

THEOREM 4. Suppose f is locally schlicht in D. Then k(f) =

PROOF. First, we show that 2coth(2/?c(/)) < k(f). This is an immediate
consequence of the inequality in the proof of the preceding lemma since we
know that k(f)>2.

Next, we demonstrate that k(f) < 2coth(2pc(f)). We may suppose that
pc(f) > 0. Set k = 2coth(2pc(f)). Let Q be any subset of D which is
hyperbolically A>convex. Since k > 2, Q is contained in a hyperbolic disk
with radius pc(f) [8]. In particular, / is univalent on Q. We shall show
that /(£2) is euclidean convex. This will give k(f) < k, the desired result.
Because / is injective on Q, it suffices to show that for any a, b in Q,
the euclidean line segment joining f(a) and f(b) lies in / ( Q ) . Consider
distinct points a, b e Q. Then there exist two closed hyperbolic disks A(

and A2 of hyperbolic radii pc{f) such that a, b € dAj (j — 1, 2) and
A, n A2 c Q. Now, /(A ) is euclidean convex, so the euclidean line segment
T — [f(a), f(b)] is contained in /(A ) (j = 1,2). Hence, there is a path
yj in Aj from a to b such that / o y = F (j = 1, 2). Since / is univalent
on both A, and A2, and yx, y2

 a r^ both paths from a to b, the condition
/ o yx = f o y2 implies that y1 = y2 . Let yx — y2 — y. Then y is contained
in A, n A2, so r = / o y lies in /(A, n A2) c / ( Q ) . This shows that /(Q)
is euclidean convex. Hence, k(f) < k.

THEOREM 5. Let Q c D be a simply connected region. Then Q is hyper-
bolically k-convex ifand only if / (Q) is convex for every f with a{f) < k/2.

PROOF. If Q is hyperbolically A;-convex and a{f) < k/2, it follows from
Theorems 3 and 4 that k(f) < k. Thus f(Q.) is convex.

On the other hand, assume f(Q) is convex for every / with a(f) < k/2.
Let g: D —> Q be a conformal mapping; then f{g{z)) is convex for every
/ with a(f) < k/2. This implies that for every r, 0 < r < 1, f(g(rz)) is
convex [19]. Note that for every r,y = dg(\z\ < r): z — z(t) is a smooth
Jordan curve whose image under / is convex. Consider any point a € y;
we may assume that z(0) = a. Then

K(ay) + ImlD2f{a) Z ' ( 0 ) ^
DJ(a)
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We know that there exists / with a ( / ) = k/2 such that

For example, we can take / to be a proper Koebe transformation of ka

with a = k/2. Hence, we have Kh(a, y) > k. Since a € y is arbitrary, it
follows that g(\z\ < r) is hyperbolically /c-convex for every r. If {rn} is
an increasing sequence of positive numbers tending to 1, then it follows that
Q. = g(D) — \J{g(\z\ < rn): n = 1, 2, . . . } is hyperbolically A>convex.

REMARK. For k = 2 this theorem was established independently by Heins
[4] and Pommerenke [16].

5. Uniform local univalence

In this section we relate the families S(p) and ^"(a) . Unlike the class
C{p), it is very difficult to obtain any sharp result for the class S(p). The
main tool we employ is an inequality for the Schwarzian derivative of a
bounded univalent function. This inequality is a simple consequence of cer-
tain general inequalities of Nehari for bounded univalent functions ([11],
[17, p. 99]). We include a simple proof of this inequality. The proof reveals
that this bound on the Schwarzian derivative of bounded univalent functions
is equivalent to the classical bound on the Schwarzian derivative of functions
in the class S. Our proof is similar to work of Flinn and Osgood [2] showing
that the bound on the second coefficient of a bounded univalent function is
equivalent to the bound on the second coefficient for a function in the class
S.

NEHARI'S INEQUALITY. Suppose g(z) = blz+b2z
2+b3z

3-\— is univalent
in D and g(B) c D. Then

This inequality is sharp.

PROOF. Recall that if f(z) — z+a2z
2+a3z

3-\— is a normalized univalent
function in D, then \a3 - a\\ < 1, see [17, p. 20], with equality if and only
if / is a rotation of the Koebe function k2 . For simplicity we shall write k
in place of k2 and let ke(z) = e~'ek(e'ez) denote a rotation of the Koebe
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function. Define f{z) = e "pbl
 l ke{g{el(p z)), where the real numbers <p and

6 will be specified later. Then / is a normalized univalent function and

Therefore,

If we select a> with

ii, _ = |a3 - a2| <

bl

and take 0 so that -b2e2l{(p+e) = \bx |
2 , then we obtain the desired result.

COROLLARY. If g(z) = z + b2z + b^i

z G O, then
e S and \g(z)\ < M for

2

PROOF. Just apply Nehari's inequality to g(z)/M.

THEOREM 6. Let a(p) be the order of the linearly invariant family S{p).
Then

7t/(2arctani?) < a(p) < \j\ + 3(1 - l/M)/R2,

where R - tanh(/?), and M > 1 satisfies

m) - 2^J(R2 + 3)M - 3 - 1 = 0

when p < oo, and M = oo when p — oo.

PROOF. From Example 1, we know that a(p) > 7r/(2arctani?). We shall
establish the upper bound via an iterative procedure. Since S(p) is a ro-
tationally invariant compact normal family which is also invariant under
Aut(D), there exists a function / (z ) = z + a2z

2 H € S(p) which satisfies
a{p) = a2 > 0. In fact, the function / maximizes the real part of the second
coefficient over the family S(p). Since S(p) is linearly invariant, the Marty
relation [14] yields 3a3 - 2a\ - 1 = 0, or
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We start with an elementary upper bound on a(p) and then use Nehari's
Inequality and (1) to obtain an improved estimate on a(p). The function
g(z) — f(Rz)/R belongs to the class S, so

(2) a(p) = a2< 21R.

This gives the elementary upper bound a{p) < 2 coth(^). From [14, p. 115],
we get

Hence
2/R 1 /

By using the Corollary to Nehari's Inequality, we get

Then (1) gives

\a2
2-ai\<(l-l/M0)/R

2.

\a2
2-l\<3(l-l/M0)/R

2,

so that

(3) a(p) = a2< A/1 + 3(1 — l/M0)/R* <2/R.

Now, if we repeat the above process with inequality (3) in place of (2), then
we get

\g{z)\ < yjMl =

—/ l
 21 (T^K) ° - 1 1 (z G D)

and

a(p) = a2<

By using induction, we obtain a decreasing sequence {Mn} denned by

3(1 - l/Mn)/R
2

such that

a(p) = a2<

https://doi.org/10.1017/S1446788700035114 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035114


[15] Euclidean linear invariance 415

The decreasing sequence {Mn} is bounded below by 1, so M = limMn

exists and satisfies

r,N>/l+3(l-I/M)/iJ2

or equivalently,

\l~Rj
+ 3)M - 3 - 1 = 0 .

In the limit we obtain

a(p) = a2<

This completes the proof of Theorem 6.

REMARKS, (i) From the equation that M satisfies and the fact that a(p) >
2 since k2 belongs to S{p), we have

2

1 / ( 1 - * 2 ) < M < l l r i + / ?

4(3 + R*)Mi-*

(ii) Note that a(p) < ^/l + 3(1 - l/M)/R2 < \J\ + 3/R2 w V3/R as p ->
0. On the other hand, a(p) > 7t/(2arctan/?) > n/2R. Thus, a(p) = O(l/R)
as p-+0. Let ^ = lim s u p ^ 0 i?a(p); then re/2 « 1.571 < / z< 1.732 w \ / 3 .
Therefore, we have replaced the original upper bound of 2 (which follows
from a(p) < 2coth(^)) for fi by \/3.

(iii) For R = \/V3, the lower bound is 7r/2arctani? = 3 . On the other
hand, the elementary upper bound is 2/R = 2\/3 « 3.464, while our im-
provement in Theorem 6 yields the upper bound

3.1623.

This shows that our upper bound is a real improvement on the elementary
upper bound and can be quite close to the lower bound.

(iv) For p < oo, it is unlikely that our upper bound on a(p) is sharp.
What is the actual order of the linearly invariant family •S'(̂ ) ? Or what
is the best possible value of fi ? It is plausible to conjecture that a(p) =
7r/(2arctani?).

We know that / is univalent in \z\ < R — tanh p if / € S(p); so trivially
/ is convex in \z\ < (2 - V3)R. From Theorems 3 and 6 we get a better
result.
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COROLLARY. S(p) c C(arctanh(y 1 + 3/R2 - V5/R)). In particular, each

f e S{p) is convex univalent in \z\ < y 1 + 3/R2 -

PROOF. From Theorem 6, a(p) < y 1 + 3/R2. By making use of Theorem
3, we have

S(p) c f(y/l + 3/R2) = C(arctanh(\/l + 3/R2 - V3/R)).

From the proof of Theorem 6, it follows that g(z) = f(Rz)/R satisfies
\g(z)\ < M1^2 . By making use of Example 1 and applying Nehari's Inequality
to g{z), we have

THEOREM 7. Let f(z) = z + a2z
2 + • • • e S(p). Then

(rt2/(2arctani?)2 - l)/3 < max{|a2 - a3\: f € S(p)} < (1 - \/M)/R2,

where R = tanh(p) and M is given in Theorem 6.

Recently, Harmelin [3] obtained an upper bound on the Schwarzian deriva-
tive of / e &{a). Theorem 6 in conjunction with this bound of Harmelin
will yield an upper bound on the Schwarzian derivative of / e S{p). If we
use Nehari's Inequality, we can obtain a better estimate.

COROLLARY. Let f € S(p). Then

(I-\z\2)2\Sf(z)\< 6(1-I/M)/R2,

where R = tanh(p) and M is given in Theorem 6.

PROOF. For every / € S(p) and a € D, F(z) = f(z, a) = z+A2z
2+- • • e

S(p), and (1 - |a|2)25/(a) = 6(A3 - A2
2). The desired result follows from

Theorem 7.

In view of the fact that C(p) = ^(a(C(p))), it is natural to inquire
whether S(p) = ^{a(S(p))). The answer is negative.

THEOREM 8. Let a(p) be the order of the linearly invariant family S(p).
Then S(p) is a proper subset of

PROOF. Suppose S(p) = ^(a(p)). Then ka^ € S(p) and so Example
1 implies a(p) < 7t/(2arctan/?), where R = tanh(/?). Since Theorem 6
gives the opposite inquality, we would have a(p) = n/(2arctani?). All that
remains is to construct a function in the class ^"(7r/(2arctan/?)) which does
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not belong to S(p). From Example 2 we know that hn e J?"(7t/(2 arctan 7?))

for p = 7r/2 arctan 7? + yjn2/(4 arctan2 7?) - 1. Note that P > n/R. In

fact, this inequality is equivalent to H(R) = n2R/(n2 + R2) - arctan R > 0,
which is true since 7/'(7?) > 0 for 0 < R < 1 and 7/(0) = 0 . Because
P > n, we know that p(hg) = artanh(n/P). But n/P < R, so />(/?«) <
or hg £ £(/?) . Therefore, £(/>) is a proper subfamily of &~
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