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It has recently been shown that quantum determinantal ideals in the algebra of
quantum matrices, OqðMm;nÞ, are completely prime ideals, [3, Corollary 2.6]. In this
note, we compute the height of the quantum determinantal ideals and the dimension
of the corresponding quantum determinantal factors. The method is to construct a
saturated chain of prime ideals that contains all of the quantum determinantal ideals.
The ideals in the chain are easy to identify, the problem is to prove that they are in
fact prime ideals. The method that we use to achieve this is an extension of the
method used successfully in [3, Proposition 2.4] and [4, Proposition 4.4]. This
method exploits the co-algebra structure of quantum matrices.

Fix a base field k and choose a nonzero element q 2 k. Given positive integers
u; v, we consider the algebra of quantum matrices OqðMu;vÞ. The computations in this
paper rely on the preferred basis for the k-algebra OqðMu;vÞ introduced in [3, Section
1], and we follow the notation of that paper. See, in particular, [3, Corollary 1.11]. We
recall the notation ½TjT 0� for the product of quantum minors corresponding to an
allowable bitableau ðT;T 0Þ. We recall also that it is sometimes convenient to label
rows of ðT;T 0Þ in the form ðI; JÞ where I and J are sets of row and column indices,
respectively (of course, I 	 f1; . . . ; ug and J 	 f1; . . . ; vg); such a pair is called an
index pair (see [3, Section 1]). Many of the results in [3] are stated for the square case
OqðMu;uÞ, and there are easy extensions to the rectangular case OqðMu;vÞ, see, for
example, [3, 1.11] and [4, Section 2] for more details of this standard procedure.

From now on, we fix positive integers m; n. Let t be a positive integer; the ideal
of OqðMm;nÞ generated by all of the t� t quantum minors is denoted by I t and our
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aim is to compute the dimension of the factor ring OqðMm;nÞ=I t. The algebras
OqðMm;nÞ and OqðMn;mÞ are isomorphic via the transpose isomorphism � which takes
Xij to Xji, see [6, Proposition 3.7.1]. By [6, Lemma 4.3.1], �ð½IjJ�Þ ¼ ½JjI� for each
index pair ðI; JÞ. It follows that �ðI tÞ ¼ I t, for each t. As a consequence, in our dis-
cussion below, we assume, without loss of generality, that m � n. Because of the
quantum Laplace expansions [6, Corollary 4.4.4], the ideal I t in OqðMm;nÞ contains
all the r� r quantum minors for t � r � minfm; ng. Hence, ½TjT 0� 2 I t whenever
ðT;T 0Þ is a preferred bitableau and T has at least t columns.

Definition. Let u; v; t; l > 0 be integers and let A ¼ OqðMu;vÞ.
(i) Set I tðAÞ to be the ideal of A generated by t� t minors.

(ii) For 1 � l � u, set Pt;lðAÞ to be the ideal of A generated by t� t minors with
row indices from u� lþ 1; . . . ; u together with all of the ðtþ 1Þ � ðtþ 1Þ minors.
Similarly, for 1 � l � v, set Qt;lðAÞ to be the ideal of A generated by t� t minors
with column indices from 1; . . . ; l together with all of the ðtþ 1Þ � ðtþ 1Þ minors.

Whenever the algebra A is OqðMm;nÞ, we will feel free to drop reference to it, and
write, for example, Pt;l for Pt;lðOqðMm;nÞÞ. Note that, when t > l, Pt;lðAÞ ¼
Qt;lðAÞ ¼ I tþ1ðAÞ and when t > minfu; vg, I tðAÞ ¼ ð0Þ; also, Pt;uðAÞ ¼ Qt;vðAÞ ¼
I tðAÞ.

Recall that an element a in an algebra A is said to be normal if aA ¼ Aa, and
that a sequence of elements a1; a2; . . . ; as in an algebra A is said to be a polynormal
sequence if for each j 2 f0; . . . ; s� 1g the image of ajþ1 in the algebra A=

Pj
i¼1 ajA is

a normal element. If this is the case, then the ideal generated by a1; a2; . . . ; as in A is
equal to a1Aþ a2Aþ . . .þ asA.

Remark. Let t; l be positive integers with l � m. Let ðI; JÞ be an index pair such
that jIj ¼ t and I 	 fm� lþ 1; . . . ;mg and let ðI0; J0Þ be any index pair (i.e.
I0 	 f1; . . . ;mg and J0 	 f1; . . . ; ng). Suppose that ðI0; J0Þ < ðI; JÞ, then, either jI0j > t
or jI0j ¼ t and I0 	 fm� lþ 1; . . . ;mg. This is clear from the definition of the ordering
on index pairs (see [3, 1.2]).

Using [3, Corollary A.2], it follows that the quantum minors generating Pt;l can
be arranged in a polynormal sequence and

Pt;l ¼
X

½IjJ�OqðMm;nÞ;

where either jIj > t or jIj ¼ t and I 	 fm� lþ 1; . . . ;mg.
In a similar manner,

Qt;l ¼
X

½IjJ�OqðMm;nÞ;

where either jJj > t or jJj ¼ t and J 	 f1; . . . ; lg.
It can easily be checked that, for any positive integer t, there is a morphism of

algebras

�t : OqðMm;nÞ ! OqðMm;tÞ � OqðMt;nÞ

given by Xij 7!
Pt

k¼1 Yik � Zkj where we use X;Y;Z to denote the generators in
OqðMm;nÞ, OqðMm;tÞ and OqðMt;nÞ, respectively. In order to prove that certain ideals
in OqðMm;nÞ are completely prime ideals, we will show that the ideals in question are
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the inverse images under �t of certain ideals in OqðMm;tÞ � OqðMt;nÞ which we can
easily demonstrate to be completely prime.

The next lemma gives k-bases of various ideals that we need to consider.

Lemma 1. Let t; l; l0 be positive integers such that 1 � l � m and 1 � l0 � n.
(a) A k-basis for Pt;l consists of all ½TjT

0� where ðT;T 0Þ is a preferred bitableau
with first row of the form ðI; JÞ where jIj > t or jIj ¼ t and I 	 fm� lþ 1; . . . ;mg.

(b) A k-basis for Qt;l0 consists of all ½TjT
0� where ðT;T 0Þ is a preferred bitableau

with first row of the form ðI; JÞ where jJj > t or jJj ¼ t and J 	 f1; . . . ; l0g.
(c) A k-basis for Pt;l þQt;l0 consists of all ½TjT 0� where ðT;T 0Þ is a preferred

bitableau with first row of the form ðI; JÞ where jIj > t or jIj ¼ t and either
I 	 fm� lþ 1; . . . ;mg or J 	 f1; . . . ; l0g.

(d) A k-basis for Pt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ con-
sists of all pure tensors ½SjS0� � ½TjT 0� in OqðMm;tÞ � OqðMt;nÞ where ðS;S0Þ and
ðT;T 0Þ are preferred bitableaux such that either the first row of ðS;S0Þ has the form
ðI; JÞ where jIj ¼ t and I 	 fm� lþ 1; . . . ;mg or the first row of ðT;T 0Þ has the form
ðI; JÞ where jJj ¼ t and J 	 f1; . . . ; l0g.

Proof. (a) All such ½TjT 0� are in Pt;l by definition. The remark shows that Pt;l is
spanned by terms of the form ½IjJ�½RjR0� where ðR;R0Þ is a bitableau and R has at most
t columns, and ½IjJ� is such that either jIj > t or jIj ¼ t and I 	 fm� lþ 1; . . . ;mg.
Now, ½IjJ�½RjR0� can be written as a product ½SjS0� with top row ½IjJ�. Applying [3,
Corollary 1.8] we see that ½SjS0� is a linear combination of products ½UjU0� where each
ðU;U0Þ is a preferred bitableau with top row ðI 0; J 0Þ such that either jI 0j > t, or
ðI 0; J 0Þ � ðI; JÞ. In either case, the preferred bitableau is a member of the putative basis.

Part (b) is proved in a similar manner, and parts (c) and (d) then follow
immediately. &

The algebra OqðMm;tÞ � OqðMt;nÞ has a natural Zm
� Zt

� Zt
� Zn grading,

where Yij � 1 has degree ð"i; "j; 0; 0Þ and 1 � Zij has degree ð0; 0; "i; "jÞ, where "i, etc are
elements of the standard basis in Zm, etc. For more details of such gradings, see [3, 1.5]
and [4, Section 4]. In the sequel, the label ‘homogeneous’ refers to this grading.

Theorem 2. Let t; l; l0 be positive integers such that 1 � l � m and 1 � l0 � n.
The ideals Pt;l, Qt;l0 and Pt;l þQt;l0 are completely prime ideals in OqðMm;nÞ.

Proof. The case t > m is trivial since then, all the ideals considered are zero. If
t ¼ 1, then the result follows from [3, Corollary 2.6]. So, we may assume that 2 � t � m.
We then have Pt;l ¼ Pt;l þQt;t�1 and Qt;l0 ¼ Pt;t�1 þQt;l0 , and so it is enough to prove
thatPt;l þQt;l0 is a completely prime ideal. Suppose for the moment that we have shown
that the ideal Pt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ is a completely
prime ideal of OqðMm;tÞ � OqðMt;nÞ. If we can show that

Pt;l þQt;l0 ¼ ��1
t ðPt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ;

it follows that Pt;l þQt;l0 is a completely prime ideal. It is easy to check that

Pt;l þQt;l0 	 ��1
t ðPt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ:
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If this inclusion is proper, choose an element x ¼
Pr

i¼1 	i½TijT
0
i� such that

x 2 ��1
t ðPt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ n Pt;l þQt;l0 ;

and the 	i are nonzero scalars, the ðTi;T
0
iÞ are distinct preferred bitableaux, and

each of the Ti has at most t columns. We may assume that none of the ½TijT
0
i� lie in

Pt;l þQt;l0 .
Thus, no ðTi;T

0
i Þ has first row of the form ðI; ?Þ where I 	 fm� lþ 1; . . . ;mg

and no ðTi;T
0
i Þ has first row of the form ð?; JÞ where J 	 f1; . . . ; l0g.

Define m-tuples 
ðTiÞ as in [3, 2.2], and let 
 be the minimum of the 
ðTiÞ under
reverse lexicographic order. After re-indexing, we may assume that there is some r0

such that 
ðTiÞ ¼ 
 for i � r0 and 
ðTiÞ >rlex 
 for i > r0. Applying [3, Lemma 2.3] to
each �t½TijT

0
i� and collecting terms, we see (using the notation of [3, 2.2]) that

�tðxÞ ¼
Xr0

i¼1

	i½Tij�ðTiÞ� � ½�0ðTiÞjT
0
i� þ

X

j

Xj � Yj

where the Xj and Yj are homogeneous with cðXjÞ ¼ rðYjÞ >rlex 
. We then observe
(as in the proof of [3, Proposition 2.4]) that all of the Xj belong to different homo-
geneous components than the ½Tij�ðTiÞ� for i � r0. Since �tðxÞ 2 Pt;lðOqðMm;tÞÞ

�OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ and since the ideal Pt;lðOqðMm;tÞÞ �

Oq ðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ is homogeneous, it follows that

Xr0

i¼1

	i½Tij�ðTiÞ� � ½�0ðTiÞjT
0
i� 2 Pt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ:

For 1 � i < j � r0, either Ti 6¼ Tj or T 0
i 6¼ T 0

j, so ðTi; �ðTiÞÞ 6¼ ðTj; �ðTjÞÞ or
ð�0ðTiÞ;T

0
iÞ 6¼ ð�0ðTjÞ;T

0
jÞ. Because of the linear independence of the preferred pro-

ducts in OqðMm;tÞ and OqðMt;nÞ, it follows from Lemma 1(d) that either the first row
of Ti is a subset of fm� lþ 1; . . . ;mg or the first row of T 0

i is a subset of f1; . . . ; l0g,
for 1 � i � r0. This contradicts our choices above, and thus

Pt;l þQt;l0 ¼ ��1
t ðPt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ:

It remains to show that the ideal

Pt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ

is a completely prime ideal of OqðMm;tÞ � OqðMt;nÞ: The factor algebra

OqðMm;tÞ � OqðMt;nÞ

Pt;lðOqðMm;tÞÞ � OqðMt;nÞ þ OqðMm;tÞ �Qt;l0 ðOqðMt;nÞÞ

is isomorphic to the algebra

OqðMm;tÞ

Pt;lðOqðMm;tÞÞ
�

OqðMt;nÞ

Qt;l0 ðOqðMt;nÞÞ
;

so we need to show that this latter algebra is a domain.
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In order to clarify matters, we will denote the generators of OqðMm;tÞ by Yij and
the generators of OqðMt;nÞ by Zij. Set B to be the l� t quantum matrix algebra
generated by the Yij in OqðMm;tÞ with i � m� lþ 1. Note that Pt;lðBÞ ¼ I tðBÞ. In a
similar way, we set C to be the t� l0 quantum matrix algebra generated by the Zij

with 1 � j � l0 then Qt;l0 ðCÞ ¼ I tðCÞ.
The algebra OqðMm;tÞ is an Ore extension of the subalgebra B, with the

remaining variables added in the order Ym�l;t;Ym�l;t�1; . . . ;Ym�l;1; . . . ;
Y1;t; . . . ;Y1;1. The ideal I tðBÞ is stable under the Ore extensions, since any t� t
minor ½IjJ� with I 	 fm� lþ 1; . . . ;mg q-commutes with any Yij provided i � m� l
(see [3, A.2]). Similar remarks apply to the subalgebra C of OqðMt;nÞ.

From the remarks in the previous paragraph, it follows that the algebra

OqðMm;tÞ

Pt;lðOqðMm;tÞÞ
�

OqðMt;nÞ

Qt;l0 ðOqðMt;nÞÞ
;

is an iterated Ore extension of the algebra

B=I tðBÞ � C=I tðCÞ:

For example, we can add the remaining variables in the order

Ym�l;t � 1;Ym�l;t�1 � 1; . . . ;Ym�l;1 � 1; . . . ;Y1;t � 1; . . . ;Y1;1 � 1;

1 � Z1;lþ1; 1 � Z2;lþ1; . . . ; 1 � Zt;lþ1; . . . ; 1 � Z1;n; . . . ; 1 � Zt;n:

(Informally, we are adding the Y variables row by row, from the bottom and
moving from right to left in each row, and then adding the Z variables column by
column from the left and moving down each column.)

Thus, we only need to show that the algebra B=I tðBÞ � C=I tðCÞ is a domain. By
[3, Theorem 2.4], we have two injective maps

�B : B=I tðBÞ ¼ OqðMl;tÞ=I tðOqðMl;tÞÞ�!OqðMl;t�1Þ � OqðMt�1;tÞ;

�C : C=I tðCÞ ¼ OqðMt;l0 Þ=I tðOqðMt;l0 ÞÞ�!OqðMt;t�1Þ � OqðMt�1;l0 Þ:

(To be precise, [3, Theorem 2.4] only treats the case of OqðMn;nÞ; the easy
extension to nonsquare quantum matrices is explicitly stated in [4, Theorem 2.2].)
The tensor product map �B � �C : B=I tðBÞ � C=I tðCÞ�!OqðMl;t�1Þ � OqðMt�1;tÞ

�OqðMt;t�1Þ � OqðMt�1;l0 Þ is also injective, since the tensor products are over the
base field k. However, the target algebra is an iterated Ore extension, and so a
domain. Hence, B=I tðBÞ � C=I tðCÞ is also a domain. &

We are now in a position to calculate the height of a quantum determinantal
ideal and the dimension of the corresponding quantum determinantal factor alge-
bra. There is a choice of dimensions for us to work with. For example, we could use
Gelfand-Kirillov dimension, (Gabriel-Rentschler) Krull dimension, or classical
Krull dimension. In fact, we shall show that these all take the same values for
quantum determinantal factors. For any noetherian algebra A, it is known that
KdimðAÞ � Cl:KdimðAÞ and that GKdimðAÞ � Cl:KdimðAÞ. In fact, for reasonably
well-behaved algebras, it is known that GKdimðAÞ � KdimðAÞ. We should clarify
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what we mean by the phrase ‘‘reasonably well-behaved algebras’’ in the previous
sentence. If Gelfand-Kirillov dimension is known to be partitive and take only
integer values on the category of finitely generated modules over an algebra A then
GKdimðAÞ � KdimðAÞ. That these properties hold for quantum matrices is known,
see, for example, [5] or [1]. Another key property that we need is that in this setting,
for each of the three dimensions, if A is a prime noetherian algebra and I is a non-
zero ideal of A then dimðAÞ � dimðA=IÞ þ 1.

One of the outstanding problems for quantum matrices is whether or not cate-
narity holds for chains of prime ideals. A closely connected question is whether
Tauvel’s height formula holds: in other words, if P is a prime ideal, is it true that
GKdimðOqðMm;nÞ=PÞ þ htðPÞ ¼ GKdimðOqðMm;nÞÞ ¼ mn? If q is a root of unity,
then the algebra OqðMm;nÞ is affine PI. So it is catenary and Tauvel’s height formula
holds for all primes. However, in the general case, it is not known whether those two
properties, which were conjectured in [2], still hold. The prime ideals that we have
just constructed enable us to show that the determinantal ideals do indeed satisfy
this height formula, as we proceed to show.

Lemma 3. Let t � m ¼ minfm; ng. Then there is a chain of primes of length
ðm� tÞ þ ðn� tÞ þ 1 between I tþ1 and I t. In particular, htðImÞ � n�mþ 1.

Proof. Such a chain of primes is given by

I tþ1 ¼ Pt;t�1 	 Pt;t 	 Pt;tþ1 	 � � � 	 Pt;m�1 	 Pt;m�1 þQt;t 	 � � � 	 Pt;m�1

þQt;n�1 	 I t:

The fact that the inclusions in those chains are proper follows from the k-basis
descriptions of the ideals given in Lemma 1. &

We can amalgamate the chains of primes produced in the last lemma to give
lower bounds on the height of I t and on the classical Krull dimension of
OqðMm;nÞ=I t.

Proposition 4. Let t � m ¼ minfm; ng. Then
(a) htðI tÞ � ðm� tþ 1Þðn� tþ 1Þ
(b) Cl:KdimðOqðMm;nÞ=I tÞ � mn� ðm� tþ 1Þðn� tþ 1Þ.

Proof. (a)

htðI tÞ � htðI t=I tþ1Þ þ htðI tþ1=I tþ2Þ þ � � � þ htðIm�1=ImÞ þ htðImÞ

�
Xm

s¼t

fðm� sÞ þ ðn� sÞ þ 1g

¼ ðm� tþ 1Þðmþ nþ 1Þ � 2
Xm

s¼t

s

¼ ðm� tþ 1Þðmþ nþ 1Þ � fmðmþ 1Þ � ðt� 1Þtg

¼ ðm� tþ 1Þðmþ nþ 1Þ � ðm� tþ 1Þðmþ tÞ

¼ ðm� tþ 1Þðn� tþ 1Þ:
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Part (b) is proved in a similar manner:

Cl:KdimðOqðMm;nÞ=I tÞ � htðI1=I2Þ þ . . .þ htðI t�1=I tÞ

�
Xt�1

s¼1

fðm� sÞ þ ðn� sÞ þ 1g

¼ ðt� 1Þðmþ nþ 1Þ � 2
Xt�1

s¼1

s

¼ ðt� 1Þðmþ nþ 1Þ � ðt� 1Þt

¼ . . .

¼ mn� ðm� tþ 1Þðn� tþ 1Þ: &

The lower bounds obtained in the previous result, and the fact that we have an
upper bound of GKdimðOqðMm;nÞÞ ¼ mn on the sum of the two numbers enable us
to specify the values precisely and to show that Tauvel’s height formula holds for
quantum determinantal ideals.

Corollary 5. Let t � minfm; ng. Then
(a) htðI tÞ ¼ ðm� tþ 1Þðn� tþ 1Þ
(b) Cl:KdimðOqðMm;nÞ=I tÞ ¼ KdimðOqðMm;nÞ=I tÞ ¼ GKdimðOqðMm;nÞ=I tÞ ¼

mn� ðm� tþ 1Þðn� tþ 1Þ.
(c) Consequently, GKdimðOqðMm;nÞ=I tÞ þ htðI tÞ ¼ GKdimðOqðMm;nÞÞ.

Proof. We have already observed that

GKdimðOqðMm;nÞ=I tÞ � KdimðOqðMm;nÞ=I tÞ � Cl:KdimðOqðMm;nÞ=I tÞ:

Let ‘‘dim’’ stand for any of these three dimensions. We know that
dimðOqðMm;nÞ=I tÞ þ htðI tÞ � dimðOqðMm;nÞÞ � mn. We have the two inequalities

dimðOqðMm;nÞ=I tÞ � Cl:KdimðOqðMm;nÞ=I tÞ � mn� ðm� tþ 1Þðn� tþ 1Þ

and htðI tÞ � ðm� tþ 1Þðn� tþ 1Þ. If either of these inequalities is strict, we get
dimðOqðMm;nÞ=I tÞ þ htðI tÞ > mn, a contradiction. &
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