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The Weak Ideal Property and Topological
Dimension Zero

Cornel Pasnicu and N. Christopher Phillips

Abstract. Following up on previous work, we prove a number of results for C*-algebras with the
weak ideal property or topological dimension zero, and some results for C*-algebras with related
properties. Some of themore important results include the following:

● _e weak ideal property implies topological dimension zero.
● For a separable C*-algebra A, topological dimension zero is equivalent to RR(O2 ⊗ A) = 0, to
D⊗A having the ideal property for some (or any) Kirchberg algebra D, and to A being residually
hereditarily in the class of all C*-algebras B such that O∞ ⊗ B contains a nonzero projection.

● Extending the known result for Z2 , the classes of C*-algebras with residual (SP), which are resid-
ually hereditarily (properly) inûnite, or which are purely inûnite and have the ideal property, are
closed under crossed products by arbitrary actions of abelian 2-groups.

● If A and B are separable, one of them is exact, A has the ideal property, and B has the weak ideal
property, then A⊗min B has the weak ideal property.

● If X is a totally disconnected locally compact Hausdorò space and A is a C0(X)-algebra all of
whose ûbers have one of the weak ideal property, topological dimension zero, residual (SP), or
the combination of pure inûniteness and the ideal property, then A also has the corresponding
property (for topological dimension zero, provided A is separable).

● Topological dimension zero, the weak ideal property, and the ideal property are all equivalent for
a substantial class of separable C*-algebras, including all separable locally AH algebras.

● _e weak ideal property does not imply the ideal property for separable Z-stable C*-algebras.

We give other related results, as well as counterexamples to several other statements one might
conjecture.

1 Introduction

_e weak ideal property, introduced by the authors in [33], see Deûnition 2.3, is the
property for which there are good permanence results that seem to be closest to the
ideal property; see [33, §8]. (_e ideal property fails to pass to extensions [26,_eo-
rem 5.1], to corners [32, Example 2.8], and, by [32, Example 2.7], toûxedpoint algebras
under actions of Z2. _e weak ideal property does all of these.) Topological dimen-
sion zero [6] is a non-Hausdorò version of total disconnectedness of the primitive
ideal space of a C*-algebra. _ese two properties are related, although not identical,
and the purpose of this paper is to study them and their connections further. Some
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of our results also involve the ideal property, real rank zero, and several forms of pure
inûniteness (pure inûniteness [20, Deûnition 4.1], strong pure inûniteness [21, Deû-
nition 5.1], and residual hereditary (proper) inûniteness [33, Deûnitions 6.1, 6.2]).
For simple C*-algebras, there is a fairly short list of regularity properties generally

considered to be important and which o�en appear as hypotheses or conclusions in
important theorems. _ey include real rank zero, Property (SP), Z-stability, strict
comparison, and pure inûniteness. (By contrast, the property of being the linear span
of its projections, while considered in early work, seems much less important.) _ese
properties are by now fairly well understood. For nonsimple C*-algebras, there are
more regularity properties. _ey are less well understood, there are fewer theorems,
andwe do not yet knowwhich regularity propertieswill turn out to be important. _is
paper is a contribution towards a better understanding of some of these properties,
and, we hope, towards eventually identifying which ones are important.
Even though it is not yet clear which regularity properties will be important in

the nonsimple case, the propertieswe consider (topological dimension zero, theweak
ideal property, and the ideal property) have at least proved to be valuable. We illustrate
this by giving some already known results in which these properties are used.
For topological dimension zero, if X is the primitive ideal space of a separable

C*-algebra, then X has topological dimension zero if and only if X is the primitive
ideal space of anAF algebra. (See [4, §3] and the theorem in [4, §5].) IfA is a separable
purely inûnite C*-algebra, then A has real rank zero if and only if A has topological
dimension zero and is K0-li�able [35,_eorem 4.2 ].

Turning to the ideal property (every ideal is generated, as an ideal, by its projec-
tions), we consider AH algebras (in the sense of [25]: the spaces used are connected
ûnite complexes)with the ideal property andwith slow dimension growth. Such alge-
bras have stable rank one [25,_eorem 4.1], and can be classiûed up to shape equiv-
alence by a K-theoretic invariant [25, _eorem 2.15]. If such an algebra A has very
slow dimension growth and K∗(A) is torsion free, then A is an AT algebra, that is, a
direct limit of ûnite direct sums ofmatrix algebras over C(S1) [14,_eorem 3.6 ]. _e
stable rank one and AT algebra results failwithout the ideal property. (Counterexam-
ples are easy, but too long for this introduction; we present them at the beginning of
Section 7.) Also, a separable purely inûnite C*-algebra has the ideal property if and
only if it has topological dimension zero [35, Proposition 2.11].

_e weak ideal property is much more recent. As noted above, it has better per-
manence properties than the ideal property. Moreover, under the hypotheses of the
theorems above for the ideal property, the weak ideal property actually implies the
ideal property. (See_eorem 7.15 and_eorem 2.10.)

We now describe our results. We prove in Section 2 that the weak ideal property
implies topological dimension zero in complete generality. For separable C*-algebras
which are purely inûnite in the sense of [20], it is equivalent to the ideal property
and to topological dimension zero. A general separable C*-algebra A has topological
dimension zero if and only if O2 ⊗ A has real rank zero; this is also equivalent to
D ⊗ A having the ideal property for some (or any) Kirchberg algebra D. We rule out
by example other results in this direction which one might conjecture. Topological
dimension zero, at least for separable C*-algebras, is also equivalent to a property of
the sort considered in [33]. _at is, there is an upwards directed class C such that a
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separable C*-algebra A has topological dimension zero if and only if A is residually
hereditarily in C. (See the end of the introduction for other examples of this kind of
property.)

In Section 3,we improve the closure properties under crossed products of the class
of C*-algebras residually hereditarily in a class C by replacing an arbitrary action of
Z2 with an arbitrary action of a ûnite abelian 2-group (Corollary 3.3). _is reûnement
was overlooked in [33]. It applies to residual hereditary (proper) inûniteness aswell as
to residual (SP) and to the combination of pure inûniteness and the ideal property. For
the weak ideal property and for topological dimension zero, better results are already
known [33, Corollary 8.10], [32, _eorem 3.17]. However, for topological dimension
zero, in the separable case we remove the technical hypothesis in [32,_eorem 3.14],
and show that if a ûnite group acts on a separable C*-algebra A and the ûxed point
algebra has topological dimension zero, then A has topological dimension zero.

Section 4 considers minimal tensor products. For a tensor product to have the
weak ideal property or topological dimension zero, it is usually necessary that both
tensor factors have the corresponding property. In the separable case and with one
factor exact, this is suõcient for topological dimension zero. We show by example
that this result fails without the exactness hypothesis. For the weak ideal property,
we get only partial results: if both factors are separable, one is exact, and one actually
has the ideal property, or if one factor is exact and one factor has ûnite or Hausdorò
primitive ideal space, then the tensor product has the weak ideal property.

Proceeding to a C0(X)-algebra A, we show that if X is totally disconnected and
the ûbers all have the weak ideal property, topological dimension zero, residual (SP),
or the combination of pure inûniteness and the ideal property, then A also has the
corresponding property (for topological dimension zero, provided A is separable).
_is result is the analog for these properties of [29,_eorem 2.1] (for real rank zero)
and [30,_eorem 2.1] (for the ideal property), but we do not assume that the C0(X)-
algebra is continuous. If A is a separable continuous C0(X)-algebra with nonzero
ûbers and X is second countable, then total disconnectedness of X is also necessary.
_is is in Section 5. In the short Section 6, we consider locally trivial C0(X)-algebras
with ûbers that are strongly purely inûnite in the sense of [21, Deûnition 5.1], and show
(slightly generalizing the known result for C0(X , B)) that A is again strongly purely
inûnite. In particular, this applies if the ûbers are separable, purely inûnite, and have
topological dimension zero.

Section 7 gives a substantial class of C*-algebras for which the ideal property, the
weak ideal property, and topological dimension zero are all equivalent. _is class in-
cludes all separable locallyAH algebras, aswell as a further generalization, the separa-
ble LS algebras. We also prove that the weak ideal property implies the ideal property
for stable C*-algebras A such that Prim(A) is Hausdorò. However, we show by ex-
ample that there is a Z-stable C*-algebra with just one nontrivial ideal which has the
weak ideal property but not the ideal property.

Ideals in C*-algebras are assumed to be closed and two sided. We write Zn for
Z/nZ, since the p-adic integers will not appear. If α∶G → Aut(A) is an action of a
group G on a C*-algebra A, then Aα denotes the ûxed point algebra.
Because of the role they play in this paper, we recall the following deûnitions [33].
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Deûnition 1.1 ([33, Deûnition 5.1]) Let C be a class of C*-algebras. We say that C is
upwards directed if,whenever A is a C*-algebra that contains a subalgebra isomorphic
to an algebra in C, we have A ∈ C.

Deûnition 1.2 ([33, Deûnition 5.2]) Let C be an upwards directed class of C*-alge-
bras, and let A be a C*-algebra. We say that A is hereditarily in C if every nonzero
hereditary subalgebra of A is in C. We say that A is residually hereditarily in C if A/I
is hereditarily in C for every ideal I ⊂ Awith I /= A.

We gave permanence properties for a general condition deûned this way [33, §5].
We recall the conditions of this type considered in [33], and add onemore to be proved
here.

(1) Let C be the class of all C*-algebras which contain an inûnite projection. _en
C is upwards directed (clear) and a C*-algebra A is purely inûnite and has the ideal
property if and only if A is residually hereditarily in C. See the equivalence of condi-
tions (ii) and (iv) of [35, Proposition 2.11] (valid, as shown there, even when A is not
separable).

(2) Let C be the class of all C*-algebras that contain an inûnite element. _en C

is upwards directed (clear) and a C*-algebra A is (residually) hereditarily inûnite [33,
Deûnition 6.1] if and only if A is (residually) hereditarily in C. (See [33, Corollary 6.5].
We should point out that, by [20, Lemma 2.2 (iii)], if D is a C*-algebra, B ⊂ D is a
hereditary subalgebra, and a and b are positive elements of B such that a is Cuntz
subequivalent to b relative to D, then a is Cuntz subequivalent to b relative to B.)

(3) Let C be the class of all C*-algebras that contain a properly inûnite element.
_en C is upwards directed (clear) and a C*-algebra A is (residually) hereditarily
properly inûnite [33, Deûnition 6.2]) if and only if A is (residually) hereditarily in C.
(Lemma 2.2(iii) of [20] plays the same role here as in (2).)

(4) Let C be the class of all C*-algebras that contain a nonzero projection. _en
C is upwards directed (clear). A C*-algebra A has Property (SP) if and only if A is
hereditarily in C, and has residual (SP) [33, Deûnition 7.1] if and only if A is residually
hereditarily inC. (Both statements are clear. Residual (SP) appears,without the name,
as a hypothesis in the discussion a�er [21, Proposition 4.18].)

(5) Let C be the class of all C*-algebras B such that K ⊗ B contains a nonzero
projection. _en C is upwards directed (clear) and a C*-algebra A has the weak ideal
property [33, Deûnition 8.1] if and only if A is residually hereditarily in C. (_is is
shown at the beginning of the proof of [33,_eorem 8.5].)

(6) Let C be the class of all C*-algebras B such that O2 ⊗ B contains a nonzero
projection. _en C is upwards directed. (_is is clear.) A separable C*-algebra A has
topological dimension zero if and only if A is residually hereditarily in C. (_is will
be proved in _eorem 2.10.)

2 Topological Dimension Zero

In this section, we prove that the weak ideal property implies topological dimension
zero for general C*-algebras (_eorem 2.8). We then give characterizations of topo-
logical dimension zero for separable C*-algebras (_eorem 2.10) and purely inûnite
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separable C*-algebras (_eorem 2.9), in terms of other properties of the algebra, in
terms of properties of its tensor products with suitable Kirchberg algebras, and (for
general separable C*-algebras) of the form of being residually hereditarily in suitable
upwards directed classes. We also give two related counterexamples. In particular,
there is a separable purely inûnite unital nuclear C*-algebra A with one nontrivial
ideal such that O2 ⊗ A ≅ A and RR(A) = 0, and an action α∶Z2 → Aut(A), such that
RR(C∗(Z2 ,A, α)) /= 0.

We recall two deûnitions [32]. We call a not necessarily Hausdorò space locally
compact if the compact (but not necessarily closed) neighborhoods of every point
x ∈ X form a neighborhood base at x.

Deûnition 2.1 ([6, Remark 2.5 (vi) ], [32, Deûnition 3.2]) Let X be a locally com-
pact but not necessarily Hausdorò topological space. We say that X has topological
dimension zero if for every x ∈ X and every open set U ⊂ X such that x ∈ U , there
exists a compact open (but not necessarily closed) subset Y ⊂ X such that x ∈ Y ⊂ U .
(Equivalently, X has a base for its topology consisting of subsets which are compact
and open, but not necessarily closed.) We further say that a C*-algebra A has topolog-
ical dimension zero if Prim(A) has topological dimension zero.

Deûnition 2.2 ([32, Deûnition 3.4]) Let X be a not necessarilyHausdorò topolog-
ical space. A compact open exhaustion of X is an increasing net (Yλ)λ∈Λ of compact
open subsets Yλ ⊂ X such that X = ⋃λ∈Λ Yλ .

We further recall ([32, Lemma 3.10]; see [32, Deûnition 3.9] or [35, p. 53] for the
original deûnition) that if A is a C*-algebra and I ⊂ A is an ideal, then I is compact if
and only if Prim(I) is a compact open (but not necessarily closed) subset of Prim(A).
Finally, we recall the deûnition of the weak ideal property.

Deûnition 2.3 ([33, Deûnition 8.1]) Let A be a C*-algebra. We say that A has the
weak ideal property if, whenever I ⊂ J ⊂ K ⊗ A are ideals in K ⊗ A such that I /= J, it
follows that J/I contains a nonzero projection.

Lemma 2.4 LetA be a C*-algebrawith theweak ideal property. Let J ⊂ Abe an ideal
with J /= A. _en there exists an ideal N ⊂ A with J ⫋ N and such that K ⊗ (N/J) is
generated as an ideal in K ⊗ (A/J) by a single nonzero projection.

Proof Since A has the weak ideal property and K ⊗ (A/J) /= 0, there is a nonzero
projection e ∈ K ⊗ (A/J). Let M ⊂ K ⊗ (A/J) be the ideal generated by e. _en there
is an ideal N ⊂ Awith J ⊂ N ⊂ A such that M = K ⊗ (N/J). Since N/J /= 0, it follows
that N /= J.

Lemma 2.5 Let A be a C*-algebra, let F ⊂ A be a ûnite set of projections, and let
I ⊂ A be the ideal generated by F. _en Prim(I) is a compact open subset of Prim(A).

Proof _is can be shown by using the same argument as in (iii) implies (i) in the
proof of Proposition 2.7 of [35]. However, we can give a more direct proof (not in-
volving the Pedersen ideal). As there, we prove that I is compact (as recalled a�er
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Deûnition 2.2). So let (Iλ)λ∈Λ be an increasing net of ideals inA such that⋃λ∈Λ Iλ = I.
Standard functional calculus arguments produce ε > 0 such that if B is a C*-algebra,
C ⊂ B is a subalgebra, and p ∈ B is a projection such that dist(p,C) < ε, then there is
a projection q ∈ C such that ∥q− p∥ < 1, and in particular q is Murray–von Neumann
equivalent to p. Write F = {p1 , p2 , . . . , pn}. Choose λ ∈ Λ such that dist(p j , Iλ) < ε
for j = 1, 2, . . . , n. Let q1 , q2 , . . . , qn ∈ Iλ be projections obtained from the choice
of ε. _en there are partial isometries s1 , s2 , . . . , sn ∈ A such that p j = s jq js∗j for
j = 1, 2, . . . , n. So p1 , p2 , . . . , pn ∈ Iλ , whence Iλ = I. _is completes the proof.

Lemma 2.6 Let A be a C*-algebra, and let I ⊂ A be an ideal. Suppose that there is a
collection (Iλ)λ∈Λ (not necessarily a net) of ideals in A such that I is the ideal generated
by⋃λ∈Λ Iλ and such that Prim(Iλ) has a compact open exhaustion (Deûnition 2.2) for
every λ ∈ Λ. _en Prim(I) has a compact open exhaustion.

Proof It is easily checked that a union of open sets with compact open exhaustions
also has a compact open exhaustion.

Proposition 2.7 Let A be a C*-algebra. _en there is a largest ideal I ⊂ A such that
Prim(I) has a compact open exhaustion.

Proof Let I be the closure of the union of all ideals J ⊂ A such that Prim(J) has
a compact open exhaustion. _en Prim(I) has a compact open exhaustion by Lem-
ma 2.6.

_eorem 2.8 Let A be a C*-algebra with the weak ideal property. _en A has topo-
logical dimension zero.

Proof We will show that for every ideal I ⊂ A, the subset Prim(I) has a compact
open exhaustion. _e desired conclusion will then follow [32, Lemma 3.6].

So let I ⊂ A be an ideal. By Proposition 2.7, there is a largest ideal J ⊂ I such
that Prim(J) has a compact open exhaustion. We prove that J = I. Suppose not.
Use Lemma 2.4 with I in place of A to ûnd an ideal N ⊂ I with J ⫋ N and such
that K ⊗ (N/J) is generated by one nonzero projection. _en Prim(K ⊗ (N/J)) is a
compact open subset of Prim(K ⊗ (I/J)) by Lemma 2.5. So Prim(N/J) is a compact
open subset of Prim(I/J). Since Prim(J) has a compact open exhaustion, we can
apply [32, Lemma 3.7] (taking U = Prim(J)) to deduce that Prim(N) has a compact
open exhaustion. Since J ⫋ N , we have a contradiction. _us J = I, and Prim(I) has
a compact open exhaustion.

_e list of equivalent conditions in the next theorem extends the list in [35, Corol-
lary 4.3], by adding condition (v). As discussed in the introduction, this condition is
better behaved than the related condition (iv).

_eorem 2.9 Let A be a separable C*-algebra that is purely inûnite in the sense of
[20, Deûnition 4.1]. _en the following are equivalent.
(i) O2 ⊗ A has real rank zero.
(ii) O2 ⊗ A has the ideal property.
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(iii) A has topological dimension zero.
(iv) A has the ideal property.
(v) A has the weak ideal property.

Proof _e equivalence of conditions (i)–(iv) is [35, Corollary 4.3]. _at (iv) im-
plies (v) is trivial. _at (v) implies (iii) is _eorem 2.8.

We presume that _eorem 2.9 holds without separability. However, some of the
results used in the proof of [35, Corollary 4.3] are only known in the separable case,
and it seems likely to require some work to generalize them.

Recall that a Kirchberg algebra is a simple separable nuclear purely inûnite C*-al-
gebra.

_eorem 2.10 Let A be a separable C*-algebra. _en the following are equivalent.
(i) A has topological dimension zero.
(ii) O2 ⊗ A has real rank zero.
(iii) O2 ⊗ A has the ideal property.
(iv) O2 ⊗ A has the weak ideal property.
(v) O∞ ⊗ A has the ideal property.
(vi) O∞ ⊗ A has the weak ideal property.
(vii) _ere exists a Kirchberg algebra D such that D ⊗ A has the weak ideal property.
(viii) For every Kirchberg algebra D, the algebra D ⊗ A has the ideal property.
(ix) A is residually hereditarily in the class of allC*-algebras B such thatO2⊗B contains

a nonzero projection.
(x) A is residually hereditarily in the class of all C*-algebras B such that K ⊗ O2 ⊗ B

contains a nonzero projection.
(xi) A is residually hereditarily in the class of all C*-algebras B such that O∞ ⊗ B con-

tains a nonzero projection.

We presume that _eorem 2.10 also holds without separability.
To put conditions (ix)–(xi) in context, we point out that it is clear that the classes

used in them are upwards directed in the sense of Deûnition 1.1. Applying the results
of [33, §5] does not give any closure properties for the collection of C*-algebras with
topological dimension zero which are not already known. We do get something new,
which is at least implicitly related to this characterization; see_eorem 3.6.

_e conditions in_eorem 2.10 are not equivalent toAhaving theweak ideal prop-
erty, since there are nonzero simple separable C*-algebras A, such as those classiûed
in [40], for which K ⊗ A has no nonzero projections. _ey are also not equivalent to
RR(O∞ ⊗ A) = 0. See Example 2.13.

Proof of_eorem 2.10 Since A has topological dimension zero if and only ifO2⊗A
has topological dimension zero, and since O2 ⊗ A is purely inûnite [20, Proposi-
tion 4.5], the equivalence of (i)–(iv) follows by applying _eorem 2.9 toO2⊗A. Since
O∞⊗A is purely inûnite [20, Proposition 4.5] andO2 ⊗O∞ ≅ O2, the equivalence of
(iii), (v), and (vi) follows by applying _eorem 2.9 to O∞ ⊗ A.

We prove the equivalence of (i) and (ix). LetC be the class of allC*-algebras B such
that O2 ⊗ B contains a nonzero projection.
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Assume that Ahas topological dimension zero;we prove that A is residually hered-
itarily in C. Let I ⊂ A be an ideal, and let B ⊂ A/I be a nonzero hereditary subalgebra.
_en A/I has topological dimension zero by [6, Proposition 2.6] and [32, Lemma 3.6].
It follows from [32, Lemma 3.3] that B has topological dimension zero. Use (iii) im-
plies (i) in _eorem 2.9 to conclude that O2 ⊗ B contains a nonzero projection.
Conversely, assume that A is residually hereditarily in C. We actually prove that

O2 ⊗ A has the weak ideal property. By (v) implies (iii) in _eorem 2.9, and since
O2⊗A is purely inûnite [20, Proposition 4.5], itwill follow thatO2⊗Ahas topological
dimension zero. Since Prim(O2 ⊗A) ≅ Prim(A), it will follow that A has topological
dimension zero.

_us, let I ⊂ J ⊂ O2 ⊗ A be ideals such that J /= I; we must show that K ⊗ (J/I)
contains a nonzero projection. Since O2 is simple and nuclear, there are ideals I0 ⊂
J0 ⊂ A such that I = O2⊗ I0 and J = O2⊗ J0; moreover, J/I ≅ O2⊗(J0/I0). Since J0/I0
is a nonzero hereditary subalgebra of A/I0, the deûnition of being hereditarily in C

implies thatO2⊗(J0/I0) contains anonzeroprojection, soK⊗(J/I) ≅ K⊗O2⊗(J0/I0)
does also. _is completes the proof of the equivalence of (i) and (ix).

We prove the equivalence of (ix) and (xi) by showing that the two classes involved
are equal, that is, by showing that if B is any C*-algebra, then O2 ⊗ B contains a
nonzero projection if and only ifO∞⊗B contains a nonzero projection. IfO2⊗B con-
tains a nonzero projection, use an injective (nonunital) homomorphismO2 → O∞ to
produce an injective homomorphism of the minimal tensor products O2 ⊗min B →
O∞ ⊗min B. Since O2 and O∞ are nuclear, we have an injective homomorphism
O2 ⊗ B → O∞ ⊗ B, and hence a nonzero projection in O∞ ⊗ B. Using an injec-
tive (unital) homomorphism from O∞ to O2, the same argument also shows that if
O∞ ⊗ B contains a nonzero projection, then so does O2 ⊗ B.

_e proof of the equivalence of (ix) and (x) is essentially the same as in the previous
paragraph, using injective homomorphisms

O2 Ð→ K ⊗O2 and K ⊗O2 Ð→ O2 ⊗O2
≅Ð→ O2 .

We have now proved the equivalence of all the conditions except (vii) and (viii).
It is trivial that (vi) implies (vii) and that (viii) implies (v).
Assume (vii), so that there is aKirchberg algebra D0 such that D0⊗Ahas theweak

ideal property. We prove (viii). Let D be any Kirchberg algebra. By _eorem 2.8, the
algebra D0 ⊗ A has topological dimension zero. Since

Prim(D0 ⊗ A) ≅ Prim(A) ≅ Prim(D ⊗ A),

D⊗A has topological dimension zero. Apply the already proved implication from (i)
to (v) with D ⊗ A in place of A, concluding that O∞ ⊗ D ⊗ A has the ideal property.
SinceO∞⊗D ≅ D (by [19,_eorem 3.15]),we see thatD⊗Ahas the ideal property.

A naive look at condition (i) of _eorem 2.9 and the permanence properties for
C*-algebras which are residually hereditarily in some class C (see [33, Corollary 5.6
and _eorem 5.3]) might suggest that if O∞ ⊗ A has real rank zero and one has an
arbitrary action of Z2 on O∞ ⊗ A or a spectrally free [33, Deûnition 1.3] action of
any discrete group on O∞ ⊗ A, then the crossed product should also have real rank
zero. _is is false. We give an example of a nonsimple purely inûnite unital nuclear
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C*-algebra A satisfying theUniversal Coeõcient _eorem (in fact, withO2⊗A ≅ A),
with exactly one nontrivial ideal, and such that RR(A) = 0, and a spectrally free action
α∶Z2 → Aut(A), such that C∗(Z2 ,A, α) does not have real rank zero.

To put our example in context, we recall the following. First, [10, Example 9] gives
an example of a pointwise outer action α of Z2 on a simple unital AF algebra A such
that C∗(Z2 ,A, α) does not have real rank zero. Second, if A is purely inûnite and sim-
ple, then for any action α∶Z2 → Aut(A) the crossed product is again purely inûnite
[16, Corollary 4.4]. If α is pointwise outer, then C∗(Z2 ,A, α) is again simple, so auto-
matically has real rank zero. Otherwise, αmust be an inner action. (See Lemma 2.11.)
_en C∗(Z2 ,A, α) ≅ A⊕ A, so has real rank zero. _us, no such example is possible
whenA is purely inûnite and simple. _ird, it is possible forA to satisfyO2⊗A ≅ Abut
to have O2 ⊗ C∗(Z2 ,A, α) /≅ C∗(Z2 ,A, α). See [15, Lemma 4.7], where this happens
with A = O2.

_e following lemma is well known, but we are not aware of a reference.

Lemma 2.11 Let Abe a simple C*-algebra, letG be a ûnite cyclic group, and let α∶G →
Aut(A) be an action of G on A. Let g0 ∈ G be a generator of G. If αg0 is inner, then α is
an inner action, that is, there is a homomorphism g ↦ ug from G to the unitary group
ofM(A) such that αg(a) = ugau∗g for all g ∈ G and a ∈ A.

Proof Let n be the order of G. By hypothesis, there is a unitary v ∈ M(A) such that
αg0(a) = vav∗ for all a ∈ A. _en a = αn

g0(a) = vnav−n for all a ∈ A. Simplicity of
A implies that the center of M(A) contains only scalars, so there is λ ∈ S1 such that
vn = λ ⋅1. Now choose ω ∈ S1 such that ωn = λ−1, giving (ωv)n = 1. Deûne ugk0

= ωkvk

for k = 0, 1, . . . , n − 1.

Example 2.12 _ere are a separable purely inûnite unital nuclear C*-algebra A and
an action α∶Z2 → Aut(A)with the following properties. _e algebraAhas exactly one
nontrivial ideal I and satisûes theUniversalCoeõcient _eorem; moreover,O2⊗A ≅
A and RR(A) = 0. _e action α is strongly pointwise outer [39, Deûnition 4.11],
[33, Deûnition 1.1] and spectrally free [33, Deûnition 1.3], but RR(C∗(Z2 ,A, α)) /= 0.

To start the construction, let ν∶Z2 → Aut(O2) be the action considered in [15,
Lemma 4.7]. Deûne B = C∗(Z2 ,O2 , ν); [15, Lemma 4.7] implies that B is a Kirchberg
algebra (simple, separable, nuclear, and purely inûnite) that is unital and satisûes the
Universal Coeõcient _eorem, andmoreover that K0(B) ≅ Z[ 1

2 ] and K1(B) = 0.
Let P be the unital Kirchberg algebra satisfying theUniversalCoeõcient_eorem,

K0(P) = 0, and K1(P) ≅ Z. _e Künneth formula [43, _eorem 4.1] implies that
K0(P ⊗O4) = 0 and K1(P ⊗O4) ≅ Z3.

_e algebras O4 and P ⊗ O4 are both in the classiûable class C of purely inûnite
simple separable nuclearC*-algebras deûned in the introduction to [41, § 3]. It follows
from [41, Proposition 5.4] that every possible six term exact sequence

(2.1) K0(P ⊗O4) // M0 // K0(O4)

K1(O4)

∂

OO

M1oo K1(P ⊗O4)oo

exp

OO
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(for anypossible choice of abelian groupsM0 andM1 andhomomorphisms exp and ∂)
is realized as the K-theory of an exact sequence

(2.2) 0Ð→ I
µ0Ð→ E0

π0Ð→ D Ð→ 0,

in which I and D are stable C*-algebras in C, and

K∗(I) ≅ K∗(P ⊗O4), K∗(D) ≅ K∗(O4), K0(E0) ≅ M0 , K1(E0) ≅ M1 .

Moreover, as in the introduction to [41, §4], wemay require that the extension be in
the standard form described there. In particular, it will then be essential. Choose the
exact sequence (2.2) such that the connecting map

(2.3) exp∶K0(O4)→ K1(P ⊗O4)
is an isomorphism. Classiûcation in the simple case (see [18], [38, _eorem 4.2.4])
gives I ≅ K ⊗ P ⊗ O4 and D ≅ K ⊗ O4. _e algebra E0 has a countable approximate
identity consisting of projections [41, Proposition 4.4]. In particular, there exists a
projection p ∈ E0 such that π0(p) /= 0. Since the extension is essential, p is full.

We identify the algebras π0(p)Dπ0(p) and pµ0(I)p in the extension

(2.4) 0Ð→ pµ0(I)p
µ0Ð→ pE0p

π0Ð→ π0(p)Dπ0(p)Ð→ 0.

Since exp in (2.1) has been chosen to be an isomorphism, [π0(p)] = 0 in K0(D).
_erefore classiûcation in the simple case implies that π0(p)Dπ0(p) ≅ M3(O4) (see
[18], [38,_eorem 4.2.4]). Since p is full, pµ0(I)p /= 0. _e extension (2.4) does not
split, because exp /= 0 in (2.1), so pµ0(I)p is not unital. _erefore pµ0(I)p is stable. So
pµ0(I)p ≅ K ⊗ P⊗O4. Setting E = pE0p, the extension (2.4) is therefore isomorphic
to an extension

(2.5) 0Ð→ K ⊗ P ⊗O4
µÐ→ E πÐ→ M3(O4)Ð→ 0,

whose K-theory is as in (2.1) with the choice (2.3).
Deûne A = O2 ⊗ E. Let
ι0∶Z2 → Aut(K ⊗ P ⊗O4), ι∶Z2 → Aut(E), and ι1∶Z2 → Aut(M3(O4))

be the trivial actions, and let

α0 = ν ⊗ ι0∶Z2 → Aut(O2 ⊗ K ⊗ P ⊗O4), α = ν ⊗ ι∶Z2 → Aut(A),
and

α1 = ν ⊗ ι1∶Z2 → Aut(O2 ⊗M3(O4))
be the obvious actions on the tensor products. Tensoring the sequence (2.5) with O2
and equipping the algebras with these actions gives an equivariant exact sequence

(2.6) 0Ð→ O2 ⊗ K ⊗ P ⊗O4 Ð→ AÐ→ O2 ⊗M3(O4)Ð→ 0.

Using the isomorphismsO2⊗M3(O4) ≅ O2 andO2⊗P⊗O4 ≅ O2,we can rewrite (2.6)
as 0→ K⊗O2 → A→ O2 → 0. _erefore, [5,_eorem 3.14, Corollary 3.16] imply that
RR(A) = 0. It follows from [37, Lemma 2.8.2] that taking crossed products in (2.6)
gives an exact sequence

0Ð→ C∗(Z2 ,O2 ⊗ K ⊗ P ⊗O4 , α0) Ð→ C∗(Z2 ,A, α)Ð→
C∗(Z2 ,O2 ⊗M3(O4), α1) Ð→ 0.
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_is sequence reduces to

(2.7) 0Ð→ B ⊗ K ⊗ P ⊗O4 Ð→ B ⊗ E Ð→ B ⊗M3(O4)Ð→ 0,

in which the maps are obtained from those of (2.5) by tensoring them with idB . It
follows from the Künneth formula [43,_eorem 4.1] that

K0(B ⊗M3(O4)) ≅ K1(B ⊗ K ⊗ P ⊗O4) ≅ Z[ 1
2 ]⊗Z3 ≅ Z3 .

Consider the connecting map K0(B ⊗ M3(O4)) → K1(B ⊗ K ⊗ P ⊗ O4) associ-
ated with (2.7). By naturality, it is the tensor product of the isomorphism (2.3) with
idZ[1/2], and is hence nonzero. Since every class in K0(B⊗M3(O4)) is represented by
a projection in B ⊗M3(O4), it follows from the six term exact sequence in K-theory
that there are projections in B ⊗ M3(O4) which do not li� to projections in B ⊗ E.
_erefore, [5,_eorem 3.14] implies that RR(B⊗E) /= 0. _usRR(C∗(Z2 ,A, α)) /= 0.

It remains to prove the claim that α is strongly pointwise outer and spectrally free.
Since the group Z2 is ûnite, these are equivalent by [33, _eorem 1.16], so we prove
strong pointwise outerness. Let g ∈ Z2 be the nontrivial element. _is then reduces
to proving that the automorphisms (α0)g = νg ⊗ idK⊗P⊗O4 ∈ Aut(O2 ⊗ K ⊗ P ⊗O4)
and (α1)g = νg ⊗ idM3(O4) ∈ Aut(O2 ⊗ M3(O4)) are outer. _e automorphism νg ∈
Aut(O2) is outer, since otherwise the action ν would be inner by Lemma 2.11, so the
crossed productwould beO2⊕O2. We can now apply [33, Proposition 1.19 (2)] twice,
both times using ν∶Z2 → Aut(O2) in place of α∶G → Aut(A), and in one case using
K ⊗ P ⊗O4 in place of B and in the other case using M3(O4).

We would like to get outerness of (α0)g ∈ Aut(O2 ⊗ K ⊗ P ⊗O4) from [45,_eo-
rem 1], but that theorem is only stated for unital C*-algebras.

Example 2.13 _ere is a separable purely inûnite unital nuclear C*-algebra Awith
exactly one nontrivial ideal and which has the ideal property but such that O∞ ⊗ A
does not have real rank zero.

Let E be as in (2.5) in Example 2.12, with the property that the connecting map
in (2.3) is nonzero. SetA = O∞⊗E. SinceO∞⊗K⊗P⊗O4 andO∞⊗M3(O4) have the
weak ideal property (for trivial reasons), it follows from [33,_eorem 8.5 (5)] that A
has theweak ideal property, and then from _eorem 2.9 that A has the ideal property.
However, A is by construction not K0-li�able in the sense of [35, Deûnition 3.1], so
[35, Corollary 4.3(i)] implies that O∞ ⊗ A (which is of course isomorphic to A) does
not have real rank zero.

3 Permanence Properties for Crossed Products

We proved [33] that if C is an upwards directed class of C*-algebras, α is a completely
arbitrary action of Z2 on a C*-algebra A, and Aα is (residually) hereditarily in C, then
A is (residually) hereditarily in C. (See [33, _eorem 5.5].) In particular, by consid-
ering dual actions, it follows [33, Corollary 5.6] that crossed products by arbitrary
actions of Z2 preserve the class of C*-algebras that are (residually) hereditarily in C.
Here we show how one can easily extend the ûrst result to arbitrary groups of order
a power of 2 and the second result to arbitrary abelian groups of order a power of 2.
_is should have been done in [33], butwas overlooked there. We believe these results
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should be true for any ûnite group in place of Z2, or at least any ûnite abelian group,
but we do not know how to prove them in this generality.

_e following lemma is surely well known.

Lemma 3.1 LetG be a topological group, letAbe aC*-algebra, and let α∶G → Aut(A)
be an action of G on A. Let N ⊂ G be a closed normal subgroup. _en there is an action
α∶G/N → Aut(Aα∣N ) such that for g ∈ G and a ∈ Aα∣N we have α gN(a) = αg(a).
Moreover, (Aα∣N )α = Aα .

Proof _e only thing requiring proof is that if g ∈ G and a ∈ Aα∣N , then αg(a) ∈
Aα∣N . So let k ∈ N . Since g−1kg ∈ N ,we get αk(αg(a)) = αg(αg−1kg(a)) = αg(a).

_eorem 3.2 Let C be an upwards directed class of C*-algebras. Let G be a ûnite
2-group, and let α∶G → Aut(A) be an arbitrary action of G on a C*-algebra A.
(i) If Aα is hereditarily in C, then A is hereditarily in C.
(ii) If Aα is residually hereditarily in C, then A is residually hereditarily in C.

Proof We prove both parts at once. We use induction on the number n ∈ Z≥0 such
that the order of G is 2n . When n = 0, the statement is trivial. So assume that n ∈
Z≥0, that the statement is known for all groups of order 2n , that G is a group with
card(G) = 2n+1, that A is a C*-algebra, that α∶G → Aut(A) is an action, and that Aα
is (residually) hereditarily in C. _e Sylow theorems provide a subgroup N ⊂ G such
that card(N) = 2n . Since N has index 2, N must be normal. Let α∶G/N → Aut(Aα∣N )
be as in Lemma 3.1. _en (Aα∣N )α = Aα is (residually) hereditarily in C. Since G/N ≅
Z2, it follows from [33, _eorem 5.5] that Aα∣N is (residually) hereditarily in C. _e
induction hypothesis now implies that A is (residually) hereditarily in C.

Corollary 3.3 Let C be an upwards directed class of C*-algebras. Let G be a ûnite
abelian 2-group, and let α∶G → Aut(A) be an arbitrary action of G on a C*-algebra A.
(i) If A is hereditarily in C, then C∗(G ,A, α) and Aα are hereditarily in C.
(ii) If A is residually hereditarily in C, then C∗(G ,A, α) and Aα are residually hered-

itarily in C.

Proof For C∗(G ,A, α), apply _eorem 3.2 with C∗(G ,A, α) in place of A and the
dual action α̂ in place of α.
For Aα , use the proposition in [42] to see that Aα is isomorphic to a corner of

C∗(G ,A, α), and apply [33, Proposition 5.10].

Presumably Corollary 3.3 is valid for crossed products by coactions of not neces-
sarily abelian 2-groups. Indeed, possibly the appropriate context is that of actions of
ûnite dimensional Hopf C*-algebras. We will not pursue this direction here.

Corollary 3.4 Let G be a ûnite 2-group, and let α∶G → Aut(A) be an arbitrary
action of G on a C*-algebra A. Suppose Aα has one of the following properties: resid-
ual hereditary inûniteness, residual hereditary proper inûniteness, residual (SP), or the
combination of the ideal property and pure inûniteness. _en A has the same property.
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Proof As discussed in the introduction, for each of these properties there is an up-
wards directed class C such that a C*-algebra has the property if and only if it is resid-
ually hereditarily in the class C. Apply _eorem 3.2.

Corollary 3.5 Let G be a ûnite abelian 2-group, and let α∶G → Aut(A) be an ar-
bitrary action of G on a C*-algebra A. Suppose A has one of the following properties:
residual hereditary inûniteness, residual hereditary proper inûniteness, residual (SP), or
the combination of the ideal property and pure inûniteness. _en C∗(G ,A, α) and Aα
have the same property.

Proof _e proof is the same as that of Corollary 3.4, using Corollary 3.3 instead of
_eorem 3.2.

We omit the weak ideal property in Corollary 3.4 and Corollary 3.5, because bet-
ter results are already known [33,_eorem 8.9, Corollary 8.10]. We also already know
[32,_eorem 3.17] that topological dimension zero is preserved by crossed products
by actions of arbitrary ûnite abelian groups, not just abelian 2-groups. _e result anal-
ogous to Corollary 3.4 is [32,_eorem 3.14], but it has an extra technical hypothesis.
In the separable case, we remove this hypothesis.

_eorem 3.6 Let α∶G → Aut(A) be an action of a ûnite group G on a separable
C*-algebra A. Suppose that Aα has topological dimension zero. _en A has topological
dimension zero.

Proof Deûne an action β∶G → Aut(O2 ⊗ A) by βg = idO2 ⊗ αg for g ∈ G. _e
implication from (i) to (iv) in _eorem 2.10 shows that (O2 ⊗ A)β = O2 ⊗ Aα has the
weak ideal property. _eorem 8.9 of [33] now implies that O2 ⊗ A has the weak ideal
property. So A has topological dimension zero by the implication from (iv) to (i) in
_eorem 2.10.

4 Permanence Properties for Tensor Products

In this section, we consider permanence properties for tensor products. One of its
purposes is to serve as motivation for the results on C0(X)-algebras in Section 5.
_e new positive result is _eorem 4.4: if A and B are nonzero separable C*-algebras
and A is exact, then A⊗min B has topological dimension zero if and only if A and B
have topologicaldimension zero. _e exactnesshypothesis isnecessary (Example 4.1).
Still assuming this exactness hypothesis,we also give partial results for theweak ideal
property, when one of the tensor factors actually has the ideal property and both are
separable (_eorem4.8), andwhen one of themhas ûnite orHausdorò primitive ideal
space (Proposition 4.10 and Proposition 4.11).

_e properties we are considering are certainly not preserved by taking tensor
productswith arbitrary C*-algebras. For example, the algebraC has all of topological
dimension zero, the ideal property, the weak ideal property, and residual (SP), but
C([0, 1]) ⊗ C has none of these. _e algebra O2 is purely inûnite and has the ideal
property, but C([0, 1])⊗O2 does not have the ideal property.
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_ere is thus no hope of any general theorem about tensor products for properties
of the form “residually hereditarily in C” when only one tensor factor has the prop-
erty. Permanence theorems will therefore have to assume that both factors have the
property in question. _e following example shows that we will also need to assume
that at least one tensor factor is exact.

Example 4.1 We show that there are separable unital C*-algebras A and C (neither
of which is exact) that have topological dimension zero and such that A⊗min C does
not have topological dimension zero. In fact, A and C even have real rank zero, and C
is simple. We also show that there are separable unital C*-algebras B and D that are
purely inûnite and have the ideal property, but such that B ⊗min D does not have the
ideal property. In fact, B and D even tensorially absorb O2, and D is simple.

Since topological dimension zero and the weak ideal property are preserved by
passing to quotients, it follows that no other tensor product ofA andC has topological
dimension zero. Alsousing the implication from (iv) to (iii) in_eorem 2.10, it follows
that no other tensor product of B and D even has the weak ideal property.

Let A and C be as in [34, _eorem 2.6]. As there, A and C are separable unital
C*-algebras with real rank zero. Real rank zero passes to ideals and quotients, and
therefore clearly implies the weak ideal property. So A and C have topological di-
mension zero by_eorem 2.8. Also, C is simple and A⊗min C does not have the ideal
property [34,_eorem 2.6]. _ese are the same algebras A and C as used in the proof
of [35, Proposition 4.5]. _us, A ⊗min C does not have topological dimension zero
[35, Proposition 4.5 (1)]. _is shows that A and C have the required properties. Also,
O2 ⊗A⊗min C does not have the ideal property [35, Proposition 4.5 (2)]. _us taking
B = O2 ⊗ A and D = O2 ⊗ C gives algebras B and D with the required properties.

We have several positive results, but no answers for several obvious questions. We
recall known results, then give the new resultwe can prove (on topological dimension
zero) and our partial results for the weak ideal property. We conclude with open
questions.

In order to get

(4.1) Prim(A⊗min B) ≅ Prim(A) × Prim(B),

we will assume one of the algebras is exact and both are separable. In _eorem 4.4,
_eorem 4.8, and Corollary 4.9, these assumptions can be replaced by any other hy-
potheses which imply a natural homeomorphism as in (4.1). Proposition 2.17 of [3]
gives a number of conditions that imply this for the spaces of prime ideals in place of
the primitive ideal spaces, but for separable C*-algebras this is the same thing.

_eorem 4.2 ([34, Corollary 1.3]) Let Aand B be C*-algebraswith the ideal property.
Assume that A is exact. _en A⊗min B has the ideal property.

_eorem 4.3 ([35, Proposition 4.6]) Let Aand B be C*-algebras with the ideal prop-
erty. Assume that B is purely inûnite and A is exact. _en A⊗min B is purely inûnite
and has the ideal property.
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_eorem 4.4 Let A and B be nonzero separable C*-algebras. Assume that A is exact.
_enA⊗minB has topological dimension zero if and only if bothAand B have topological
dimension zero.

Proof By [3, Proposition 2.17] (see [3, Remark 2.11] for the notation in [3, Proposi-
tion 2.16], to which it refers), the spaces of closed prime ideals satisfy

prime(A⊗min B) ≅ prime(A) × prime(B),

with the homeomorphism being implemented in the obvious way ([3, Proposition
2.16 (iii)]). Since A, B, and A⊗min B are all separable, [36, Proposition 4.3.6] implies
that prime ideals are primitive; the reverse is well known. So

(4.2) Prim(A⊗min B) ≅ Prim(A) × Prim(B).

Assume A and B have topological dimension zero. _en (see Deûnition 2.1) we
need to prove that if X andY are locally compact, butnotnecessarilyHausdorò spaces
that have topological dimension zero, then X ×Y has topological dimension zero. So
let (x , y) ∈ X×Y , and letW ⊂ X×Y be an open setwith (x , y) ∈W . By the deûnition
of the product topology, there are open subsets U0 ⊂ X and V0 ⊂ Y such that x ∈ U0,
y ∈ V0, and U0 × V0 ⊂ W . By the deûnition of topological dimension zero, there
are compact (but not necessarily closed) open subsets U ⊂ X and V ⊂ Y such that
x ∈ U ⊂ U0 and y ∈ V ⊂ V0. _en U ×V is a compact open subset of X ×Y such that
(x , y) ∈ U × V ⊂W .

Now assume A⊗min B has topological dimension zero. We prove that B has topo-
logical dimension zero; the proof that A has topological dimension zero is the same.
By (4.2), it is enough to prove that if X and Y are nonempty locally compact, but not
necessarily Hausdorò spaces, and X × Y has topological dimension zero, then X has
topological dimension zero. So let x ∈ X and let U ⊂ X be an open set that contains x.
Fix any point y0 ∈ Y . _en U × Y is an open subset of X × Y that contains (x , y0).
_erefore there is a compact (but not necessarily closed) open subset W ⊂ U × Y
such that (x , y0) ∈ W . Let p∶X × Y → X be the projection to the ûrst coordinate.
_en p is a continuous open map. _erefore the set V = p(W) is a compact (but not
necessarily closed) open subset of X, and clearly x ∈ V ⊂ U .

_e ûrst result for the weak ideal property requires some preparation.

Notation 4.5 LetAbe aC*-algebra. For anopen setU ⊂ Prim(A),we let IA(U) ⊂ A
be the corresponding ideal. _us

Prim(IA(U)) ≅ U and Prim(A/IA(U)) ≅ Prim(A) ∖U .

Lemma 4.6 Let A be a C*-algebra, let U ⊂ Prim(A) be open, and let p ∈ A/IA(U)
be a projection. _en there exist an open subset V ⊂ Prim(A), a compact (but not
necessarily closed) subset L ⊂ Prim(A), and a projection q ∈ A/IA(V), such that
V ⊂ L ⊂ U and the image of q in A/IA(U) is equal to p.

Proof For P ∈ Prim(A), let πP ∶A → A/P be the quotient map, and for an open
subset W ⊂ Prim(A), let κW ∶A → A/IA(W) be the quotient map. Choose a ∈ Asa
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such that κU(a) = p. Deûne

V = {P ∈ Prim(A) ∶ ∥πP(a2 − a)∥ > 1
8}

and

L = {P ∈ Prim(A) ∶ ∥πP(a2 − a)∥ ≥ 1
8} .

We apply results in [9] to these sets. _ese results are actually stated in terms of func-
tions on the space Â of unitary equivalence classes of irreducible representations of A,
with the topology being the inverse image of the topology on Prim(A) under the stan-
dard surjection Â→ Prim(A), but they clearly apply to Prim(A). It follows that V is
open [9, Proposition 3.3.2], and that L is compact [9, Proposition 3.3.7]. Obviously
V ⊂ L. Clearly πP(a2 − a) = 0 for all P ∈ Prim(A) ∖U , so L ⊂ U .

Lemma 3.3.6 of [9] implies that ∥κV(a2 − a)∥ ≤ 1
8 . _erefore 1

2 /∈ sp(κV(a)). _us
we can deûne a projection q ∈ A/IA(V) by q = χ( 1

2 ,∞)(κV(a)). _e image of q in
A/IA(U) is clearly equal to p.

Lemma 4.7 Let X1 and X2 be topological spaces, let W ⊂ X1 × X2 be an open subset,
let x ∈ X1, let L ⊂ X2 be compact, and suppose that {x} × L ⊂ W . _en there exists an
open set U ⊂ X1 such that x ∈ U and U × L ⊂W .

We donot assume that X1 and X2 areHausdorò. In particular, L neednot be closed.

Proof of Lemma 4.7 For each y ∈ L, choose open sets V1(y) ⊂ X1 and V2(y) ⊂ X2
such that (x , y) ∈ V1(y) × V2(y) ⊂ W . Use compactness of L to choose n ∈ Z≥0 and
y1 , y2 , . . . , yn ∈ L such that V2(y1),V2(y2), . . . ,V2(yn) cover L. Take

U =
n
⋂
j=1

V1(y j).

_eorem 4.8 Let A1 and A2 be separable C*-algebras. Assume that A1 or A2 is exact,
that A1 has the ideal property, and that A2 has theweak ideal property. _en A1⊗minA2
has the weak ideal property.

In the diagram (4.5) in the proof below, one should think of the subquotients as
corresponding to locally closed subsets of Prim(A1) × Prim(A2). _us, the alge-
bra in the middle of the top row corresponds to V1 × (V2 ∖ T). It contains a useful
nonzero projection, obtained as the tensor product of suitable projections in IA1(V1)
and IA2(V2)/IA2(T). _is subset is not open, so the algebra is not a subalgebra of
A1 ⊗min A2. Amain point in the proof is that, given V2 and a nonzero projection

e2 ∈ IA2(V2)/IA2(S2)

(see (4.3) for the deûnition of S2), the sets V1 and T have been chosen so that there is
a projection p2 ∈ IA2(V2)/IA2(T) whose image is e2, and so that the set

Y ∪ [V1 × (V2 ∖ T)]

is open.
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We do not get a proof that the tensor product of two algebras with the weak ideal
property again has theweak ideal property, becausewe do not know how to reduce the
size ofV2 (to gowith an analogous subset T1 ⊂ V1)without changing the projection e2.

Proof of_eorem 4.8 Replacing A2 by K⊗A2, wemay assume that if I, J ⊂ A2 are
ideals such that I ⫋ J, then J/I contains a nonzero projection.
Deûne X j = Prim(A j) for j = 1, 2. Using [3] in the same way as in the proof of

_eorem 4.4, we identify Prim(A1 ⊗min A2) = X1 × X2. _e identiûcation is given
by the map from X1 × X2 to Prim(A1 ⊗min A2) sending (P1 , P2) ∈ X1 × X2 to the
primitive ideal obtained as the kernel of A1 ⊗min A2 → (A1/P1) ⊗min (A2/P2). _e
lattice of ideals of A1 ⊗min A2 can thus be canonically identiûed with the lattice of
open subsets of X1 × X2 when this space is equipped with the product topology. We
simplify Notation 4.5 by writing I j(U) for IA j(U) when U ⊂ X j is open, and I(W)
for IA1⊗minA2(W) when W ⊂ X1 × X2 is open. We then get canonical isomorphisms
I1(U1)⊗min I2(U2) ≅ I(U1 ×U2) for open subsets U1 ⊂ X1 and U2 ⊂ X2.

We need to show that if Y , Z ⊂ X1 × X2 are open subsets such that Y ⫋ Z, then
I(Z)/I(Y) contains a nonzero projection.
Choose x1 ∈ X1 and x2 ∈ X2 such that (x1 , x2) ∈ Z ∖ Y . Choose open sets U ⊂ X1

and V2 ⊂ X2 such that x1 ∈ U , x2 ∈ V2, and U × V2 ⊂ Z Deûne

(4.3) S2 = { y ∈ V2 ∶ (x1 , y) ∈ Y} ,

which is an open proper subset of V2. By the reduction at the beginning of the proof,
there is anonzero projection e2 ∈ I2(V2)/I2(S2). Use Lemma 4.6withA = I2(V2) and
with S2 in place of U to choose subsets T ⊂ L ⊂ S2 such that L is compact, T is open,
and there is a projection p2 ∈ I2(V2)/I2(T) whose image in I2(V2)/I2(S2) is equal
to e2. Use Lemma 4.7 to choose an open set V1 ⊂ U such that x1 ∈ V1 and V1 × L ⊂ Y .
Deûne S1 = V1 ∩ (X1 ∖ {x1}), which is an open proper subset of V1. Since A1 has
the ideal property, there is a projection p1 ∈ I1(V1) whose image e1 ∈ I1(V1)/I1(S1) is
nonzero.

We claim that

(4.4) Y ∩ [(V1 ∖ S1) × (V2 ∖ S2)] = ∅.

_e deûnitions of the sets involved imply that

V1 ∖ S1 ⊂ {x1} and V2 ∖ S2 = { y ∈ V2 ∶ (x1 , y) /∈ Y} .

_erefore

(V1 ∖ S1) × (V2 ∖ S2) ⊂ {x1} × (V2 ∖ S2) and [{x1} × (V2 ∖ S2)] ∩ Y = ∅.

Since Y is open, the claim follows.
We now want to construct a commutative diagram as follows:

(4.5) I(V1 × V2)

ι
��

π // I(V1 × V2)/I(V1 × T)

φ

��

κ // I(V1 × V2)/I(R)

ψ
��

I(Z) σ
// I(Z)/I(Y) ρ

// I(Z)/I(Y ∪ R).
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_emaps π and σ are the obvious quotient maps, and ι is the obvious inclusion, com-
ing from V1 × V2 ⊂ U × V2 ⊂ Z. We deûne R = (V1 × S2) ∪ (S1 × V2), which is an
open subset of V1 × V2. In particular, R ⊂ Z. _e map κ is then the quotient map
arising from the inclusion V1 × T ⊂ V1 × S2 ⊂ R, and ρ is the quotient map arising
from the inclusion Y ⊂ Y ∪ R. Since π is surjective, the map φ is unique if it exists.
For existence, wemust show that Ker(π) ⊂ Ker(σ ○ ι). _is inclusion follows from

Ker(π) = I(V1 × T), Ker(σ ○ ι) = I((V1 × V2) ∩ Y) ,
V1 × T ⊂ V1 × L ⊂ Y , and T ⊂ S2 ⊂ V2 .

It remains to construct ψ. Since κ is surjective, the map ψ is unique if it exists.
We claim that Ker(κ) = Ker(ρ ○ φ). Since π is surjective, it suõces to prove that
Ker(κ ○ π) = Ker(ρ ○ φ ○ π). We easily check that

Ker(κ ○ π) = I(R) and Ker(ρ ○ φ ○ π) = I((Y ∪ R) ∩ (V1 × V2)) .

It follows from (4.4) that (Y∪R)∩(V1×V2) = R, proving the claim. _e claim implies
not only that there is a map ψ making the right hand square commute, but also that
ψ is injective.

_e identiûcation Prim(A1 ⊗min A2) = X1 × X2 gives identiûcations

I(V1 × V2)/I(V1 × T) = I1(V1)⊗min [I2(V2)/I2(T)]
and

I(V1 × V2)/I(R) = [I1(V1)/I1(S1)]⊗min [I2(V2)/I2(S2)],

with respect to which κ becomes the tensor product of the quotient maps

I1(V1)→ I1(V1)/I1(S1) and I2(V2)/I2(T)→ I2(V2)/I2(S2).

Deûne q ∈ I(Z)/I(Y) by q = φ(p1 ⊗ p2). _en q is a projection. Moreover, ρ(q) =
(ψ ○ κ)(p1 ⊗ p2) = ψ(e1 ⊗ e2). Since e1 /= 0, e2 /= 0, and ψ is injective, it follows that
q /= 0. _us I(Z)/I(Y) contains a nonzero projection, as desired.

Using results from Section 7 below, we can now give a case in which the tensor
product of C*-algebras with the weak ideal property again has this property.

Corollary 4.9 Let A and B be separable C*-algebras. Assume that A or B is exact,
and that A is in the class W of_eorem 7.15. If A and B have the weak ideal property,
then A⊗min B has the weak ideal property.

_e class W is the smallest class of separable C*-algebras that contains the sepa-
rable locally AH algebras, the separable LS algebras, the separable type I C*-algebras,
and the separable purely inûnite C*-algebras, and is closed under ûnite and countable
direct sums and under minimal tensor products when one tensor factor is exact.

Proof of Corollary 4.9 By _eorem 2.8, the algebra A has topological dimension
zero. Combine Lemma 7.5, Lemma 7.6, Lemma 7.13, Lemma 7.12 (ii), Proposition 7.14,
and _eorem 2.9, to see that A is in the class P of Notation 7.3. _us A has the ideal
property. So A⊗min B has the weak ideal property by _eorem 4.8.
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Combining Proposition 7.16 below with _eorem 4.8 and with [33, _eorem 8.5
(6)], one immediately sees that if A and B are separable C*-algebras with the weak
ideal property, one of which is exact, and Prim(A) is Hausdorò, then A⊗min B has
the weak ideal property. A diòerent argument allows one to prove this without sep-
arability. We give it here, although it is based on material on C0(X)-algebras in the
next section. We ûrst consider the case in which Prim(A) is ûnite but not necessarily
Hausdorò.

Proposition 4.10 Let A and B be C*-algebras with the weak ideal property such that
Prim(A) is ûnite and A or B is exact. _en A⊗min B has the weak ideal property.

Proof First suppose that A is simple. Using [3, Proposition 2.17 (2)] and parts (ii)
and (iv) of [3, Proposition 2.16], we see that J ↦ A⊗min J is a one-to-one correspon-
dence from the ideals of B to the ideals of A ⊗min B; moreover, if J1 ⊂ J2 ⊂ B are
ideals, then (A⊗min J2)/(A⊗min J1) ≅ A⊗min (J2/J1). Now let L1 , L2 ⊂ A⊗min B be
ideals with L1 ⊂ L2. It follows that there exist ideals J1 , J2 ⊂ B with J1 ⊂ J2 such that
L2/L1 ≅ A⊗min(J2/J1). _ere are nonzero projections p1 ∈ K⊗A and p2 ∈ K⊗(J2/J1),
so p1 ⊗ p2 is a nonzero projection in

[K ⊗ A]⊗min [K ⊗ (J2/J1)] ≅ K ⊗ (L2/L1).
We prove the general case by induction on card(Prim(A)). We just did the case

card(Prim(A)) = 1. So let n ∈ Z>0 and suppose the result is known whenever
card(Prim(A)) < n. Assume that card(Prim(A)) = n. Choose a nontrivial ideal
I ⊂ A. By [3, Proposition 2.17 (2)] and [3, Proposition 2.16 (iv)], the sequence

0Ð→ I ⊗min B Ð→ A⊗min B Ð→ (A/I)⊗min B Ð→ 0

is exact. _e algebras I ⊗min B and (A/I)⊗min B have the weak ideal property by the
induction hypothesis, so A⊗min B has the weak ideal property by [33, _eorem 8.5
(5)].

Much of the proof of the following propositionwill be reused in the proof ofPropo-
sition 7.16.

Proposition 4.11 Let A and B be C*-algebras such that A or B is exact and Prim(A)
is Hausdorò. If A and B have the weak ideal property, then A⊗min B has the weak ideal
property.

Proof Set X = Prim(A). We ûrst claim that A is a continuous C0(X)-algebra with
ûber AP = A/P for P ∈ X. In the language of continuous ûelds, this is [13, _eo-
rem 2.3]. To get it in our language, apply [24,_eorem 3.3], taking α∶Prim(A)→ X to
be the identitymap. Identifying continuous C0(X)-algebras and continuousC*-bun-
dles as in Proposition 5.6 (iii), we use [22, Corollary 2.8] to see that A ⊗min B is a
continuous C0(X)-algebra, with ûbers (A⊗min B)P = (A/P)⊗min B for P ∈ X.

_e algebra A has topological dimension zero by _eorem 2.8. Since X is Haus-
dorò, it follows that X is totally disconnected. For every P ∈ X, the quotient A/P
is simple because {P} is closed, and has the weak ideal property by [33, _eorem
8.5 (5)]. So the ûber (A ⊗min B)P = (A/P) ⊗min B has the weak ideal property by
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Proposition 4.10. _eorem 5.14 (iii) now implies that A ⊗min B has the weak ideal
property.

Question 4.12 Let A and B be C*-algebras with A exact. If A and B have the weak
ideal property, does A⊗min B have the weak ideal property?

Question 4.13 Let A and B be C*-algebras with A exact. If A and B have resid-
ual (SP), does A⊗min B have residual (SP)?

5 Permanence Properties for Bundles Over Totally
Disconnected Spaces

We now turn to section algebras of continuous ûelds over totally disconnected base
spaces. We prove that if A is the section algebra of a bundle over a totally discon-
nected space, and the ûbers all have one of the properties residual (SP), topological
dimension zero, theweak ideal property, or the combination of the ideal property and
pure inûniteness, then A also has the same property. Moreover, if A has one of these
properties, so do all the ûbers.

_e section algebra of a continuous ûeld over a space that is not totally discon-
nected will not have the weak ideal property except in trivial cases, and the same is
true of the other properties involving the existence of projections in ideals. Indeed,we
prove that for a continuous ûeld over a second countable locally compact Hausdorò
space with nonzero ûbers, if the section algebra is separable and has one of the four
properties above, then the base spacemust be totally disconnected.

_e fact that the properties we consider are equivalent to being residually heredi-
tarily in a suitable class C underlies some of our reasoning, but our proofs also require
a semiprojectivity condition. (See the proof of Lemma 5.13.) Proposition 5.19 gives
some hope that the results might still be true for a general property of this form.
Following standard notation, if A is a C*-algebra, then M(A) is its multiplier alge-

bra and Z(A) is its center.

Deûnition 5.1 Let X be a locally compact Hausdorò space. If A is a C*-algebra
and ι∶C0(X) → Z(M(A)) is a homomorphism, we say that ι is nondegenerate if
ι(C0(X))A = A. A C0(X)-algebra is a C*-algebra A together with a nondegenerate
homomorphism ι∶C0(X)→ Z(M(A)).

Unlike in Deûnition 2.1 of [24], we do not assume that ι is injective. _is permits
a hereditary subalgebra of A to also be a C0(X)-algebra, without having to replace X
by a closed subspace.

Notation 5.2 Let the notation be as in Deûnition 5.1. For an open set U ⊂ X, we
identifyC0(U)with the obvious ideal ofC0(X). _en ι(C0(U))A is an ideal inA. For
x ∈ X, we deûne Ax = A/ ι(C0(X ∖ {x}))A, and we let evx ∶A→ Ax be the quotient
map. For a closed subset L ⊂ X, we deûne A∣L = A/ι(C0(X ∖ L))A. We equip it with
the C0(L)-algebra structure that comes from the fact that C0(X ∖ L) is contained in
the kernel of the composition C0(X)→ Z(M(A))→ Z(M(A∣L)).

https://doi.org/10.4153/CJM-2017-012-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-012-4


_eWeak Ideal Property and Topological Dimension Zero 1405

Notation 5.2 entails in particular Ax = A∣{x}. Strictly speaking, A is the section
algebra of a bundle and A∣L is the section algebra of the restriction of this bundle to L,
but the abuse of notation is convenient.

Lemma 5.3 Let the notation be as inDeûnition 5.1 andNotation 5.2. Let a ∈ A. _en
we have the following.
(i) ∥a∥ = supx∈X ∥evx(a)∥.
(ii) For every ε > 0, the set {x ∈ X ∶ ∥evx(a)∥ ≥ ε} ⊂ X is compact.
(iii) _e function x ↦ ∥evx(a)∥ is upper semicontinuous.
(iv) For f ∈ C0(X) and x ∈ X, we have evx(ι( f )a) = f (x)evx(a).

Proof When ι is injective, the ûrst threeparts are [24, Corollary 2.2], and the lastpart
is contained in the proof of [24,_eorem 2.3]. (See [24, Lemma 1.1] for the notation.)
In the general case, let Y ⊂ X be the closed subset such that

Ker(ι) = { f ∈ C0(X) ∶ f ∣Y = 0} .

_en A is a C0(Y)-algebra in the obvious way. We have Ax = 0 for x /∈ Y , and the
function x ↦ ∥evx(a)∥ associated with the C0(X)-algebra structure is obtained by
extending the one associated with the C0(Y)-algebra structure to be zero on X ∖ Y .
_e ûrst three parts then follow from those for the C0(Y)-algebra structure, as does
the last when x ∈ Y . _e last part is trivial for x ∈ X ∖ Y .

Deûnition 5.4 Let X be a locally compactHausdorò space, and letAbe aC0(X)-al-
gebra. We say that A is a continuous C0(X)-algebra if for all a ∈ A, the map
x ↦ ∥evx(a)∥ of Lemma 5.3 (iii) is continuous.

Proposition 5.5 Let X be a locally compactHausdorò space and letAbe aC*-algebra.
_en homomorphisms ι∶C0(X)→ Z(M(A)) thatmake A into a continuousC0(X)-al-
gebra correspond bijectively to isomorphisms of Awith the algebra of continuous sections
vanishing at inûnity of a continuous ûeld of C*-algebras over X, as in [9, 10.4.1].

Proof _is is essentially contained in [24,_eorem 2.3], referring to the deûnitions
at the end of [24, §1].

We will also need to use results from [22], so we compare deûnitions.

Proposition 5.6 Let X be a locally compact Hausdorò space.
(i) Let (X , (πx ∶A → Ax)x∈X ,A) be a (not necessarily continuous) C*-bundle in

the sense of [22, Deûnition 1.1]. _en A is a C0(X)-algebra, with structure map
ι∶C0(X) → Z(M(A)) determined by the product in [22, Deûnition 1.1 (ii)], if
and only if for every a ∈ A the function x ↦ ∥πx(a)∥ is upper semicontinuous
and vanishes at inûnity.

(ii) Let A be a C0(X)-algebra. _en (X , (evx ∶A→ Ax)x∈X ,A) is a C*-bundle in the
sense of [22, Deûnition 1.1] that satisûes the semicontinuity condition in (i).

(iii) In (i) and (ii), A is a continuous C0(X)-algebra if and only if the corresponding
C*-bundle is continuous in the sense of of [22, Deûnition 1.1 (iii)].
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Proof _eorem 2.3 of [24] and the preceding discussion give a one-to-one corre-
spondence between C0(X)-algebras with injective structure maps and upper semi-
continuous bundles over X in the sense of the deûnitions at the end [24, §1] and
for which the set of points in X with nonzero ûbers is dense. By substituting our
Lemma 5.3 for [24, Corollary 2.2] at appropriate places in the proof in [24], one sees
that the proof still works if one simultaneously drops injectivity of the structuremap
and density of the pointswith nonzero ûbers. (Some of the argument is also contained
in [22, Lemma 2.1].)

_e diòerence between [22, Deûnition 1.1] and the deûnition of [24] is that [22]
omits the requirement (condition (iii) in [24]) that the set {x ∈ X ∶ ∥a(x)∥ ≥ r} be
compact for a ∈ A and r > 0. It is easy to check that a function f ∶X → [0,∞) is
upper semicontinuous and vanishes at inûnity if and only if for every r > 0 the set
{x ∈ X ∶ f (x) ≥ r} is compact. _us, the deûnitions of [24] and [22] are equivalent.
_is completes the proofs of parts (i) and (ii).

Part (iii) is now immediate from the deûnitions.

We prove results stating that if X is totally disconnected and the ûbers of a
C0(X)-algebra A have a particular property, then so does A. _ese do not require
continuity. We return to continuity later in this section when we prove that if a con-
tinuousC0(X)-algebrawith nonzero ûbers has one of our properties, then X is totally
disconnected. _ese results fail without continuity.

Lemma 5.7 Let the notation be as in Deûnition 5.1 and Notation 5.2. Let B ⊂ A be
a hereditary subalgebra. Let a ∈ A. _en a ∈ B if and only if evx(a) ∈ evx(B) for all
x ∈ X.

Proof _e forward implication is immediate.
For the reverse implication, we ûrst claim that if f ∈ C0(X) and b ∈ B, then

ι( f )b ∈ B. To prove the claim, it suõces to consider the case b ≥ 0. In this case,
ι( f )b = b1/2 ι( f )b1/2, and the claim follows from the fact that B is also a hereditary
subalgebra in M(A).

To prove the result, suppose that a ∈ A satisûes evx(a) ∈ evx(B) for all x ∈ X. It is
enough to prove that for every ε > 0 there is b ∈ B such that ∥a − b∥ < ε. So let ε > 0.
Deûne K ⊂ X by K = {x ∈ X ∶ ∥evx(a)∥ ≥ ε

2}. For x ∈ K, choose cx ∈ B such that
evx(cx) = evx(a), and deûneUx ⊂ X byUx = {y ∈ X ∶ ∥evy(cx − a)∥ < ε

2}. It follows
from Lemma 5.3 (ii) that K is compact and from Lemma 5.3 (iii) that Ux is open for
all x ∈ K. Choose x1 , x2 , . . . , xn ∈ K such that the sets Ux1 ,Ux2 , . . . ,Uxn cover K.
Choose continuous functions fk ∶X → [0, 1] with compact support contained in Uxk
for k = 1, 2, . . . , n, and such that for x ∈ K we have∑n

k=1 fk(x) = 1 and for x ∈ X ∖ K
we have∑n

k=1 fk(x) ≤ 1. Deûne b ∈ A by b = ∑n
k=1 ι( fk)cxk . _en b ∈ B by the claim.

Moreover, if x ∈ K, then, using Lemma 5.3 (iv) at the ûrst step and ∥evx(cxk − a)∥ < ε
2

whenever fk(x) /= 0 at the second step, we have

∥evx(b − a)∥ ≤
n

∑
k=1
fk(x)∥evx(cxk − a)∥ <

ε
2
.
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Deûne f (x) = 1 −∑n
k=1 fk(x) for x ∈ X. For x ∈ X ∖ K, similar reasoning gives

∥evx(b − a)∥ ≤ ∥evx(b − [1 − f (x)]a)∥ + ∥ f (x)evx(a)∥

≤
n

∑
k=1
fk(x)∥evx(cxk − a)∥ + f (x)∥evx(a)∥

≤ [1 − f (x)] ε
2
+ f (x)∥evx(a)∥ ≤

ε
2
.

It now follows from Lemma 5.3 (i) that ∥b − a∥ < ε. _is completes the proof.

Corollary 5.8 Let X be a locally compact Hausdorò space, let A be a C0(X)-algebra
with structure map ι∶C0(X) → Z(M(A)), and let B ⊂ A be a hereditary subalgebra.
_en there is a homomorphism µ∶C0(X)→ Z(M(B)) that makes B a C0(X)-algebra
and such that for all b ∈ B and f ∈ C0(X) we have µ( f )b = ι( f )b. Moreover, Bx =
evx(B) for all x ∈ X.

Proof It follows from Lemma 5.7 that if f ∈ C0(X) and b ∈ B, then ι( f )b ∈ B. For
f ∈ C0(X), we deûne Tf ∶B → B by Tf (b) = ι( f )b for b ∈ B. It is easy to check that
(Tf , Tf ) is a double centralizer of B, and that f ↦ (Tf , Tf ) deûnes a homomorphism
µ∶C0(X) → Z(M(B)). Nondegeneracy of µ follows from nondegeneracy of ι. _e
relations µ( f )b = ι( f )b and Bx = evx(B) hold by construction.

Lemma 5.9 Let X be a locally compact Hausdorò space, let A be a C0(X)-algebra
with structuremap ι∶C0(X) → Z(M(A)), let F ⊂ A be a ûnite set, and let ε > 0. _en
there is f ∈ Cc(X) such that 0 ≤ f ≤ 1 and ∥ι( f )a − a∥ < ε for all a ∈ F.

Proof Deûne K ⊂ X by K = {x ∈ X ∶ there is a ∈ F such that ∥evx(a)∥ ≥ ε
3}. It

follows from Lemma 5.3 (ii) that K is compact. Choose f ∈ Cc(X) such that 0 ≤ f ≤ 1
and f (x) = 1 for all x ∈ K.
Fix a ∈ F. Let x ∈ X. If x ∈ K, then, using Lemma 5.3 (iv), ∥evx(ι( f )a − a)∥ = 0.

Otherwise, again using Lemma 5.3 (iv),

∥evx(ι( f )a − a)∥ ≤ f (x)∥evx(a)∥ + ∥evx(a)∥ <
ε
3
+ ε

3
= 2ε

3
.

Clearly supx∈X ∥evx(ι( f )a − a)∥ ≤ 2ε
3 < ε. So ∥ι( f )a − a∥ < ε by Lemma 5.3 (i).

Lemma 5.10 Let X be a locally compact Hausdorò space, let A be a C0(X)-algebra
with structure map ι∶C0(X) → Z(M(A)), let z ∈ X, let F ⊂ Ker(evz) be a ûnite set,
and let ε > 0. _en there is f ∈ Cc(X ∖ {z}) such that 0 ≤ f ≤ 1 and ∥ι( f )a − a∥ < ε
for all a ∈ F.

Proof _e proof is essentially the same as that of Lemma 5.9. We deûne K as there,
observe that z /∈ K, and require that supp( f ), in addition to being compact, be con-
tained in X ∖ {z}.

Lemma 5.11 Let X be a locally compact Hausdorò space, let A be a C0(X)-algebra
with structuremap ι∶C0(X)→ Z(M(A)), and let I ⊂ Abe an ideal. Let π∶A→ A/I be
the quotientmap. _en there is a homomorphism µ∶C0(X)→ Z(M(A/I)) thatmakes
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A/I a C0(X)-algebra and such that for all a ∈ A and f ∈ C0(X) we have µ( f )π(a) =
π(ι( f )a). Moreover, giving I the C0(X)-algebra from Corollary 5.8, for every x ∈ X,
we have (A/I)x ≅ Ax/Ix .

Proof Let π∶M(A) → M(A/I) be the map on multiplier algebras induced by
π∶A→ A/I. Deûne µ = π○ ι. It is clear that µ is a homomorphism to Z(M(A/I)). We
prove nondegeneracy. So let b ∈ A/I and let ε > 0. Choose a ∈ A such that π(a) = b.
Use Lemma 5.9 to choose f ∈ Cc(X) such that 0 ≤ f ≤ 1 and ∥ι( f )a − a∥ < ε. _en

∥µ( f )b − b∥ = ∥π( ι( f )a − a)∥ < ε.

_is completes the proof of nondegeneracy.
It remains to prove the last statement. Let x ∈ X. Let evx ∶A → Ax be as in Nota-

tion 5.2, and let evx ∶A/I → (A/I)x be the corresponding map with A/I in place of A.
Also let πx ∶Ax → Ax/Ix be the quotientmap. _en πx ○evx and evx ○π are surjective,
so it suõces to show that they have the same kernel.

Let a ∈ A. Suppose ûrst (πx ○ evx)(a) = 0. Let ε > 0. We will prove that
∥(evx ○ π)(a)∥ < ε.We have evx(a) ∈ Ix . So there is b ∈ I such that evx(b) = evx(a).
_en evx(a − b) = 0. So Lemma 5.10 provides f ∈ Cc(X ∖ {x}) such that 0 ≤ f ≤ 1
and

∥ι( f )(a − b) − (a − b)∥ < ε.
ByCorollary 5.8,we have ι( f )b ∈ I. So π(ι( f )b) = 0. We already know that π(b) = 0,
so

∥µ( f )π(a) − π(a)∥ = ∥π( ι( f )(a − b) − (a − b))∥ < ε.
Since evx(µ( f )π(a)) = 0, it follows that ∥(evx ○ π)(a)∥ < ε.

Now assume that (evx ○ π)(a) = 0. Let ε > 0. We prove that ∥(πx ○ evx)(a)∥ < ε.
Apply Lemma 5.10 to the C0(X)-algebra A/I, getting f ∈ Cc(X ∖ {x}) such that
0 ≤ f ≤ 1 and ∥µ( f )π(a) − π(a)∥ < ε. _us ∥π(ι( f )a − a)∥ < ε. Choose b ∈ I
such that ∥[ι( f )a − a] − b∥ < ε. It follows that ∥(πx ○ evx)(ι( f )a − a − b)∥ < ε.
Since evx(ι( f )a) = 0 and (πx ○ evx)(b) = 0, it follows that ∥(πx ○ evx)(a)∥ < ε, as
desired.

_e following result is closely related to [22].

Lemma 5.12 Let X be a locally compact Hausdorò space, let A be a C0(X)-algebra
with structure map ι∶C0(X) → Z(M(A)), and let D be a C*-algebra. _en there is a
homomorphism µ∶C0(X)→ Z(M(D⊗maxA)) thatmakes D⊗maxAa C0(X)-algebra
and such that for all a ∈ A, d ∈ D, and f ∈ C0(X) we have µ( f )(d ⊗ a) = d ⊗ ι( f )a.
Moreover, for every x ∈ X, we have (D ⊗max A)x ≅ D ⊗max Ax .

Proof _e family

(X , (idD ⊗max πx ∶D ⊗max A→ D ⊗max Ax)x∈X ,D ⊗max A)

is aC*-bundle in the sense of [22, Deûnition 1.1]. (See (2) in [22, p. 678].) In particular,
for f ∈ C0(X) and b ∈ D⊗max A, the product f ⋅ b is deûned, and for a ∈ A and d ∈ D
it satisûes f ⋅ (d ⊗ a) = d ⊗ ι( f )a.
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Let x ∈ X. We know (see Notation 5.2) that the sequence

0Ð→ ι(C0(X ∖ {x}))AÐ→ A evxÐ→ Ax Ð→ 0

is exact. _e functor D ⊗max (−) is exact, so the sequence

(5.1) 0Ð→ D ⊗max ι(C0(X ∖ {x}))AÐ→ D ⊗max A
idD⊗evxÐÐÐÐ→ D ⊗max Ax Ð→ 0

is exact. Now let d ∈ D and let a ∈ ι(C0(X ∖ {x}))A. We claim that the image b of
d⊗a in D⊗maxA is actually in C0(X ∖ {x})(D ⊗max A). To prove the claim, let ε > 0
and use Lemma 5.10 to choose f ∈ Cc(X ∖ {x}) such that 0 ≤ f ≤ 1 and

∥ι( f )a − a∥ < ε
∥d∥ + 1

.

_en ∥ f ⋅b−b∥ ≤ ∥d∥∥ι( f )a−a∥ < ε. Since ε > 0 is arbitrary, the claim follows. Using
exactness of (5.1), we conclude that

(5.2) Ker(idD ⊗ evx) ⊂ C0(X ∖ {x})(D ⊗max A).
_e reverse inclusion is clear. Combining equality in (5.2) with exactness of (5.1), we
get the exact sequence

0Ð→ C0(X ∖ {x})(D ⊗max A)Ð→ D ⊗max A
idD⊗evxÐÐÐÐ→ D ⊗max Ax Ð→ 0.

Since this sequence is exact for all x ∈ X, [22, Lemma 2.3] implies that for all
b ∈ D ⊗max A, the function x ↦ ∥evx(b)∥ is upper semicontinuous. It is clear that
for d ∈ D and a ∈ A the function x ↦ ∥evx(d ⊗ a)∥ vanishes at inûnity, and it then
follows from density that for all b ∈ D ⊗max A the function x ↦ ∥evx(b)∥ vanishes at
inûnity. Now apply Proposition 5.6.

Lemma 5.13 Let X be a totally disconnected locally compact Hausdorò space, let A
be a C0(X)-algebra with structuremap ι∶C0(X)→ Z(M(A)), and let x ∈ X.
(i) Let p ∈ Ax be a projection. _en there is a projection e ∈ A such that evx(e) = p.
(ii) Let p ∈ Ax be an inûnite projection. _en there is an inûnite projection e ∈ A such

that evx(e) = p.

_e proof is a semiprojectivity argument. It is slightly indirect, because we do not
know that there is a countable neighborhood base at x.

Proof of Lemma 5.13 We prove (i). SinceC is semiprojective, there is ε > 0 such that
if B and C are C*-algebras, φ∶B → C is a homomorphism, b ∈ B satisûes ∥b∗ − b∥ < ε,
∥b2 − b∥ < ε, and φ(b) is a projection, then there exists a projection e ∈ B such
that φ(e) = φ(b). Since evx is surjective, there is a ∈ A such that evx(a) = p. By
Lemma 5.3 (iii), there is an open set U ⊂ X with x ∈ U such that for all y ∈ U we
have ∥evy(a∗ − a)∥ < ε

2 and ∥evy(a2 − a)∥ < ε
2 . Since X is totally disconnected,

there is a compact open set K ⊂ X such that x ∈ K ⊂ U . Deûne b = ι(χK)a. Using
Lemma 5.3 (iv), we get ∥evy(b∗ − b)∥ < ε

2 and ∥evy(b2 − b)∥ < ε
2 when y ∈ K, and

evy(b∗ − b) = evy(b2 − b) = 0 when y ∈ X ∖ K. It follows from Lemma 5.3 (i) that
∥b∗ − b∥ ≤ ε

2 < ε and ∥b2 − b∥ ≤ ε
2 < ε. Now obtain e by using the choice of ε with

B = A and C = Ax .

https://doi.org/10.4153/CJM-2017-012-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-012-4


1410 C. Pasnicu and N. C. Phillips

We describe the changes needed for the proof of (ii). Let T be the Toeplitz alge-
bra, generated by an isometry s (so s∗s = 1, but ss∗ /= 1). By hypothesis, there is a
homomorphism φ0∶T → Ax such that φ0(1) = p and φ0(1 − ss∗) /= 0. Since T is
semiprojective, an argument similar to that in the proof of (i) shows that there is a
homomorphism φ∶T → A such that evx ○ φ = φ0. Set e = φ(1). _en φ(s)∗φ(s) = e
and φ(s)φ(s)∗ ≤ e. We have e − φ(s)φ(s)∗ /= 0 because evx(e − φ(s)φ(s)∗) /= 0. So
e is an inûnite projection.

_eorem 5.14 Let X be a totally disconnected locally compact Hausdorò space and
let A be a C0(X)-algebra.
(i) Assume that Ax has residual (SP) for all x ∈ X. _en A has residual (SP).
(ii) Assume that Ax is purely inûnite and has the ideal property for all x ∈ X. _en A

is purely inûnite and has the ideal property.
(iii) Assume that Ax has the weak ideal property for all x ∈ X. _en A has the weak

ideal property.
(iv) Assume that A is separable and Ax has topological dimension zero for all x ∈ X.

_en A has topological dimension zero.

Proof We prove (i). Recall [33, Deûnition 7.1] that a C*-algebra D has residual (SP)
if and only if D is residually hereditarily in the class C of all C*-algebras that contain
a nonzero projection. (See (4) in the introduction.)

We verify the deûnition directly. So let I ⊂ A be an ideal such that A/I /= 0,
and let B ⊂ A/I be a nonzero hereditary subalgebra. Combining Lemma 5.11 and
Corollary 5.8, we see that B is a C0(X)-algebra. Since B /= 0, Lemma 5.3 (i) pro-
vides x ∈ X such that Bx /= 0. Let evx ∶A/I → (A/I)x be the map of Notation 5.2
for the C0(X)-algebra A/I. _en Bx = evx(B) by Corollary 5.8 and (A/I)x ≅ Ax/Ix
by Lemma 5.11. _us Bx is isomorphic to a nonzero hereditary subalgebra of Ax/Ix .
SinceAx has residual (SP), it follows that there is a nonzero projection p ∈ Bx . Lemma
5.13 (i) provides a projection e ∈ B such that evx(e) = p. _en e /= 0 since evx(e) /= 0.
We have thus veriûed that A has residual (SP).

We next prove (ii). Let C be the class of all C*-algebras that contain an inûnite
projection. By the equivalence of conditions (ii) and (iv) of Proposition 2.11 of [35]
(valid, as shown there, evenwhen A is not separable), a C*-algebra D is purely inûnite
and has the ideal property if and only if D is residually hereditarily in C. (See (1) in
the introduction.) _e argument is now the same as for (i), except using Lemma 5.13
(ii) in place of Lemma 5.13 (i).

Nowwe prove (iii). Let C be the class of all C*-algebras B such that K⊗B contains
a nonzero projection. It was shown at the beginning of the proof of [33,_eorem 8.5]
that a C*-algebra D has the weak ideal property if and only if D is residually heredi-
tarily in C. (See (5) in the introduction.)

We verify that A satisûes this condition. So let I ⊂ A be an ideal such that A/I /= 0,
and let B ⊂ A/I be a nonzero hereditary subalgebra. As in the proof of (i), B is a
C0(X)-algebra and there is x ∈ X such that Bx is isomorphic to a nonzero hereditary
subalgebra of Ax/Ix . _erefore K ⊗ Bx contains a nonzero projection p. Since K is
nuclear, Lemma 5.12 implies that K ⊗ B is a C0(X)-algebra with (K ⊗ B)x ≅ K ⊗ Bx .
Let evx ∶K⊗B → (K⊗B)x be the evaluationmap at x for the C0(X)-algebra K⊗B, as
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in Notation 5.2. Lemma 5.13 (i) provides a projection e ∈ K ⊗ B such that evx(e) = p.
_en e /= 0 since evx(e) /= 0. _is shows that A is residually hereditarily in C, as
desired.
Finally we prove (iv). Since A is separable, by the equivalence of conditions (i)

and (ix) in _eorem 2.10, it suõces to show that A is residually hereditarily in the
class C of all C*-algebras D such thatO2 ⊗D contains a nonzero projection. Also, for
every x ∈ X, the algebra Ax is separable. So_eorem 2.10 implies that Ax is residually
hereditarily in C. _e proof is now the same as for (iii), except using O2 in place
of K.

We will next show that when the C0(X)-algebra is continuous, the ûbers are all
nonzero, and the algebra is separable, then the algebra has one of our properties if
and only if all the ûbers have this property and X is totally disconnected.

Separability should not be necessary.
Having nonzero ûbers is necessary. _e zero C*-algebra is a C0(X)-algebra for

any X, and it certainly has all our properties. For a less trivial example, let X0 be the
Cantor set, take X = X0 ∐ [0, 1], andmake C(X0 ,O2) a C(X)-algebra via restriction
of functions in C(X) to X0.
Continuity is also necessary. _e following important example was suggested by

the referee; our original example, the C*-algebra product A = ∏x∈[0,1]O2, was not
separable.

Example 5.15 Let Y be the Cantor set, set A = C(Y ,O2), and let

ι0∶C(Y)→ Z(M(A)) = Z(A)
be the obvious isomorphism, sending f ∈ C(Y) to the function y ↦ f (y) ⋅ 1O2 . Set
X = [0, 1]. Let h∶Y → X be a surjective continuous function, and deûne ψ∶C(X) →
C(Y) by ψ( f ) = f ○ h for f ∈ C(X). _en deûne ι = ι0 ○ ψ∶C(X)→ Z(M(A)). _is
map is clearly nondegenerate, so A becomes a C(X)-algebra (but not a continuous
C(X)-algebra). Also, ι is injective.

We identify the ûbers. Let x ∈ X. _en

ψ(C0(X ∖ {x})) = { f ○ h ∶ f ∈ C(X) and f (x) = 0} .

_us, all functions in ψ(C0(X ∖ {x})) vanish on h−1({x}). But for every point
y ∈ Y ∖ h−1({x}) there is some f ∈ C0(X ∖ {x}) such that ψ( f )(y) /= 0. It fol-
lows from the locally compact version of the Stone–Weierstrass _eorem that

ψ(C0(X ∖ {x}))C(Y) = C0(Y ∖ h−1({x})) .
It is now easy to see that

ψ(C0(X ∖ {x}))A = C0(Y ∖ h−1({x}),O2),
so the ûber Ax is Ax = C(h−1({x}),O2). Since h−1({x}) is compact and totally
disconnected (being a closed subset of the Cantor set Y) and O2 is purely inûnite
and has the ideal property, the weak ideal property, residual (SP), and topological
dimension zero,_eorem 5.14 implies that Ax also has all these properties.

However, X = [0, 1] is not totally disconnected. _us, without continuity of the
C(X)-algebra structure, all four parts of_eorem 5.17 will fail.
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Lemma 5.16 Let X be a second countable locally compact Hausdorò space, and let
A be a separable continuous C0(X)-algebra such that Ax /= 0 for all x ∈ X. If A has
topological dimension zero, then X is totally disconnected.

We assume that X is second countable because we need A to be separable in _e-
orem 2.9. Example 5.15 shows that continuity of the C0(X)-algebra is necessary. In
fact, amuch simpler version of Example 5.15 shows this: a surjective continuous map
from the Cantor set Y to [0, 1] gives an injective map from C([0, 1]) to C(Y) that
makes C(Y) a C([0, 1])-algebra whose ûbers are all nonzero and which has topolog-
ical dimension zero.

Proof of Lemma 5.16 As in Proposition 5.6,we identify continuousC0(X)-algebras
and continuousC*-bundles. Now use [22, Corollary 2.8] to see thatO2⊗A is a contin-
uous C0(X)-algebra. It follows from _eorem 2.9 that O2 ⊗ A has the ideal property.
Since the set of points with nonzero ûbers is all of X, [30, _eorem 2.1] implies that
X is totally disconnected.

_eorem 5.17 Let X be a second countable locally compact Hausdorò space, and let
A be a separable continuous C0(X)-algebra such that Ax /= 0 for all x ∈ X.
(i) Ahas residual (SP) if and only if X is totally disconnected and Ax has residual (SP)

for all x ∈ X.
(ii) A is purely inûnite and has the ideal property if and only if X is totally disconnected

and Ax is purely inûnite and has the ideal property for all x ∈ X.
(iii) A has the weak ideal property if and only if X is totally disconnected and Ax has

the weak ideal property for all x ∈ X.
(iv) A has topological dimension zero if and only if X is totally disconnected and Ax

has topological dimension zero for all x ∈ X.

Proof In all four parts, the reverse implications follow from _eorem 5.14. Also, in
all four parts, the fact that Ax has the appropriate property for all x ∈ X follows from
the general fact that the property passes to arbitrary quotients. See [33, _eorem 7.4
(7)] for residual (SP), [33,_eorem 6.8 (7)] for the combination of purely inûniteness
and the ideal property, [33,_eorem 8.5 (5)] for theweak ideal property, and combine
[33, Proposition 5.8] with the equivalence of conditions (i) and (ix) in _eorem 2.10
for the weak ideal property.

It remains to show that all four properties imply that X is totally disconnected. All
four properties imply topological dimension zero (using as necessary _eorem 2.8
and the fact that residual (SP) implies the weak ideal property), so this follows from
Lemma 5.16.

_e proofs in this section depend on properties of projections, and so do notwork
for a general property deûned by being residually hereditarily in an upwards directed
class of C*-algebras. However, we know of no counterexamples to either version of
the following question, and Proposition 5.19 gives hope that something along these
lines might be true.
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Question 5.18 Let C be an upwards directed class of C*-algebras, let X be a totally
disconnected locally compact space, and let A be a C0(X)-algebra such that Ax is
residually hereditarily in C for all x ∈ X. Does it follow that A is residually hereditarily
in C? What if we assume that A is a continuous C0(X)-algebra?

Proposition 5.19 Let C be an upwards directed class of C*-algebras. Let Abe a C*-al-
gebra that is residually hereditarily in C and let X be a totally disconnected locally com-
pact metric space. _en C0(X ,A) is residually hereditarily in C.

Proof It iswell known thatC0(X) is anAFalgebra. Being residuallyhereditarily inC
is preserved by tensoring with matrix algebras [33, Proposition 5.11 (2)], ûnite direct
sums [33, Proposition 5.8], and direct limits [33, Proposition 5.9 (2)]. _erefore, being
residually hereditarily in C is preserved by tensoring with AF algebras.

6 Strong Pure Infiniteness for Bundles

It seems to be unknown whether C0(X) ⊗ A is purely inûnite when X is a locally
compact Hausdorò space and A is a general purely inûnite C*-algebra, even when A
is additionally assumed to be simple. (To apply [20,_eorem 5.11], one also needs to
know that A is approximately divisible.) Eòorts to prove this by working locally on X
seem to fail. Even in cases in which they work, such methods aremessy. It therefore
seems worthwhile to give the following result, which, given what is already known,
has a simple proof.

_eorem 6.1 Let X be a locally compactHausdorò space, and let Abe a locally trivial
C0(X)-algebra whose ûbers Ax are strongly purely inûnite [21, Deûnition 5.1]. _en A
is strongly purely inûnite.

Since X is locally compact, local triviality is equivalent to the requirement that
every point x ∈ X has a compact neighborhood L such that, using the C(L)-algebra
structure on A∣L (Notation 5.2) and the obvious C(L)-algebra structure on C(L,Ax),
these two algebras are isomorphic as C(L)-algebras. In this case we say that A∣L is
trivial.

Proof of_eorem 6.1 Let ι∶C0(X)→ Z(M(A)) be the structuremap.
We ûrst prove the result when X is compact, by induction on the least n ∈ Z>0 for

which there are open setsU1 ,U2 , . . . ,Un ⊂ X that cover X and such that A∣U j
is trivial

for j = 1, 2, . . . , n. If n = 1, there is a strongly purely inûnite C*-algebra B such that
A ≅ C(X , B), and A is strongly purely inûnite [17, Corollary 5.3]. Assume the result is
known for some n ∈ Z>0, and suppose that there are open sets U1 ,U2 , . . . ,Un+1 ⊂ X
that cover X and such that A∣U j

is trivial for j = 1, 2, . . . , n + 1. Deûne U = ⋃n
j=1 U j . If

X ∖U = ∅, then the induction hypothesis applies directly. Otherwise, use

X ∖U ⊂ Un+1

to choose an open set W ⊂ X such that X ∖U ⊂ W ⊂ W ⊂ Un+1. Deûne Y = X ∖W
and L = W . _en L ∪ Y = X, X ∖ L ⊂ Y , Y ⊂ U , and L ⊂ Un+1. Since L ⊂ Un+1,
there is a strongly purely inûnite C*-algebra B such that A∣L ≅ C(L, B). By deûnition
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(Notation 5.2), there is a short exact sequence

0Ð→ ι(C0(X ∖ L))AÐ→ AÐ→ A∣L Ð→ 0.

We can identify the algebra ι(C0(X ∖ L))Awith an ideal in A∣Y . Consideration of the
sets U1 ∩ Y , U2 ∩ Y , . . . ,Un ∩ Y shows that the induction hypothesis applies to A∣Y ,
which is therefore strongly purely inûnite. So ι(C0(X ∖ L))A is strongly purely inû-
nite [21, Proposition 5.11 (ii) ]. Also A∣L is strongly purely inûnite [17, Corollary 5.3],
so A is strongly purely inûnite [17, _eorem 1.3]. _is completes the induction step
and the proof of the theorem when X is compact.

We now prove the general case. Let (Uλ)λ∈Λ be an increasing net of open subsets
of X such that Uλ is compact for all λ ∈ Λ and ⋃λ∈Λ Uλ = X. For λ ∈ Λ, the algebra
A∣Uλ

is strongly purely inûnite by the case already done. So its ideal ι(C0(Uλ))A is
strongly purely inûnite [21, Proposition 5.11 (ii)]. Using Lemma 5.9, one checks that
A ≅ limÐ→λ∈Λ ι(C0(Uλ))A, so A is strongly purely inûnite [21, Proposition 5.11 (iv)].

Lemma 6.2 Let A be a separable C*-algebra. _en the following are equivalent.
(i) A is purely inûnite and has topological dimension zero.
(ii) A is strongly purely inûnite and has the ideal property.

Proof Condition (ii) implies condition (i) because strong pure inûniteness implies
pure inûniteness [21, Proposition 5.4], the ideal property implies theweak ideal prop-
erty, and the weak ideal property implies topological dimension zero (_eorem 2.8).

Now assume (i). _en A has the ideal property by_eorem 2.9. Apply [35, Propo-
sition 2.14].

Corollary 6.3 Let X be a locally compactHausdorò space, and letAbe a locally trivial
C0(X)-algebra whose ûbers Ax are all purely inûnite, separable, and have topological
dimension zero. _en A is strongly purely inûnite.

Proof Lemma 6.2 implies that the ûbers are all strongly purely inûnite, so that _e-
orem 6.1 applies.

7 When Does the Weak Ideal Property Imply the Ideal Property?

_e weak ideal property seems to be the property most closely related to the ideal
property that has good behavior on passing to hereditary subalgebras, ûxed point al-
gebras, and extensions. (Example 2.7 of [32] gave a separable unitalC*-algebra Awith
the ideal property and an action of Z2 on A such that the ûxed point algebra does not
have the ideal property. Example 2.8 of [32] gave a separable unitalC*-algebra A such
that M2(A) has the ideal property, butAdoesnot have the ideal property. _eorem 5.1
of [26] gave an extension of separable C*-algebras with the ideal property such that
the extension does not have the ideal property.) On the other hand, the ideal property
came ûrst, and in some ways seems more natural. Accordingly, it seems interesting
to ûnd conditions under which the weak ideal property implies the ideal property.
Our main result in this direction is _eorem 7.15. It covers, in particular, separable
locally AH algebras (Deûnition 7.9). We also prove (Proposition 7.16) that the weak
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ideal property implies the ideal property for stable C*-algebraswithHausdorò primi-
tive ideal space. We give an example to show that this implication can fail for Z-stable
C*-algebras.

In the introduction,we illustrated the importance of the ideal propertywith several
theorems inwhich it is a hypothesis. We start by showing that two of these results can
otherwise fail: _eorem4.1 of [25] (stable rank one forAH algebraswith slow dimen-
sion growth) in Example 7.1, and _eorem 3.6 of [14] (AT structure for AH algebras
with very slow dimension growth and torsion free K-theory) in Example 7.2. In both
cases, however,_eorem 7.15 implies that one can replace the the ideal property with
the weak ideal property.

Example 7.1 Let D be the 2∞ UHF algebra. _en C([0, 1]2 ,D) is an AH algebra,
even in the somewhat restrictive sense of [25, Deûnition 2.2],which has no dimension
growth. It follows from [23, Proposition 5.3] that C([0, 1]2 , D) does not have stable
rank one. _us, [25,_eorem 4.1] fails without the ideal property.

Example 7.2 Let D be the 3∞ UHF algebra, and let X = [0, 1]5. _en C(X ,D) is
an AH algebra with no dimension growth. We show that C(X ,D) has torsion free
K-theory and is not an AT algebra. _us, [14, _eorem 3.6] fails without the ideal
property.

We have K0(C(X ,D)) ≅ Z[ 1
3 ] and K1(C(X ,D)) = 0. _us K∗(C(X ,D)) is

torsion free. Since the real projective space RP2 is a compact 2-dimensional mani-
fold, there is a closed subspace Y ⊂ X such that Y ≅ RP2. By [1, Proposition 2.7.7],
K0(RP2) ≅ Z⊕Z2. _erefore K0(C(Y ,D)) ≅ Z[ 1

3 ]⊗ (Z⊕Z2) ≅ Z[ 1
3 ]⊕Z2. Since

this group has torsion, C(Y ,D) is not an AT algebra. Since C(Y ,D) is a quotient of
C(X ,D), it follows that C(X ,D) is not an AT algebra.

In fact, with D as in Example 7.2, even C([0, 1]2 ,D) is not an AT algebra. (We are
grateful to the referee for pointing this out.) We use the implication from (i) to (iii)
of [44, _eorem 1.1], with A = D and with n = 2. Using the notation in the diagram
in condition (iii) there, if φ as described there exists, then (r ○ φ)∗∶K1(C(S1)) →
K1(C(S1 ,D))must be the zeromap,while ι∗∶K1(C(S1))→ K1(C(S1 ,D)) is injective,
hence nonzero, a contradiction.

It is convenient to work with the following class of C*-algebras.

Notation 7.3 We denote by P the class of all separable C*-algebras for which topo-
logical dimension zero, the ideal property, and the weak ideal property are all equiv-
alent.

_at is, a separable C*-algebra A is in P exactly when either A has all of the prop-
erties topological dimension zero, the ideal property, and the weak ideal property, or
none of them.

_e class P is not particularly interesting in its own right. (For example, all cones
over nonzero C*-algebras are in P, because they have none of the three properties.)
However, proving results about it will make possible a result to the eòect that these
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properties are all equivalent for the smallest class of separable C*-algebras that con-
tains the separable AH algebras (as well as some others) and is closed under certain
operations.

_e following lemma isolates, for convenient reference, what we actually need to
prove to show that a separable C*-algebra is in P.

Lemma 7.4 Let A be a separable C*-algebra for which topological dimension zero
implies the ideal property. _en A ∈ P.

Proof _e ideal property implies the weak ideal property [33, Proposition 8.2]. _e
weak ideal property implies topological dimension zero by _eorem 2.8.

We prove two closure properties for the class P. What can be done here is limited
by the failure of other closure properties for the class of C*-algebras with the ideal
property. See the introduction to this section. (It is hopeless to try to prove results
about quotients of algebras in P, since the cone over every C*-algebra is in P).

Lemma 7.5 Let (Aλ)λ∈Λ be a countable family of C*-algebras in P. _en

⊕
λ∈Λ

Aλ ∈ P.

Proof Set A =⊕λ∈Λ Aλ . _en A is separable, since Λ is countable and Aλ is separa-
ble for all λ ∈ Λ. By Lemma 7.4, we need to show that if A has topological dimension
zero, then A has the ideal property. For λ ∈ Λ, the algebra Aλ is a quotient of A, so
has topological dimension zero [6, Proposition 2.6], [32, Lemma 3.6]. _erefore Aλ
has the ideal property by hypothesis.

It is clear that arbitrary direct sums of C*-algebraswith the ideal property also have
the ideal property, so it follows that A has the ideal property.

Lemma 7.6 Let A and B be C*-algebras in P. Assume that A is exact. _en

A⊗min B ∈ P.

Proof Since the zero C*-algebra is in P, we may assume that A and B are nonzero.
_e algebra A ⊗min B is separable because A and B are. By Lemma 7.4, we need to
show that if A ⊗min B has topological dimension zero, then A ⊗min B has the ideal
property. Now A and B have topological dimension zero by_eorem4.4, and so have
the ideal property by hypothesis. It now follows that A⊗min B has the ideal property
[34, Corollary 1.3].

We now identify a basic collection of C*-algebras in P. _emain point of the ûrst
class we consider is that it contains the separable AH algebras (as described below),
but in fact it is much larger.

_ere are con�icting deûnitions of AH algebras in the literature. We follow [2, Def-
inition 2.1]. (See the discussion a�er [2, Deûnition 1.2] for themeaning of locally ho-
mogeneous.) _is deûnition does not assume the direct limit algebras are separable or
unital. It is quite general, excluding only uncountable direct systems and terms in the
direct system with nontrivial Dixmier–Douady invariant. We rewrite this deûnition
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without using direct sums by not requiring that the projections deûning corners have
constant rank.

Deûnition 7.7 ([2, Deûnition 2.1]) Let A be a C*-algebra. We say that A is anAH al-
gebra if A is a direct limit of a sequence (An)n∈Z≥0 of C*-algebras An , each of which
has the form pC(X ,Mk)p for a compactHausdorò space X, k ∈ Z>0, and a projection
p ∈ C(X ,Mk), all depending on n.

Substituting compact metric spaces for compact Hausdorò spaces, one gets the
deûnition in the introduction to the simple and no dimension growth classiûcation
paper [12], and in the introduction to [14]. _is deûnition is probably themost com-
mon one. As we will see in Proposition 7.8, it covers all separable algebras given in
Deûnition 7.7. An evenmore restrictive deûnition of anAH algebra is found in the in-
troductions to [8,25,26], inwhich the spaces are required to be ûnite CW complexes.
As pointed out in [8], Proposition 2.3 of [2] shows that this deûnition actually gives
the same algebras as when one uses compact metric spaces.

We want all the spaces to have only ûnitely many connected components and all
the maps to be injective. One might call such an algebra a “restricted AH algebra”.
In the separable case, it is already known that AH algebras are automatically of this
form.

Proposition 7.8 Let A be an AH algebra (as in Deûnition 7.7) that is also separable.
_en A is a direct limit of a sequence (An)n∈Z≥0 of C*-algebras An , each of which has
the form pC(X ,Mk)p for a ûnite simplicial complex X, k ∈ Z>0, and a projection
p ∈ C(X ,Mk), all depending on n, and in which themaps An → An+1 are all injective.

Proof Proposition 2.3 of [2] shows thatwe can require that every space X appearing
in the system be a ûnite disjoint union of polyhedra. It now follows from [11, _eo-
rem 2.1] that there is a direct system with direct limit A in which, in addition, all the
maps of the system are injective.

_e following deûnition is standard.

Deûnition 7.9 Let A be a C*-algebra. We say that A is a locally AH algebra if for
every ûnite set F ⊂ A and every ε > 0, there exist a subalgebra B ⊂ A that is isomorphic
to an AH algebra and such that for all a ∈ F there is b ∈ B with ∥b − a∥ < ε.

In particular, AH algebras are locally AH algebras.

Lemma 7.10 Let A be a separable C*-algebra. _en A is a locally AH algebra if
and only if for every ûnite set F ⊂ A and every ε > 0 there exist a ûnite simpli-
cial complex X, k ∈ Z>0, a projection p ∈ C(X ,Mk), and an injective homomor-
phism φ∶ pC(X ,Mk)p → A such that for all a ∈ F there is b ∈ pC(X ,Mk)p with
∥φ(b) − a∥ < ε.

Proof _e algebra B inDeûnition 7.9 must be separable, so that Proposition 7.8 can
be applied.
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Deûnition 7.11 Let A be a C*-algebra.
We say that A has the projection slicing property (“A is standard” in [7, Deûni-

tion 2.7]) ifA is unital and if,whenever B is a simpleunitalC*-algebra and J ⊂ A⊗minB
is an ideal that is generated as an ideal by its projections, there is an ideal I ⊂ A that is
generated as an ideal by its projections and such that J = I ⊗min B.

We say that A is an LS algebra [7, Deûnition 2.13] if for every ûnite set F ⊂ A
and every ε > 0, there exists a C*-algebra D with the projection slicing property and
an injective homomorphism φ∶D → A such that for all a ∈ F there is b ∈ D with
∥φ(b) − a∥ < ε.

Lemma 7.12 (i) Let X be a compact Hausdorò space with only ûnitely many con-
nected components, let k ∈ Z>0, and let p ∈ C(X ,Mk) be a projection. _en
pC(X ,Mk)p has the projection slicing property.

(ii) If A is a separable locally AH algebra, then A is an LS algebra.

Proof Part (i) is a special case of [7, Remark 2.9 (2)]. Part (ii) is immediate from
part (i) and Lemma 7.10.

_ere are many more C*-algebras with the projection slicing property than in
Lemma 7.12 (i), and therefore many more LS algebras than in Lemma 7.12 (ii). For
example, in Deûnition 7.7 replace pC(X ,Mk)p by a ûnite direct sum of C*-algebras
of the form pC(X ,D)p for connected compact Hausdorò spaces X, simple unital
C*-algebras D, and projections p ∈ C(X ,D). Such a C*-algebra has the projection
slicing property [7, Remark 2.9 (2)], so a direct limit of a system of such algebraswith
injectivemaps is an LS algebra. (When all the algebras D that occur are exact and the
direct system is countable, but the maps of the system are not necessarily injective,
such a direct limit is called an exceptional GAH algebra [28, Deûnitions 2.9 and 2.7].)

Lemma 7.13 (Deûnition 7.11) Let A be a separable LS algebra. _en A ∈ P.

Proof As usual, we use Lemma 7.4. Assume A has topological dimension zero. By
the implication (i)⇒ (iii) in _eorem 2.10, the algebra O2 ⊗A has the ideal property.
Apply [7, Lemma 2.11] with B = O2 to conclude that A has the ideal property.

Extending the list of properties in the discussion of type I C*-algebras in [30, Re-
mark 2.12] (and using essentially the same proof as there),we get the following longer
list of equivalent conditions on a separable type I C*-algebra.

Proposition 7.14 Let Abe a separable type IC*-algebra. _en the following are equiv-
alent.
(i) A has topological dimension zero.
(ii) A has the weak ideal property.
(iii) A has the ideal property.
(iv) A has the projection property (every ideal in A has an increasing approximate

identity consisting of projections [27, Deûnition 1]).
(v) A has real rank zero.
(vi) A is an AF algebra.
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Proof It is clear that every condition on the list implies the previous one. Sowe need
only show that (i) implies (vi). Use [32, Lemma 3.6] to see that Prim(A) has a base
for its topology consisting of compact open sets. _en the theorem in Section 7 of [4]
implies that A is AF.

_eorem 7.15 Let W be the smallest class of separable C*-algebras that contains the
separable LS algebras (including the separable locally AH algebras), the separable type I
C*-algebras, and the separable purely inûnite C*-algebras, and is closed under ûnite
and countable direct sums and under minimal tensor products when one tensor factor
is exact. _en for any C*-algebra in W, topological dimension zero, the weak ideal
property, and the ideal property are all equivalent.

Proof Combine Lemmas 7.5, 7.6, 7.13, Lemma 7.12 (ii), Proposition 7.14, and _eo-
rem 2.9.

Proposition 7.16 Let A be a C*-algebra such that Prim(A) is Hausdorò. If A has the
weak ideal property, then K ⊗ A has the ideal property.

In particular, theweak ideal property implies the ideal property for stable C*-alge-
bras with Hausdorò primitive ideal space.

Proof of Proposition 7.16 Arguing as in the proof of Proposition 4.11, we see that
K ⊗ A is a continuous C0(Prim(A))-algebra, with ûbers (K ⊗ A)P ≅ K ⊗ (A/P) for
P ∈ Prim(A). Moreover, Prim(A) is totally disconnected, and for every P ∈ Prim(A),
the quotient A/P is simple and has the weak ideal property.
For P ∈ Prim(A), it follows that K⊗(A/P) is simple and has a nonzero projection,

so has the ideal property. _is is true for all P ∈ Prim(A), so K ⊗ A has the ideal
property [30,_eorem 2.1].

Let Z be the Jiang–Su algebra. It is unfortunately not true that theweak ideal prop-
erty implies the ideal property for Z-stable C*-algebras.

Example 7.17 We give a separable C*-algebra A such that A and Z ⊗ A have the
weak ideal property, but such that neither A nor Z ⊗ A has the ideal property.

Let D be a Bunce–Deddens algebra, and let the extension

0Ð→ K ⊗ D Ð→ AÐ→ CÐ→ 0

be as in the proof of [26, _eorem 5.1]. (_e extension is as in the ûrst paragraph
of that proof, using the choices suggested in the second paragraph.) In particular, as
proved in [26], A does not have the ideal property, and the connecting homomor-
phism exp∶K0(C)→ K1(K ⊗ D) is injective. Since K ⊗ D and C have the weak ideal
property (for trivial reasons), it follows that A has the weak ideal property [33,_eo-
rem 8.5 (5)]. Clearly Z ⊗ K ⊗ D and Z ⊗C have the ideal property. However, it was
shown in the proof of [31,_eorem 2.9] that Z ⊗ A does not have the ideal property.

_e following question was motivated by a discussion with Guihua Gong.
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Question 7.18 Let A be a separable C*-algebra that is a direct limit of recursive
subhomogeneous C*-algebras. If A has theweak ideal property, does A have the ideal
property?

We suspect that the answer is no, but we do not have a counterexample.

Acknowledgements We are very grateful to an anonymous referee for suggesting a
number of improvements (especially Example 5.15), and noticing a number of errors
in the original version of this paper.
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