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CODIMENSION 2 SYMMETRIC HOMOCLINIC 
BIFURCATIONS AND APPLICATION TO 

1:2 RESONANCE 

CHENGZHI LI AND CHRISTIANE ROUSSEAU 

1. Introduction. In this paper we study a codimension 3 form of the 1:2 
resonance. It was first noted by Arnold [3] that the study of bifurcations of 
symmetric vector fields under a rotation of order q yields information about 
Hopf bifurcation for a fixed point of a planar diffeomorphism F with eigenvalues 
e2lxiplq. The map Fq can be identified to arbitrarily high order with the flow map 
of a symmetric vector field having a double-zero eigenvalue ([3], [4], [10], [23]). 
The resonance of order 2 (also called 1:2 resonance) considered here is the case 
of a pair of eigenvalues —1 with a Jordan block of order 2. The diffeomorphism 
then has normal form around the origin given by [4]: 

(1.1) F(x,y) = (-x + y + 0(\x,y \n), -y + axx
3 + b{x

2y 

+ a2x
5+b2x

4y + ... + 0(\x,y\n)). 

In the non-degenerate case of codimension 2, we have <zi, b\ ^ 0. We study the 
codimension 3 case a\^0,b\ = 0, b2 ^ 0, for which we have the unfolding: 

(1.2) Ffi(x,y)=(-x+y + 0(\x,y\n),iilx + (ii2-\)y+a]x
3 

+ p3x
2y + b2x

4y + ..- + 0(\x,y \n)). 

The square of this map F2 is, up to higher-order terms, the flow map of a 
symmetric system: 

x = y 
(1.3) 

y = e\x + e2y +ax3 + e^x2y + bx4y + ex5 + 0{\x1y |6) a,b^ 0. 

The purpose of this paper is to give the bifurcation diagram of (1.3) and 
to prove that (1.3) is a universal unfolding of the same system at e = 0. The 
techniques are quite standard: 

Determination of the phase portrait of (1.3): 
- study of singular points and Hopf bifurcations, 
- transformation of the system into a near-Hamiltonian system, and determi

nation of the limit cycles and homoclinic loops as zeros of elliptic integrals; 
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192 CHENGZHI LI AND CHRISTIANE ROUSSEAU 

Proof that (1.3) is a universal unfolding: this uses techniques similar to those 
developed in [11] for the cusp of order 3. 

(H) (HL) 

Figure 1. Birth of a limit cycle through a Hopf bifurcation and death in a heteroclinic connection. 

Codimension 2 homoclinic bifurcations appear in system (1.3). Depending 
on the sign of a, these are of two kinds. For a > 0 we have a heteroclinic 
loop through two symmetric saddle points, and for a < 0 a pair of symmetric 
homoclinic loops through the origin (we call this, a symmetric homoclinic loop, 
and the corresponding bifurcation, a symmetric homoclinic loop bifurcation). 
In both cases, because of the symmetry of the vector fields, a neighborhood 
of the homoclinic (resp. heteroclinic) connection is studied by a Poincaré map 
which has the same asymptotic expansion as for a single homoclinic loop ([11], 
[21]). There is a major qualitative distinction between symmetric homoclinic and 
heteroclinic loop bifurcations. The latter leads to the emergence or disappearance 
of limit cycles (Figure 1) as for the usual homoclinic loop bifurcation. In the 
former, limit cycles "pass through" the loop, in the same way as zeros of a 
function change sign (Figure 2). 

(HL) 

Figure 2. A symmetric homoclinic loop bifurcation of order 1. 

Our analysis is very similar to the analysis of the cusp of order 3 for the 1:1 
resonance. When a > 0 it is exactly the same, and we call this a symmetric 
cusp of order 3 (partly because of its similarity to the case of order 3, partly 
because of the topological shape of the vector field before unfolding). The cusp 
of order n has been extensively studied in the literature ([5] and [6] for n = 2, 
[11] for n = 3, [17] for n = 4, [15], [19], [22] for the general case). All results 
transpose exactly for the symmetric cusp of order n: the bifurcation diagram is 
the same, and we can also conclude that there is a maximum number of (n — 1 ) 
limit cycles. In the case a < 0 an analysis of higher codimensions remains to 
be done. 
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In Section 2 we discuss the normal form of a symmetric system with a double-
zero eigenvalue. In Section 3, we derive the bifurcation diagram of (1.3). In 
Section 4 we discuss the universality of (1.3). We conclude with several remarks 
on the application to 1:2 resonance. 

Notation. For all bifurcation curves (or surfaces) in all figures: 
- (H) denotes Hopf bifurcation, (H2), Hopf bifurcation of order 2, etc ... 
- (HL) denotes the double homoclinic (or heteroclinic) loop bifurcation, (HL2) 

the same bifurcation of codimension 2, etc ... 
- (2C) (resp. (3C)) denotes double (resp. triple) limit cycle bifurcation. 
- (2Cext) (resp. (2Cint)) denotes double external (resp. internal) limit cycle 

bifurcation, in the case 77 = —1. 
- (P) denotes pitchfork bifurcation. 
- (DZ) denotes double-zero eigenvalue bifurcation. 

2. Normal form of a symmetric system with a double-zero eigenvalue. 
We consider a symmetric system around the origin, with linear part given by: 

x = y 
(2.1) 

y = 0. 

Its normal form, first given by Takens [26], is: 

x = y 
(2.2) 

y = a\x3 + a2x
5 + • • • + b\x2y + b2x

4y + o(\ x, y |6). 

We consider a system for with a\ ^ 0. Under the change of coordinates (inspired 
from [22]) 

(2.3) a iX4/4 = a\x4/4 + a2x
6 + a.u'8/8 + • • •, 

and division by a symmetric positive function, system (2.2) becomes 

X=y 
(2-4) , 

y = a{X
3 + c{X

2y + c2X
4y + >'o(| X,y |5). 

When c\ 7̂  0 the singularity at the origin has codimension 2. For the codimension 
3 case, we have c\ — 0,c2 ^ 0. Rescaling c2 — —\,a\ = ±1 = 77, we start with 
a normal form (setting X = x) 

x — y 
(2.5) ' -x A 

y = Tjx -x y+yo(\x,y | ), 

for which we study the unfolding 

x = y 

y = t\X + e2y + e^x^y + r\x~ — x y + yo{\ .v, v \ ). 
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For a codimension n singularity with a\ ^ 0, we would study the following 
unfolding: 

x = y 
(2.7) 

y = €\x + e2y + t?,x2y + • • • + enx
2(n'2)y + r)xi — x2(n~V)y + yo(\x,y \2n~x). 

The normal form is simpler here than for the cusp of order n, since all terms 
x2my have independent contributions. 

3. Bifurcation diagram of system (2.6). The singular points of (2.6) are 
given by (0, 0) and q± — (±(—r/ei)1/2^), when r\e\ < 0. The origin is a node 
or focus (resp. saddle) for ei < 0 (resp. e\ > 0). The points q± are nodes or 
foci (resp. saddles) for ei > 0 (resp. e\ < 0). At t\ — 0 we have a pitchfork 
bifurcation. 

The system (2.6) has a Hopf bifurcation at the origin for e2 — 0, e\ < 0. 
Hopf bifurcation is of order 1 (resp. 2) on €3 ̂  0 (resp. €3 = 0). We have one 
attractive (resp. 2, one repulsive inside one attractive) limit cycle(s) inside the 
region e2 > 0 (e2 < 0, e3 > 0). 

The points q± undergo a Hopf bifurcation (only in the case 77 = — 1 ) on 

e2 + e3ei — e2 + o(c\) = 0. 

Hopf bifurcation is of order 2 if e3 = 0. The second Lyapunov coefficient is 
positive, and we have one (resp. two) limit cycles(s) in the region 

e2 + e3ei - e\ + o(e2
{) < 0, 

(resp. e2 + e3ei — e] + oie]) > 0, e3 > 0) (cf. [17] for a brief explanation of the 
method of Lyapunov coefficients and [24] for a detailed one). 

For e\ = e2 = 0, the origin has a codimension 2 bifurcation with a nilpotent 
linear part. This bifurcation has been studied in the literature ([7], [13], [14], 
[25]). The bifurcation diagrams for 77 = ±1 are given in Figure 3. 

To follow the growth of the limit cycles around the origin if 77 = 1, and 
around q± if 77 = — 1, we make the change of coordinates 

x = 6u c\ — —rj62(j,o 
(3.1) y=ô2v e 2 = « V i 

T = St 6 3 = <52jL/2, 
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{HL) > ^ < 

(//) 
"€i 

X 

(2Cext) 

T] = + 1 T| = — 1 

Figure 3. Bifurcation diagram of the codimension 2 system with nilpotent linear part. 

and we get the system: 

u = v 
(3.2) 

rjfiou + rju +6 (\\v + Hiu v — u v) + o(S ), 

which we study as a perturbation of the Hamiltonian system: 

a) T] = 1 b) -r, = - 1 

Figure 4. The Hamiltonian systems (3.3). 

(3.3) 
U — V 

v = —ry/iow + 77W , 

with Hamiltonian function (Figure 4): 

(3.4) H = v2/2 + rinou2/2 - r/w4/4. 

https://doi.org/10.4153/CJM-1990-011-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-011-2


196 CHENGZHI LI AND CHRISTIANE ROUSSEAU 

The system has the form: 

(3 5) x^dHldy + ef(x,y)^o{e) 
y = -dH/dx + eg(x,y) + o(e). 

For small e, we consider the "Poincaré return map" P on a section Z, transver
sal to closed level curves of H (including possibly homoclinic or heteroclinic 
loops), and parametrized by values of H. As for the homoclinic loop bifurca
tion, depending on the position of the séparatrices, it may happen that the return 
map going forward does not exist, and that one must consider the return map 
going backwards. Details for the special case appearing here will be given in 
Proposition 3.6. It is known that 

(3.6) P(h) -h = e gdx -fdy + o(e). 
JH=h 

In order for a limit cycle (homoclinic or heteroclinic loop) to merge from a 
closed level curve H — h (homoclinic or heteroclinic loop) at e = 0, it is 
necessary that 

(3.7) M(h) = J gdx -fdy = 0. 
JH=h 

For sufficiency, we need some non-degeneracy condition, for example M'(h) ^ 0, 
in which case we can apply the implicit function theorem to obtain a unique 
limit cycle for small e. With a more degenerate condition as M(h) = M'(h) = 
0,M"(h) •=£ 0, a double limit cycle follows from the Malgrange-Weierstrass 
preparation theorem [16] or [20]. Similar conditions exist for a homoclinic loop 
[21]. 

Study of the zeros of M. In our system M is the function: 

(3.8) M(h) = / {ji\v + /i2W2v — u4v) du. 
JH=h 

This function is a linear combination of the /,(/?), where 

(3.9) Ii(h)= [ u2lv du. 
JH=h 

As for the cusp of order n, we can remark that all 7Z are linear combinations of 
/() and I\, the coefficients of which are polynomials in h. This goes through the 
induction formula given in the following proposition: 

PROPOSITION 3.1. 

(3.10) {In + 3)1 n = 4nnoIn-\ ~ 4/ZT/(2AÎ - 3)/w_2, for n ^ 2. 
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V d v + /x0//i-i 

In particular: 

(3.11) /2 = -4/z77/o/7 + 8Mo/i/7. 

Proof. This derivation is quite standard (see for example [11] or [22]). It is 
understood here that all integrals are taken on the curve H = h. 

(3.12) In= f u2nvdu = f(u2n - fi0u
2n~2)vdu + /zo/„-i 

= -r](2n - 3)/3 J v3u2n~4du + /z0/„-i 

= -rj(2n - 3)/3 / vu2n~4(-r]n0u
2 + 2h + r\uA/2)du + /xo/w-i 

= -(2w - 3)/„/6 + 2w/x0/w-i/3 - 2/zr/(2« - 3)/„_2/3. 

PROPOSITION 3.2. i) /Q tfftd /i satisfy the Picard-Fuchs equations: 

(3 13) 7o = 4 W o/ 3 -Wo/JA 
/, = 4hfi0Io/l5 + ( - 4 W o + 12/z)/(/15. 

ii) //"we define P = /i//o, f/î£W P satisfies a Ricatti equation: 

(3.14) 4/z(4/z - TJ/X^P' = -5T//i0P2 + 8/*P + ^/xgP - 4/x0/i. 

Proof The proof can be found in [10]. It is similar to the derivation of a 
Ricatti equation in the case of a cusp [11]. 

We will consider P(h) as trajectory of the vector field: 

h = -4h(ul - 477/z) 
(3 15) 

P = -5JL/OP2 + 877/zP - Ari^h + 4/z§P. 

The vector field is sketched in Figure 5 for the case 77 = — 1. (The case 77 = 1 
is obtained through /z »—» —/i.) 

The curve H — h contains: 
i) for 77 = 1 and //o > 0: a closed component around the origin for h G 

(0,1/4). The values h — 0 and h = 1/4 correspond to the origin and the 
heteroclinic loop. 

ii) for 77 = — 1 and /JQ > 0: 
- two closed components, one around each of the points (±1,0) for h G 

(—1/4,0). The value h = —1/4 corresponds to the two points (±1,0), while 
h = 0 corresponds to symmetric homoclinic loop. 
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0 h 

Figure 5. Phase portrait of the system (3.15). 

- a closed component surrounding the three singular points for h > 0. 
iii) for r; = — 1 and /i0 ^ 0: a closed component around the origin for h > 0. 

PROPOSITION 3.3. For rj = — 1 dwd /LIQ = 1: 

i) The graph of P(h) for h G [—1/4,0], is the unstable separatrix of saddle 
point (—1/4, 1). It joins (—1/4, 1) to the node (0 ,4/5) . 

(3.16) ii) / > ( - l / 4 ) = l , />(0) = 4 / 5 . 

(3.17) iii) F ( [ - 1 / 4 , 0 ] C [4 /5 ,1] . 

(3.18) iv) Pf<0 for h e [ - 1 / 4 , 0 ) , P ' ( - \ / 4 ) = -\/2,P'(0) = - o o . 

(3.19) v) P(h)> 1/2 for h>0. 

vi) /^(/z) /z#s <3 unique zero for h = h* > 0, is negative for h < h* and 
positive for h > h*. 

vii) P(h) —-> +oo when h —-+ +oo. 

(3.20) viii) />"(/?) < 0 for h G [ - 1 / 4 , 0 ) . 

(3.21) ix) P\h) > 0 /o r h>0 and P\h) ^ 0. 

(3.22) x) P(h) ~ A/?1/2 with k > 0, /o r h —• +oo. 

xi) There exists a unique h > h* such that 

(3.23) P"(h) = 0, P"(h) > 0 ./or 0 < h < h, P"(h) < 0 for h>h. 

Proof The proofs for all these properties are essentially the same as for the 
similar function P in the case of a cusp [11]. We detail the cases which are not 
similar. 

v) P\p=\/2 = 3 / 4 > 0 . 
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vi) and vii) See proof in [7]. 
viii) We can check that P" ( - l /4 ) < 0. Suppose now that P"(h) = 0 and 

P"{h) < 0 for /z < /z < 0. Since: 

(3.24) 2h(\ + 4h)P" = Pf(5P - 12/z - 4) + (4P - 2), 

(3.25) 2/i(l + Ah)P'" = P'(5P' - 8) + P"(5P - 28/z - 6), 

then, at point h, (3.25) gives P'"(h) < 0, which is a contradiction, 
ix) This follows from (3.24). 
x) The argument here is similar to the argument in [7]. 

(3.26) // =4 /" u2iJu2-j+2hdu, 

where c is the unique positive root of u2 — w4/2 + 2h = 0, for h sufficiently 
large. When h —• +oo, c ~ /z1/4. We let u — cz in (3.26): 

2~ 
(3.27) /, = c2<+3 / z \ / i—±- + ^ ^z ~ c-2'+3 / z2 '\/ — - ^ dz, y „ z v — + — * ~ c y„ 
for ft sufficiently large. Accordingly, /> = / | / / 0 ~ AT2 ~ M1/2, with 

r'zvn^Fdz 
(3.28) * = ^ - r - - ^ = «0.274. 

xi) From ix) and x) there exists a positive h such that P"(h) — 0. Let /z 
be the first such h. Necessarily P'"(h) S 0. So, by (3.25), P'(h) ^ 8/5. We 
consider first the case P"'(h) < 0. Suppose now that P"(h\) = 0, with h\ > 
h.P'(h\) < P'(h) < 8/5. From (3.19) and (3.24) we know that zeros of P'(h) 
occur with P"(h) > 0. Therefore P'(hx) > 0. This gives P'"(hx) < 0, which is a 
contradiction. In the case P'"(h) = 0, we have P'Qi) — 8/5. From this we get 

p^\h) = . . . = p^n\h) = . . . = 0. 

This is in contradiction to the fact that P is analytic but non-polynomial in the 
neighborhood of h. (P is not polynomial since P'(0) = — oo.) 

These properties are summarized in Figure 5. The case r\ — 1 is ob
tained through a change of coordinates h t—» — /z, P »—> 1 — P (since P(0) — 
l /5,P(l /4) = 0). 

PROPOSITION 3.4. For r\ — — 1 azzd IIQ — 0,P = k\fh for h > 0, where k is 
given in (3.28). 

Proof. This follows from (3.14) and an argument as in Proposition 3.3 when 
h —* +oo. 
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PROPOSITION 3.5. For r\ — — 1 and /zo < 0: 

i) The graph of P(h) for h > 0 is the stable separatrix of the saddle point 
(0,0). 

(3.29) ii) P' < 0 forh>0. 

(3.30) iii) P"<0 forh>0. 

(3.31) iv) P(h)~Khl/2 with K > 0, for h - * +oo 

vwY/z /: given in (3.28). 

Proof This is the same as for Proposition 3.3. 

Figure 6. The symmetric homoclinic loop bifurcation diagram of order 2. We have represented only 
the limit cycles and not the séparatrices. 

PROPOSITION 3.6. The bifurcation diagram for the symmetric homoclinic loop 
bifurcation of order 2 is given in Figure 6. 
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Figure 7. Return map in the neighborhood of the double homoclinic loop. 

Proof. We consider a "return map" in the neighborhood of the symmet
ric homoclinic loop. For this we consider sections X i , ! ^?^ as in Figure 7. 
Parametrization on the £,• is given by h, which is zero on the loop and increas
ing in the direction of the arrows. The return map inside one of the loops is 
given by H\ — G\ oF\. When the loops are destroyed, the map H\ is not always 
defined. The map //f1 = Ffl o G^1 is then defined. In both cases looking for 
limit cycles is the same as looking for points h such that F\(h) = G~[x(h). Sim
ilarly, outside the symmetric homoclinic loop, half of the return map is given 
by H2 = G2 o F2. We have G2(h) = Gx(-h) and F2(h) = Fx(-h). Because of 
the symmetry the return map outside the double loop is given by / / | . Since 
H2 is monotonie, H\ has a fixed point if and only if H2 has a fixed point. So 
we can speak of a "Poincaré map" given by H\ for h ^ 0 and H2 for h > 0. 
This map has exactly the same form as in the case of a simple homoclinic loop 
[21]. A fixed point of the map with h > 0 (resp. h < 0) corresponds to a large 
limit cycle around the three singular points (resp. a pair of small limit cycles). 
Around h = 0, M (h) has the asymptotic expansion: 

(3.32) M(h) = c0 + cxh \n\h\ + c2h + o(h). 

The symmetric homoclinic loop bifurcation of order 2 occurs for CQ = c\ = 0 . 
We then have c2 < 0. For Co < 0, ci < 0 (resp. c\ > 0) we always have 
a negative (resp. positive) zero (ln|/z| < 0 for small \h\). In that region two 
positive (resp. negative) zeros occur for |co| <C |ci| <C | Q | , and disappear when 
|co| and |ci| grow. 

THEOREM 3.7. The bifurcation diagram of the system (3.2) with 6 sufficiently 
small and /xo = 1 is given by Figure 8 (resp. Figure 9) in the case 77 = — 1 
(resp. 7] — 1). 
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202 CHENGZHI LI AND CHRISTIANE ROUSSEAU 

Figure 8. Bifurcation diagram of (3.2) in the |x-plane (|JL() = 1, r\ = - 1 ). The picture is only qualitative. 

Proof. This follows from the bifurcation diagram of the zeros of M(h). We 
give details for the case 77 = — 1. The case 77 = 1 is simpler. 

1) Bifurcation diagram of the zeros of M(h). The function M{h) in (3.8) is 
given by: 

(3.33) M(h) = (MI - 4/2/7)/() + (/x2 - 8/7)/,. 
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Figure 9. Bifurcation diagram of (3.2) in the fx-plane (|x0 = 1, r\ = 1). The picture is only qualitative. 

Instead, we study the zeros of: 

(3.34) M(h) = M(h)/I0 = (MI ~ 4A/7) + (/i2 - 8/7)P. 

Zeros of M(h) will be interpreted by intersection points of P(h) with the line 
M(h) — 0. From this geometric interpretation and the concavity (convexity) of 
the function P(h) on [-1/4,0] (in the region h>0,P' < 0), it follows directly, 
using Figure 5, that (see Figure 10 and at the same time the bifurcation diagram 
in the (/xi, /12) variables in Figure 8): 

i) There is a maximum number of two (resp. three) internal (resp. external) 
limit cycles, i.e., that contain only one of the points (±1,0) (resp. the three 
singular points) (Figure 10a and 10b). 

ii) In the case of two internal limit cycles, we necessarily have an external 
limit cycle at the same time (Figure 10a). 

iii) In the case of two external limit cycles, we have either one internal limit 
cycle or none at all (Figure 10c and lOd). 

In the case of three external limit cycles, we have no internal limit cycle 
(Figure 10b). 
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iv) Hopf bifurcation (resp. symmetric homoclinic loop bifurcation) of order 
2 is given by a line tangent to P(h) at the point (—1/4,1) (resp. (0, 4/5)). In the 
former (latter) the line has slope —1/2 (is vertical), which gives /i2 = 0 (Figure 
10e) (resp. /x2 = 8/7). 

v) Similarly a point of Hopf bifurcation simultaneous to a symmetric homo-
clinic loop bifurcation is given by a line M(h) = 0 passing through the points 
(-1/4,1) and (0,4/5), i.e., with slope - 4 / 5 . This yields /i2 = 3/7 (Figure lOf). 
There is a limit cycle surrounding the symmetric homoclinic loop. 

vi) We have a point in the bifurcation diagram with a double external limit 
cycle, together with a Hopf bifurcation (Figure 10g). 

vii) The curve of double internal limit cycles is a convex curve joining Hopf 
bifurcation of order 2 to symmetric homoclinic loop bifurcation of order 2. In 
fact, the lines M(h) — 0 have the form /x2 = \i\Q + R, with Q — —l/P, and 
R = 4/7(2 + h/P). It is easy to check that —R is a convex function of Q. The 
curve of double internal limit cycles is the Legendre transform of —R. It is 
therefore the convex envelope of the lines M(h) — 0 (see the argument in [11]). 

viii) The curve of double external limit cycles starts at the double homoclinic 
bifurcation of order 2 and crosses the Hopf bifurcation line (see iv). Between 
these two points the curve is convex, since P"(h) > 0 in that region (see Propo
sition 3.3 above). 

viii) There is a point with a triple limit cycle (Figure lOh). 
ix) When the slope of the line M(h) — 0 passes through zero from negative 

to positive, this corresponds to /x2 going from —00 to +00. 
In the case 77 = 1, the bifurcation is much simpler, and identical to the 

bifurcation diagram obtained in [11] (Figure 9). 
2) Bifurcation diagram of (3.2). Limit cycles are given as zeros of 

(3.35) V(h) = eM(h) + o(e), e = 53. 

For e ^ 0 (our system has no limit cycle for e = 0), it is sufficient to consider 
zeros of V(h) — V(h)/e. If we have M (ho) = 0 and M'(ho) ^ 0, which gives 

V(Ao)|e=o = 0, V'(/*o)Uo^O 

then, by implicit function theorem, we have a unique limit cycle for the sys
tem. Accordingly, simple zeros of M(h) correspond to hyperbolic limit cycles. 
Similarly, if we have the conditions M (ho) = M'(ho) = M{k~l)(h0) = 0 and 
M{k)(ho) ^ 0, for ho G [-1/4,0) U (0, +00), then by the Malgrange-Weierstrass 
preparation theorem [20]: 

(3.36) V(/0 = G(/2-/z0,e)//(/z,e) 

in the neighborhood of ho, where Q is a monic polynomial in (h — ho) of degree 
k satisfying 

Q(h-ho,0) = (h-h0)
k, 
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and H is invertible around ho. We then have at most k limit cycles. Here we 
have the special cases k = 2,3. When k = 2,M(h) = M'(h) = 0,M"(/z) ^ 0 
gives 

(3.37) //! - Ah/1 + (H2 - 8/7)P - 0, 

- 4/7 + (M2 - 8/7)/" = 0, (M2 - 8/7)P" ^ 0. 

The second equation gives h = ^(^2), and replacing in the first gives /ii = 
/ii(/i2). So the surface of double limit cycles satisfies 62 = 62(61,63). Similarly, 
when k = 3, the curve of triple limit cycles has equation 63 = 63(61), and 
£2 = 62(61,63). The limit cycles are hyperbolic everywhere except on these 
curve and surface. 

Around h = 0 we use the theory of Roussarie (see Proposition 3.6 and [21]). 

4. Bifurcation diagram of (2.6). 
4.1 Bifurcation diagram of (2.6) in the case 77 = — 1. 

Figure 11. Intersection of the bifurcation diagram of (2.6) (T] = -1 ) with a half-sphere around the 
origin, in the half-space €j ^ 0. 
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THEOREM 4.1. The bifurcation diagram of (2.6) is given in Figure 11. The 
bifurcation diagram is a cone through the origin. Therefore a good way to 
represent it is to intersect it with a sphere around the origin. Since there is little 
interesting behaviour on the half sphere e i ^ 0, we show only what happens on 
the half-sphere e\ ^ 0, which we identify with a closed ball, having boundary 
e\ — 0 (Figure 11). 

Proof The bifurcation diagram consists of: 
i) The plane c\ = 0, which is the locus of pitchfork bifurcation. 
ii) A cone on the bifurcation diagram of (3.2) in the region t\ > 0. 
iii) The Hopf bifurcation surface t2 = 0, ei < 0 for the origin. 
iv) The line €2 = £3 = 0, ei < 0 of Hopf bifurcation of order 2. 
v) The double limit cycle surface in the half-space e \ < 0. 
vi) The bifurcation diagram for the double-zero eigenvalue in the neighbor

hood of the line e\ = t2 = 0, e3 ̂  0 (Figure 3). Branching from these bifurcation 
diagrams (one for 63 > 0, one for e^ < 0), are two Hopf bifurcation surfaces 
(one supercritical, one subcritical), two symmetric homoclinic loop bifurcation 
surfaces (one stable, one unstable), and two double external limit cycle surfaces 
(one stable, one unstable). These come from the bifurcation diagram of (3.2) 
(Figure 8), except for a double external limit cycle surface. The only possibil
ity is that this surface originates from the double limit cycle surface of Hopf 
bifurcation of order 2 in the plane e\ < 0. The point with a triple limit cycle 
in Figure 11 can be explained in the following way: near (DZ) the two smallest 
limit cycles coalesce on (2Cext). The two largest limit cycles coalesce at the 
other end of the same (2Cext) curve, since they arise from Hopf bifurcation in 
the region e\ < 0. 

The bifurcation diagram must be given in a full neighborhood of the origin 
which is constructed as a union of three cones following a technique in [22]: 

- a cone C\ constructed around the ei-axis on an arbitrary compact in (\i\, ^2)-
space; 

- a cone C2 around the e2-axis constructed on an arbitrary compact in [ii-
space, multiplied by a small neighborhood of 0 in //o-space. 

- a cone C3 around the €3-axis constructed on a small neighborhood of 0 in 
(/xo,/ii)-space. 

For the cone C\, we note that the bifurcation diagram of (3.2) is only valid 
for (/il7 /X2) in a compact region. Therefore (using (3.1)) it gives the bifurcation 
diagram of (2.6) in a cone around the ei-axis built on a compact domain. But 
the compact can be taken arbitrarily large. This gives the cone C\. 

To construct the cones C2 and C3 we study the system in the plane e 1 = 0 (see 
Proposition 4.2 thereafter). In this plane we find structurally stable behaviour 
outside a neighborhood of the origin, except on €2 = 0, and on the double limit 
cycle curve. In this neighborhood, the origin is a singular point of codimension 
1 or 2, for which the unfolding is well known. The crucial step is introduced 
in [11]: following this example, we scale \i\ = ±1 to obtain C2. The system at 
/io — 0 has a unique limit cycle (resp. zero or two limit cycles, with a double 
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limit cycle between the two regions) for /ij = 1 (resp. /ij = —1) and p2 in 
an arbitrary compact. This remains so for ^o in a small neighborhood of zero. 
Using (3.1) we get a conic neighborhood of the €2-axis. 

Similarly, for the cone C3 we scale ^2 — ±2. The system at /xo — Mi = 0 
has a unique limit cycle (resp. no limit cycle) for \i2 — 2 (resp. /12 = —2). This 
remains so for (^o,/ii) in a small neighborhood of zero. By (3.1) we get C3. 

The universality of the unfolding for pitchfork bifurcation ensures us that 
small perturbations do not create limit cycles around the singular points q±. 

It remains to show how to extend the results obtained by rescaling, i.e., only 
valid in a domain in (jt, y )-space depending on <5 to a fixed domain in (x,y)-
space. The technique used here is exactly the same as in [12] (focus case), 
and we only give the main lines. We have to show that all limit cycles can be 
studied by means of the rescaling, i.e., the limit cycles shrink to zero when the 
parameters approach the origin as in (3.1). For this purpose we introduce the 
maps 

<t>s:R
2-^R2,(x,y)^(6x,62y), 

( 4 - 1 ) 3 3 2 4 2 
T/^:R- —•R ,e = (ci ,e2 ,e3) »-->(£ /z0,£ /xi,£ ^2). 

For A (resp. K) compact neighborhood of 0 G R3 in parameter-space (resp. 
0 G R2 in phase-space) we consider As — i/̂ G4), and Ks = </)&(K). We look 
for compact neighborhoods A° of 0 G R3 and K°of 0 G R2, such that for all 
6 G (0, 1] and for all e G A°8, the orbits of Xe passing through points of dK° have 
for positive time a point in common with dK%. K° will be limited by a level 
curve H = h of the Hamiltonian function H in (3.4). The idea is the following. 
For sufficiently small A we have a return map defined on dK and sending m to 
m — rm with 0 < r < 1 (r depends on m). Instead of working with small 6 we 
replace 6 by 6v, with 6 G (0, 1] and 0 < v < VQ. The return map on dK&v is 
given by 

(4.2) \/6v[H(m) - H(m)] = / -u4v2dt + 0(/ii) + 0(ji2) + 0(y). 
JH=h 

If A and ^0 are sufficiently small, this quantity is negative. We choose A° = 
(j)Vi)(A) and K° = ipVo(K). Let S G (0, l],e G A°ë, and m G dK°. Then for any 
8' G [5, 1], the Xc-orbit of m& = (j)^{m) will cut [0, m] in a point m /̂ = rym& 
with /> < 1, i.e., è" < 6f. As [<5, 1] is compact, the Xe-orbit of m will finally 
have to cut dKg. 

PROPOSITION 4.2. For t\ = 0, the bifurcation diagram consists of the line 
€2 — 0. From it branches a double limit cycle curve. This completes the proof 
that the bifurcation diagram of (2.6) is given in Figure 12. 

Proof We use equation (3.2) with JIQ — 0. As in Theorem 3.7 we first study 
the zeros of M(h). The double-zero occurs at M(h) = M\h) = 0, i.e., 

(4.3) //, = —4/i/7 / i 2 = zVh/lk, h>0. 
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Figure 12. Intersection of the bifurcation diagram of (2.6) with a half-sphere in e, ^ 0 for r\ = 1. 

This gives: 

(4.4) ii\lixx = -16/(7£2), /i2 > 0, /x, < 0, 

where k is precisely the value found in (3.28). 
The other bifurcation is the equivalent of Hopf bifurcation and occurs at 

M(0) = 0, which gives /ii = 0. For the values /xj ^ 0, and /X^/MI 7̂  — 16/(7/r), 
the zeros are simple. 

We must give the bifurcation diagram in a full neighborhood of the origin 
inside the plane ei = 0. As in Theorem 4.1, we build this neighborhood as 
a union of two conic neighborhoods around the €2- and €3-axes. For the cone 
around the e2-axis we scale \i\ — ±1 . Outside the double-zero curve the be
haviour is structurally stable. Therefore, for ^2 in an arbitrary compact space, 
the behaviour remains the same for /IQ sufficiently small. This gives a conic 
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neighborhood of the e2-axis. The double-zero curve yields a double limit cycle 
as in Theorem 3.7. 

To obtain a small conic neighborhood of the 63-axis we take /zi = 0, and 
scale /i2 = ±2. Then 

M(h) = -4/1/7 + (p2 - 8/7)/\ 

M(/Î) = 0 is a line through the origin with positive slope if P2 = +2, and 
negative slope if \i2 — —2. Therefore it has a unique (resp. no intersection) with 
P(h) — k\fh. Accordingly the system has a unique (resp. no) limit cycle for 
//2 = +2 (resp. fi2 = —2). For (/zo>Mi) sufficiently small we therefore have a 
unique (resp. no) limit cycle surrounding the bifurcation diagram of the double-
zero eigenvalue (Figure 3). 

We can show that the double limit cycle surface in e-space is transversal to 
t\ — 0. For ci = 0, its equation is given by (4.4), i.e., 

F = ei-\6/(lk2)e2 + o(62) = 0 

(since €2 — ±64). The universality of the double limit cycle bifurcation gives 
rise to a function G(e 1,62^3) such that the system has a double limit cycle 
precisely when G — 0. Since G coincides with F on e\ = 0 and dFjbt2 ^ 0 
then G — 0 is equivalent to €2 = C2(e\, 63). 

4.2. Bifurcation diagram of (2.6) /« /7z£ case 77 = 1. 

THEOREM 4.3. The bifurcation diagram of (2.6) for r\ — I is a cone. The 
intersection of the bifurcation diagram with a half-sphere in e\ ^ 0 is given by 
Figure 12. The bifurcation diagram is the same as for the cusp of order 3. 

Proof The proof is similar to Theorem 4.1, but much simpler, since all inter
esting behavior occurs in the half-plane e\ ^ 0. The bifurcation diagram is the 
same as in [11], with homoclinic loop replaced by heteroclinic loop. In this case 
there is no problem to extend the results obtained in a domain in (x,_y)-space 
depending on 6 to a fixed domain in (x,j)-space, since the limit cycles must 
always lie in the region limited by the séparatrices of the saddle points. This 
region is included in the rescaled domain. 

5. Application to the 1:2 resonance of codimension 3. Studying bifurca
tions of symmetric vector fields under a rotation of order q yields information 
about Hopf bifurcation for a fixed point of a diffeomorphism F in the plane, 
with eigenvalues e2mplq: to arbitrary high order, the map Fq can be identified 
with the flow map of a symmetric vector field having a double-zero eigenvalue, 
([3], [4], [10], [23], [25]). The fixed point of the diffeomorphism (which cannot 
disappear during the bifurcation process) is sent to the origin. To each periodic 
point of order q correspond q equilibrium points of the vector field, while there 
is a periodic solution for each invariant closed curve. Resonance of order 2 (also 
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called 1:2 resonance) which is the one considered here, occurs when we have a 
pair of eigenvalues equal to —1, with a Jordan block of order 2. The bifurcation 
diagram of system (2.6) yields information on the bifurcation diagram for: 

(5.1) F(x,y) = (-x+y,elx + (e2- \)y ±x3 + e3x
2y - x4y + yo(\x,y |5)). 

The interpretation is conventional. Two kinds of bifurcations cause difficulties. 
The coalescence of two invariant closed curves, which is a very simple process 
for vector fields, can be a very complex process for diffeomorphisms when the 
diffeomorphism has a rational rotation number along invariant closed curves ([8] 
and [9]). The homoclinic bifurcations are also a long and complex process, since 
the stable and unstable manifolds of fixed points can have transversal intersec
tions (Figure 13). We may therefore conclude that the bifurcation diagram of 
vector field (2.6) yields large-scale bifurcation diagram for the diffeomorphism. 

a) r\ = 1 b) T] = — 1 

Figure 13. Transversal intersection of stable and unstable manifolds. 
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