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Abstract

We describe a graded extension of the usual Hecke algebra: it acts in a graded fashion on the
cohomology of an arithmetic group Γ . Under favorable conditions, the cohomology is freely
generated in a single degree over this graded Hecke algebra.

From this construction we extract an action of certain p-adic Galois cohomology groups
on H˚pΓ,Qpq, and formulate the central conjecture: the motivic Q-lattice inside these Galois
cohomology groups preserves H˚pΓ,Qq.
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1. Introduction

Let G be a semisimple Q-group, and let Y pK q be the associated arithmetic
manifold (see (17)). Particularly when Y pK q is not an algebraic variety, it often
happens that the same Hecke eigensystem can occur in several different
cohomological degrees (see Section 1.2). Our goal is to construct extra
endomorphisms of cohomology that partly explain this, and give evidence
that these extra endomorphisms are related to certain motivic cohomology
groups.

1.1. Derived Hecke algebra. Let v be a prime, Gv “ GpQvq and Kv a
maximal compact subgroup. The usual Hecke algebra at v, with coefficients in
a (say finite) ring S, can be described as HomSGv

pSrGv{Kvs, SrGv{Kvsq . If
in place of Hom we use Ext (see Section 2 for more details), we get a graded
extension, which we may call the ‘local derived Hecke algebra’:

Hv,S :“
à

i

Exti
SGv
pSrGv{Kvs, SrGv{Kvsq. (1)

Such a construction has been considered by Schneider [28] in the context of
local representation theory in the case when S has characteristic v. In the present
paper, however, we are solely interested in the opposite case, when v is invertible
on S.

For elementary reasons, the higher exts are ‘almost’ killed by qv´1, where qv
is the size of the residue field; thus this algebra is of most interest when qv “ 1 in
S. In that case we have (Section 3, Theorem 3.3) a Satake isomorphism: if qv “ 1
in S, then Hv,S is isomorphic to the Weyl-invariants on the corresponding algebra
for a torus (and is thus graded-commutative).

Now Hv,S acts on the cohomology H˚pY pK q, Sq in a graded fashion—
the Exti component shifts degree by `i . (See Section 1.4 for an explicit
version, Section 2.6 for the abstract version.) In particular,

Â

v
Hv,Z{pn acts on

H˚pY pK q,Z{pnq and then (by passing to the limit as n Ñ8, Section 2.13) we
get a ring of endomorphisms

T̃ Ă End H˚pY pK q,Zpq,

the ‘global derived Hecke algebra.’ The degree zero component of T̃ is the usual
Hecke algebra T—that is, the subalgebra of End H˚ generated by all Hecke
operators. Here, and elsewhere in the introduction, we use in the Hecke algebra
only ‘good’ places v relative to K .

It seems to us likely that T̃ is graded-commutative but we do not know this in
general. However, this has limited impact for global applications because, firstly,
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different places commute; and secondly our analysis in Section 3 provides a
large set of ‘nice primes’ at which the local derived Hecke algebra is graded-
commutative. In particular, all of our work in this paper really analyzes the
subalgebra generated by these ‘nice primes’ (see after (36) for definition). This
subalgebra is what is important for all our applications, as will become clear
from the discussion of Section 1.2 onward. In many cases, the existence of this
subalgebra is anyway enough to force all of T̃ to be graded-commutative (see
Theorem 5.2 part (ii) and Proposition 8.6).

As we have mentioned, if we decompose H jpY pK q,Zpq into eigencharacters
for T, one finds the same eigencharacters occurring in several different degrees
j . See [35] for an elementary introduction to this phenomenon. We want to see
that T is rich enough to account for this.

One way of formalizing ‘rich enough’ is to complete the cohomology at a
given character χ : TÑ Fp of the usual Hecke algebra, and ask that H˚pY pK q,
Zpqχ be generated over T̃ in minimal degree. In other words, we should like to
check surjectivity of the map

T̃b H qpY pK q,Zpqχ Ñ H˚pY pK q,Zpqχ (2)

where q is the minimal degree where H˚pY pK q,Zpqχ is nonvanishing. (Note
that, if T̃ is not known to be graded-commutative, it is not a priori clear it
preserves the χ -eigenspace. However, under very mild assumptions it does, and
this will be the situation in the cases we analyze. Alternately one can switch
to the graded-commutative subalgebra described above. For the purpose of
the introduction, then, the reader may either assume that T̃ preserves H˚

χ or
assume that T̃ is replaced by the ‘strict global derived Hecke algebra’ defined in
Section 2.14.)

In Theorems 5.2 and 7.6, we prove this in two different cases (in both cases,
we require the prime p to be large enough):

Theorem 5.2, proved in Section 5, studies the case when G is (the Q-group
corresponding to) an inner form of SLn over an imaginary quadratic field, and
χ is the character T ÞÑ degpT q that sends any Hecke operator T to its degree.
The main point is that, in this case, H˚pY pK q,Zpqχ can be described in terms
of algebraic K -theory.

Theorem 7.6, proved in Sections 6 and 7, treats the case of χ associated
to a tempered cohomological automorphic form, assuming the existence of
Galois representations attached to cohomology classes on Y pK q, satisfying
the expected properties (see Section 6.2). (Our assumptions are similar to
Calegari–Geraghty [9]; however, we do not need the assumptions on vanishing
of cohomology because we allow ourselves to discard small p. Since the first
version of this paper, remarkable progress has been made in analyzing the
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Galois representations attached to torsion classes. In particular, the paper [1,
Theorem 3.11] of Allen, Calegari, Caraiani, Gee, Helm, Le Hung, Newton,
Scholze, Taylor and Thorne establishes, among many other results, the key local–
global compatibility needed for Taylor–Wiles patching. Moreover, the paper [11]
of Caraiani, Gulotta, Hsu, Johansson, Mocz, Reinecke, and Shih eliminates the
use of nilpotent ideals in the Galois representations originally constructed by
Scholze. While these do not precisely match with the inputs needed for our setup
of the argument, they appear to address the key issues, and so to me it seems
very likely that one could produce an unconditional version of our analysis in
the near future.) In this analysis we also impose some assumptions on χ for
our convenience—for example, ‘minimal level,’ and excluding congruences with
other forms—we have not attempted to be general. Here, the main tool of the
proof is a very striking interaction between the derived Hecke algebra and the
Taylor–Wiles method. We discuss this interaction further in Section 1.4.

The proofs of Sections 5 and 6–7 are quite different, but they have an
interesting feature in common. In both cases, we use the derived Hecke algebra
at primes q such that restriction to GQq kills certain classes in global Galois
cohomology. These classes live inside a certain dual Selmer group (specifically,
the right-hand side of (9) below).

That this particular dual Selmer group arises is quite striking, because it
seems to be a p-adic avatar of a certain motivic cohomology group; and this
same motivic cohomology group is suggested, in [25], to act on the rational
cohomology of Y pK q. This brings us to the core motivation of this paper:
the derived Hecke algebra allows one to construct a p-adic realization of the
operations on rational cohomology proposed in [25]. Therefore, we digress to
describe the conjectures of [25]. We return to describe the remainder of the
current paper in Section 1.3.

1.2. Motivic cohomology. This section is solely motivational, and so we
freely assume various standard conjectures without giving complete references.
We shall also allow ourselves to be slightly imprecise in the interest of keeping
the exposition brief. We refer to the paper [25] for full details.

Let χ : TÑ Q be a character of the usual Hecke algebra, now with Q values.
We suppose that χ is tempered and cuspidal. By this, we mean that there is a
collection π1, . . . , πr of cuspidal automorphic representations, each tempered at
8, such that the generalized χ -eigenspace H˚pY pK q,Cqχ is exactly equal to
the subspace of cohomology associated to the πi s.

Consider now this generalized eigenspace with rational coefficients

H˚pY pK q,Qqχ Ă H˚pY pK q,Qq.
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One can understand its dimension data completely. To do so we introduce some
numerical invariants: let δ,q be defined such that

δ “ rank GpRq ´ rank K8. (3)
2q` δ “ dimY pK q. (4)

Then we have (see [5, Theorem III.5.1]; also [4, Corollary 5.5])

dimH q`ipY pK q,Qqχ “
ˆ

δ

i

˙

dimH qpY pK q,Qqχ . (5)

In [25], a conjectural explanation for this numerology is proposed. Namely,
we construct a δ-dimensional Q-vector space and suggest that its exterior algebra
acts on H˚pY pK q,Qqχ . To define the vector space requires a discussion first of
the motive associated to χ , and then of its motivic cohomology.

1.2.1. The Galois representation and the motive associated to χ . It is
conjectured (and in some cases proven [30]) that to such χ there is, for
every prime p, a Galois representation ρχ : GalpQ{Qq Ñ L ĜpQpq, where
L Ĝ is the Langlands dual group. (A priori, this takes Qp coefficients; we, for
simplicity, assume that it can actually be defined over Qp. Moreover, in general
[7, Section 3.4] one has to replace L Ĝ by a slightly different group to define ρχ ,
but the foregoing discussion goes through with no change.)

We shall suppose that p is a good prime, not dividing the level of the original
arithmetic manifold Y pK q (for the precise meaning of ‘level,’ see after (19)). In
particular, this means that ρχ should be crystalline upon restriction to GQp .

Now we shall compose ρ with the coadjoint representation L Ĝ Ñ Autppg˚q of
L Ĝ on the dual of its own Lie algebra (here pg is the Lie algebra of the dual group
to G, considered as a Q-group, and pg˚ is its Q-linear dual). The result is

Ad˚ρχ : GalpQ{Qq ÝÑ Autppg˚ bQpq.

It is also conjectured that Ad˚ρχ should be motivic. In other words, there
should exist a weight zero motive Mcoad over Q, the ‘coadjoint motive for χ ,’
whose Galois realization is isomorphic to Ad˚ρχ :

H˚
et pMcoad ˆQ Q,Qpq » Ad˚ρχ (in cohomological degree 0). (6)

For simplicity we shall assume that Mcoad can be taken to be a Chow motive,
and will suppose that the coefficient field of Mcoad is equal to Q. (Since
(6) only determines the étale realization, it is more natural to consider Mcoad
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as a homological motive. Assuming standard conjectures [23, Section 7.3
Remark 3.bis], this can be promoted (noncanonically) to a Chow motive. The
independence of the constructions that follow requires a further conjecture, for
example, the existence of the Bloch–Beilinson filtration on K -theory.)

1.2.2. Motivic cohomology groups associated to χ . For such an Mcoad, and
indeed for any Chow motive M , we can define (after Voevodsky) a bigraded
family of motivic cohomology groups H a

motpM,Qpqqq; the indexing is chosen
so that this admits a comparison map to the corresponding absolute étale
cohomology group H a

etpM,Qppqqq.
We will be solely interested in the motivic cohomology group with a “ q “ 1;

in this case, with the coadjoint motive, the comparison with étale cohomology
gives

H 1
motpMcoad,Qp1qq bQ Qq Ñ H 1pGQ,Ad˚ρχp1qq. (7)

Now Scholl [29, Theorem 1.1.6] has shown that one can define (again for any
Chow motive M over Q) a natural subspace H a

motpMZ,Qpqqq Ă H a
motpM,Qpqqq

of its motivic cohomology, informally speaking ‘those classes that extend to a
good model over Z.’ Conjecturally, the analog of the above map should now take
values inside the f -cohomology of Bloch and Kato [2]; in the case of interest the
analog of (7) is now

H 1
motppMcoadqZ,Qp1qq bQ Qq Ñ H 1

f pGQ,Ad˚ρχp1qq.

Moreover, this map is conjecturally ([2, 5.3(ii)]) an isomorphism.
It may be helpful to note that Beilinson’s conjecture relates this particular

motivic cohomology to the value of the L-function for Ad˚ρχ at the edge of the
critical strip. In particular, Beilinson’s conjectures imply that

dimQ H 1
motppMcoadqZ,Qp1qq “ order of vanishing of Lps,Ad˚ρχq at s “ 0.

A routine computation with Γ -factors shows that the right-hand side should
indeed be equal to δ.

To keep typography simple, we denote the group H 1
motppMcoadqZ,Qp1qq simply

by L:
L :“ H 1ppMcoadqZ,Qp1qq. (8)

so that our discussion above says that, granting standard conjectures, L is a Q-
vector space of dimension δ, and it comes with a map

L bQp Ñ H 1
f pGQ,Ad˚ρχp1qq

loooooooooomoooooooooon

:“LQp

(9)
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1.2.3. The complex regulator on L and the conjectures of [25]. There is a
complex analog to (9): a complex regulator map on L , with target in a certain
Deligne cohomology group. Since the details are not important for us, we just
call the target of this map LC and let L˚C be its C-linear dual.

In [25], we construct an action of L˚C on H˚pY pK q,Cqχ by degree 1
endomorphisms, inducing

H qpY pK q,Cqχ b
ľi

L˚C
„
ÝÑ H q`ipY pK q,Cqχ . (10)

The main conjecture of [25] is that this action preserves rational structures, that
is, the Q-linear dual L˚ of L carries H˚pY pK q,Qqχ to itself. In particular, this
means that

There is a natural graded action of ^˚L˚ on H˚pY pK q,Qqχ . (11)

Therefore, if one accepts the conjecture of (11), and also believes that (9) is
an isomorphism, it should be possible to define a ‘natural’ action of

ľ˚

L˚ bQp “
ľ˚

H 1
f pGQ,Ad˚ρχp1qq˚ ýH˚pY pK q,Qpqχ . (12)

Now there is no explicit mention of motivic cohomology, and this is where the
current paper comes into the story: in Section 8, we shall explain how the derived
Hecke algebra can be used to produce such an action.

This concludes our review of [25]; we now explain (12) a little bit more.

1.3. The derived Hecke algebra and Galois cohomology. The main result
of Section 8 is Theorem 8.5, which constructs an action of

Ź˚ H 1
f pGQ,

Ad˚ρχp1qq˚ on H˚pY pK q,Qpq. This is characterized in terms of the action of
explicit derived Hecke operators. More precisely, we construct in Section 8.24
an isomorphism

T̃bQp » TbQp

ľ˚

H 1
f pGQ,Ad˚ρχp1qq˚ (13)

(actually, we do this in a case when T “ Zp, but in general the argument should
yield the above result). Informally, (13) gives an ‘indexing’ of derived Hecke
operators by Galois cohomology. We describe it concretely in a moment, see
Section 1.5. It can be viewed as a ‘reciprocity law,’ because it relates the action
of the (derived) Hecke algebra to the Galois representation in a direct way.

To go further, let us assume that the map (9) is indeed an isomorphism. Denote
by L˚ the Q-linear dual of L , by L˚Qp

the Qp-linear dual of LQp ; we get also an
isomorphism L˚ bQp » L˚Qp

.
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Thus the derived Hecke algebra gives rise to an action of ^˚L˚Qp

on H˚pY pK q,Qpq. The fundamental conjecture, formulated precisely as
Conjecture 8.8, is then the following:

Let ^˚L˚Qp
act on H˚pY pK q,Qpq as described above. Then

^˚L˚ Ă ^˚L˚Qp
preserves rational cohomology H˚pY pK q,

Qq Ă H˚pY pK q,Qpq.

The main point of this paper was to get to the point where we can make
this conjecture! What it says is that there is a hidden action of L˚ on the Q-
cohomology of Y pK q, which can be computed, after tensoring with Qp, using
the derived Hecke algebra.

Here is the current status of evidence for this conjecture:

(i) The most direct evidence (as of the time of writing) will be given in the
paper [17], which is joint work with Michael Harris. There we develop an
analog of the derived Hecke algebra in the setting of coherent cohomology,
and formulate an analog of the conjecture in this setting. The advantage
of this is we are actually able to carry out a numerical test (in the case of
classical weight one modular forms) and it indeed works.

(ii) As we have already mentioned, the conjecture should be seen as a p-adic
analog of the conjecture of [25] (which tells the archimedean story). In
the archimedean case, we are able to give substantive evidence for the
conjecture by other methods (periods of automorphic forms, and analytic
torsion).

(iii) Suitably phrased, the computations of Section 5 can be seen as supporting
a modified version of the conjecture. It is also easy to verify that the
conjecture holds for tori, as we shall discuss in Section 9 of this paper.

REMARK. Note that, because of our fairly strong assumptions, (13) is even true
integrally in the setting of Section 8, that is, the global derived Hecke algebra is
an exterior algebra over Zp. I do not expect this to be true in general; however, the
rational statement (13) should remain valid. One might imagine that the derived
deformation ring of [14] will have better integral properties than the derived
Hecke algebra.

1.4. Explication, Koszul duality, Taylor–Wiles. We now explain the action
of the derived Hecke algebra, and its relationship to Galois cohomology, as
explicitly as possible, in the case when Y pK q is an arithmetic hyperbolic 3-
manifold. Besides explicating the foregoing abstract discussion, this will also
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have the advantage that it allows us to explain the relationship between the
derived Hecke algebra and the Taylor–Wiles method.

Suppose G arises from PGL2 over an imaginary quadratic field F , that is,
G “ ResF{QPGL2. Let O be the ring of integers of F . Therefore the associated
manifold Y pK q (see (17)) is a finite union of hyperbolic 3-orbifolds. Let us
suppose, for simplicity, that the class number of F is odd; then, at full level,
the associated arithmetic manifold is simply the quotient of hyperbolic 3-space
H3 by PGL2pOq.

In what follows, we fix a prime p and will work always with cohomology with
Z{pn coefficients.

Let q be a prime ideal of O, relatively prime to p, and let Fq “ O{q the
residue field. Let

α : F˚q ÝÑ Z{pn

be a homomorphism. By means of the natural homomorphism

Γ0pqq Ñ F˚q

sending p a b
c d q ÞÑ a{d , we may regard α as a cohomology class xαy P H 1pΓ0pqq,

Z{pnq. Here, Γ0pqq is as usual defined by the condition that c P q.
Then a typical ‘derived Hecke operator’ of degree `1 is the following (see

Section 2.10 for more):

Tq,α : H 1PGL2pOq
π
˚
1
Ð H 1Γ0pqq

Yxαy
ÝÑ H 2Γ0pqq

π2˚
Ñ H 2PGL2pOq. (14)

Here π1, π2 are the two natural maps Γ0pqq Ñ PGL2pOq.
In words, we pull back to level Γ0pqq, cup with xαy, and push back (the ‘other

way’) to level 1. If we omitted the cup product, we would have the usual Hecke
operator Tq. The class α itself is rather uninteresting—it is a ‘congruence class’
in the terminology of [10], that is, it becomes trivial on a congruence subgroup—
but nonetheless this operation seems to be new even in this case.

The role of torsion coefficients is vital: If we took the coefficient ring above to
be Z, there are no homomorphisms F˚qÑ Z; more generally, F˚q has only torsion
cohomology in positive degree. In fact, even to obtain ‘interesting’ operations
with Z{p coefficients, we need at least that p divide Npqq ´ 1 (that is, that
Npqq “ 1 in the coefficient ring Z{p, as we mentioned in Section 1.1).

What that means is that elements of T̃ in characteristic zero necessarily arise
in a very indirect way: as a limit of operations from Hq for larger and larger
primes q. This situation is perhaps reminiscent of the Taylor–Wiles method, and
indeed one miracle of the story is that, although the definition of T̃ is completely
natural, it interacts in a rich way with the Taylor–Wiles method (not merely with
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its output, for example, R “ T theorems, but with the internal structure of the
method itself).

To see why this is so let us examine (14): the Taylor–Wiles method studies the
action of F˚q on the cohomology of Γ1pqq (these are the ‘diamond operators’).
On the other hand, when we study Tq,α, we are studying the action of H˚pF˚pq
on H˚pΓ0pqqq. In both settings it is vital that Nq´1 be divisible by high powers
of p.

But these two actions just mentioned are very closely related. More generally,
if a group G acts on a space X , the action of G on homology of X and the
action of its group cohomology H˚pGq on the equivariant cohomology H˚

G pXq
are closely related: when G is a compact torus, for example, this relationship is
just Koszul duality [16]. This is just the situation we are in, with G “ F˚q, and X
the classifying space of Γ1pqq.

1.5. Relationship to Galois cohomology: the ‘reciprocity law’. Continuing
our discussion from Section 1.4, let us describe explicitly how the operator Tq,α
is related to Galois cohomology. Said differently, we are explicating the indexing
of derived Hecke operators by Galois cohomology that is implicit in (13). The
result could be considered to be a reciprocity law, in the same sense as the usual
relationship between Hecke operators and Frobenius eigenvalues.

This discussion is (probably inevitably) a bit more technical. We must again
localize our story to a given Hecke eigenclass and also make some further
assumptions on the prime q. For a more precise discussion and proofs, see
Section 8.28 of the main text.

Fix now a character χ : T Ñ Zp of the usual Hecke algebra at level Y pK q.
Let

ρ : GalpF̄{Fq Ñ GL2pZpq

be the Galois representation conjecturally associated to χ , and let ρm be its
reduction modulo pm . We shall assume that ρ is crystalline at all primes above
p, and also that p ą 2. Let S be the set of finite primes at which ρ is ramified
(necessarily including all primes above p).

Let Adρ be the composite of ρ with the adjoint representation of PGL2; we
think of the underlying space of Adρ as the space of 2 ˆ 2 matrices with trace
zero and entries in Zp. Also, let Ad˚ρ be the Zp-linear dual to Adρ (this is
identified with Adρ as a Galois module, so long as p ‰ 2, but we prefer to try
to keep them conceptually separate). Finally, Ad˚ρp1q will be the Tate-twist of
Ad˚ρ.
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Let q R S be a prime of F and let Fq be the completion of F at q. Embed

Zp with trivial GalpFq{Fqq action ãÑ Ad ρ|GalpFq{Fqq (15)

1 ÞÑ 2ρpFrobqq ´ traceρpFrobqq.

Explicitly, ρpFrobqq is a 2ˆ2 matrix over Zp, and the right-hand side above is a
2ˆ 2 matrix over Zp with trace zero. This eccentric looking formula is a special
case of a construction that makes sense for all groups, see Section 8.28.

The map (15) gives rise to a similar embedding Z{pm Ñ Ad ρm|G Fq
, and thus

a pairing of G Fq-modules:

Z{pm ˆ Ad˚ ρp1q Ñ µpm .

Thus by local reciprocity we get a pairing

H 1pFq,Z{pmq ˆ H 1pFq,Ad˚ ρp1qq Ñ Z{pmZ,

and then (by restricting the second argument to Fq)

H 1pFq,Z{pmq ˆ H 1
f

ˆ

O
„

1
S



,Ad˚ ρp1q
˙

Ñ Z{pmZ,

Here H 1pOr 1
S s,´q denotes the subspace of classes in H 1pF,´q that are

unramified outside S, and the f subscript means that we restrict further to classes
that are crystalline at p.

Now take, as in Section 1.4, an element α : F˚q Ñ Z{pm indexing the derived
Hecke operator Tq,α, and make an arbitrary extension to a homomorphism
α̃ : F˚q {p1` qq Ñ Z{pm . This defines a class α̃ P H 1pFq,Z{pmq, well defined
up to unramified classes. The pairing of α̃ with H 1

f pOr 1
S s,Ad˚ ρp1qq, as above,

is easily seen to be independent of choice; thus from a prime ideal q and a
homomorphism F˚q Ñ Z{pm we have obtained a homomorphism:

rq, αs : H 1
f

ˆ

O
„

1
S



,Ad˚ρ p1q
˙

ÝÑ Z{pm . (16)

In the main text of this paper (Lemma 8.29), we prove a variant of the following
statement under some further local hypotheses on the representation ρ. (The
meaning of ‘variant’ is this: we only work with simply connected groups—that is,
we prove an analogous result for SL2 rather than PGL2—and we impose various
local conditions on the residual representations. In the introduction, we have
stuck with PGL2 because it is more familiar. For example, for SL2, we would
need to use only the squares of the usual Hecke operators.)
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Claim: There exists N0pmq such that for each pair of prime ideals
q, q1 satisfying

(a) Normpqq ” Normpq1q ” 1 modulo pN0pmq

(b) the eigenvalues of ρpFrobqq, mod p, are distinct elements of
Z{pZ, and the same for q1;

(c) rq, αs “ rq1, α1s in the notation of (16)

the actions of Tq,α and Tq1,α1 on H˚pY pK q,Z{pmq coincide.

This is a ‘reciprocity law,’ of the same nature as the reciprocity law relating
Frobenius and Hecke eigenvalues. It is the basis for (13).

It is not as precise as one would like, because of the annoying extra conditions
on q, q1 but it is good enough to get (13). It is certainly natural to believe that

rq, αs “ rq1, α1s
?
ùñ Tq,α “ Tq1,α1

(where the equality on the right is an equality of endomorphisms of Z{pm-
cohomology), without imposing condition (a) or (b) above. It would be good
to prove not only this but a version that gives information at bad places. Such a
formulation is presumably related to a derived deformation ring, as we describe
in the next Section.

1.6. Further discussion and problems. It is not really surprising in
retrospect that such cohomology operations should exist. It took me a long
time to find them because of their subtle feature of being patched together
from torsion levels. There is a relatively simple archimedean analog made via
differential forms, see [25].

Here are some metaphors and problems:

(a) In the ‘Shimura’ context a corresponding structure is provided by
‘Lefschetz operators’ (although these act nontrivially only for nontempered
representations). But the derived Hecke algebra operators do not recover
this structure. Indeed, for weight reasons, one expects that the higher
degrees of the derived Hecke algebra act trivially in the Shimura case. The
example of GL2 over a field with both real and complex places shows a
mixture of features, which would be interesting to study further.

(b) The theory of completed cohomology of Calegari–Emerton [8] already
predicts that, if we pass up a congruence tower, cohomology becomes
(under certain conditions) concentrated in a single degree. Said another way,
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all the degrees of cohomology have ‘the same source,’ and thus one expects
to be able to pass from one to another.

For this reason, it will be interesting to study the action of the mod p derived
Hecke algebra of a p-adic group; but we stay away from this in the current
paper. (Our results and a global-to-local argument suggest that this derived
Hecke algebra might have a nice structure theory. As mentioned this is
studied in [24, 28]; there is also recent work of Ronchetti [27].)

(c) There is also a story of ‘derived deformation rings,’ developed in [14];
there is a pro-simplicial ring R̃ that represents deformations of Galois
representations with coefficients in simplicial rings. The precise definition
of R̃, and—assuming similar conjectures to those assumed here—a
construction of its action on integral homology, are given in the paper
[14].

However, the relationship between T̃ and R̃ is not one of equality: the former
acts on cohomology, raising cohomological degree, and the latter naturally
acts on homology, raising homological degree. See the final section of [14]
for a formulation of the relationship between the two actions.

Our expectation is that R̃ will have better integral properties than T̃, in
general.

(d) Numerical invariants: We can use T̃ to shift a class from degree q to the
complementary degree dim Y pK q ´ q and then cup the resulting classes.
This gives an analog of the ‘Petersson norm’ which makes sense for a
torsion class (or a p-adic class). What is the meaning of the resulting
numerical invariants?

1.7. Notation. We try to adhere to using ` or p for the characteristic of
coefficient rings, and using q or v for the residue field size of nonarchimedean
fields. Thus we may talk about the ‘`-adic Hecke algebra of a v-adic group.’

G will denote a reductive algebraic group over a number field F . In the
local part of our paper—Sections 2, 3, 4—we shall work over the completion
of such an F at an arbitrary finite place. In our global applications we will
be more specific (just for ease of notation, for example, not worrying about
multiple primes above the residue characteristic): Section 5 we take F quadratic
imaginary, and in Section 6 onward we take F “ Q.

It will be convenient at many points to assume that G is split, and then to fix
a maximal split torus A inside G, and also a Borel subgroup B containing A.
This endows the cocharacter lattice X˚pAq “ HompGm,Aq with a positive cone
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X˚pAq` Ă X˚pAq, the dual to the cone spanned by the roots of A on B. We
denote by r “ dimX˚pAq the rank of G.

For v a place of F we let Fv be the completion of F at v, Ov Ă Fv the integer
ring, Fv the residue field and write qv for the cardinality of Fv. We also put

Gv “ GpFvq.

Attached to G and a choice of open compact subgroup K Ă GpAF, f q (the finite
adele points of G) there is attached an ‘arithmetic manifold’ Y pK q, which is a
finite union of locally symmetric spaces:

Y pK q “ GpFqzpS8 ˆGpAfqq{K , (17)

where S8 is the ‘disconnected symmetric space’ for GpF bRq—the quotient of
GpF b Rq by a maximal compact connected subgroup. Although it is a minor
point, we take Y pK q as an orbifold, not a manifold, and always compute its
cohomology in this sense.

As before, we introduce the integer invariants q, δ:

δ “ rankpGpF b Rqq ´ rankpmaximal compact of GpF b Rqq, (18)

and define q so that 2q ` δ “ dimY pK q. These have the same significance as
described in (5), at least if we suppose that the center of G is anisotropic over F .

We work only with open compact subgroups with a product structure, that is,

K “
ź

Kv (19)

where Kv Ă GpFvq is an open compact subgroup, and Kv is a hyperspecial
maximal compact of Gv for all but finitely many primes v. A prime v will be
‘good’ for K when Kv is hyperspecial and the ambient group G is quasisplit at v.
The ‘level of K ’ will be, by definition, the (finite) set of all primes v which are
not good.

G has a dual group G_, which we regard as a split Chevalley group over Z;
in particular, its Lie algebra is defined over Z, and its points are defined over
any ring R. We regard it as equipped with a maximal torus T_ inside a Borel
subgroup B_.

In the discussion of the Taylor–Wiles method, which takes place in Sections 6
and 8, it is convenient to additionally assume:

G is simply connected and G_ is adjoint.

This is a minor issue, to avoid the usual difficulties of ‘square roots.’ One could
(better) replace G_ by some version of the c-group of [7].
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When we discuss Galois cohomology, we follow the usual convention that, for
a module M under the absolute Galois group GalpL{Lq of a field M , we denote
by H˚pL ,Mq the continuous cohomology of the profinite group GalpL{Lq with
coefficients in M . For L a number field, with ring of integers O Ă L , we denote
by H 1pOr 1

S s,Mq Ă H 1pL ,Mq the subset of classes that are unramified outside
S and H 1

f pOr 1
S s,Mq Ă H 1pOr 1

S s,Mq the classes that are, moreover, crystalline
at p.

Warning: In the literature, the subscript f is often used to mean classes that are
crystalline at p and unramified at all other places, not merely at places outside
S. Indeed, we implicitly used this notation in Sections 1.2 and 1.3 when we
wrote H 1

f pGQ,´q. However, in the remainder of the text, we will not use this
convention. To avoid any confusion, on the one occasion (in Section 9) we wish
to refer to classes that are crystalline at p and unramified at all other places, we
use the notation H 1

f,ur. This notation will be reprised when it is used so the reader
need not remember it now.

2. Derived Hecke algebra

We introduce the derived Hecke algebra (Definition 2.2) and then give two
equivalent descriptions in Sections 2.3 and 2.4. The model given in Section 2.3
is by far the most useful. We shall then describe the action of the derived Hecke
algebra on the cohomology of an arithmetic group in Section 2.6, and then make
it a bit more concrete in Section 2.10. Finally, Section 2.12 discusses some minor
points to do with change of coefficient ring, and Section 2.13 discusses some
other minor points about passage between Z{`n coefficients and Z` coefficients.

Appendix A expands on various points of homological algebra that are used
in the current section.

2.1. As in Section 1.7, we fix a prime v of F , with residue field Fv of
characteristic pv and size qv, and set Gv “ GpFvq. We denote by Uv an open
compact subgroup of Gv. Eventually, we use only the case of Uv being either
a maximal compact subgroup or an Iwahori subgroup, but there is no need to
impose this. When we are working strictly in a local setting, we abbreviate these
simply to G and U :

G “ Gv, U “ Uv.

It will also be convenient to fix

Vv “ a pro-pv, normal, finite index subgroup of Uv, (20)

which we again abbreviate to V when it will cause no confusion.
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Let S be a finite coefficient ring in which qv is invertible. In what follows, by
‘G-module’ we mean a module M under the group algebra SG with the property
that every m P M has open stabilizer in G. The category of G-modules is an
abelian category and it has enough projective objects (see Section A.2).

The usual Hecke algebra for the pair pG,Uq can be defined as the
endomorphism ring HomSGpSrXs, SrXsq, where X “ G{U and SrXs denotes
the free S-module on a set X . Motivated by this, we define:

DEFINITION 2.2. The derived Hecke algebra for pG,Uq with coefficients in S
is the graded algebra

H pG,UqS :“ Ext˚pSrG{U s, SrG{U sq, (21)

where the Ext-group is taken inside the category of G-modules.

Let us record some variants on the notation:

- We write simply H pG,Uq when the coefficients are understood to be S.

- We write H jpG,Uq or H p jqpG,Uq for the component in degree j , that is,
the Ext j summand on the right.

- In global situations where we have fixed a level structure Kv ď Gv for all v,
or for almost all v, we often write simply Hv,S for the corresponding derived
Hecke algebra H pGv, Kvq. Again we write simply Hv if the coefficients are
understood to be S.

If we choose a projective resolution P of SrG{U s as G-module, then
H pG,Uq is identified with the cohomology of the differential graded algebra
HomSGpP,Pq. It will be convenient for later use to make an explicit choice of P:
Let Q be a free resolution of the trivial module S in the category of SrU{V s-
modules. We may take P to be the compact induction (from U to G) of Q.
Observe that all the groups Pi of the resulting resolution are free S-modules.

2.3. Description in terms of invariant functions. We may also describe
H pG,Uq as the algebra of ‘G-equivariant cohomology classes on G{U ˆG{U
with finite support modulo G.’ We now spell out carefully what this means; an
explicit isomorphism between this description and Definition 2.2 is constructed
in Appendix A.

First some notation: for x, y P G{U , we denote by Gxy the pointwise stabilizer
of px, yq inside G; it is a profinite group. We denote by H˚pGxy, Sq the
continuous cohomology of Gxy with coefficients in S (discretely topologized).
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In this model, an element of H pG,Uq is an assignment h that takes as input
px, yq P G{U ˆ G{U and produces as output hpx, yq P H˚pGxy, Sq, subject to
the following conditions:

• h is G-invariant, that is to say, rgs˚hpgx, gyq “ hpx, yq, where rgs˚ :

H˚pGgx,gyq Ñ H˚pGxyq is pullback by Adpgq.

• h has finite support modulo G, that is, there is a finite subset T Ă G{UˆG{U
such that hpx, yq “ 0 if px, yq does not lie in the G-orbit of T .

The addition and S-module structure on H pG,Uq is defined pointwise. The
product is given by the rule

h1 ˚ h2px, zq “
ÿ

yPG{U

h1px, yq
loomoon

H˚pGxyq

Y h2py, zq
loomoon

H˚pG yzq

(22)

where we give the right-hand side the following meaning: The cup product on
the right makes sense in H˚pGxyz, Sq, that is, first restrict h1 and h2 to H˚pGxyz,

Sq, and take the cup product there. Now split G{U as a disjoint union
š

Oi of
orbits under Gxz; let O be one such orbit. We regard

ÿ

yPO

h1px, yq Y h2py, zq :“ Cores
Gxy0z

Gxz
ph1px, y0q Y h2py0, zqq (23)

where y0 P O is any representative, and the ‘trace’ or corestriction is taken from
Gxy0z to Gxz; note that the right-hand side of (23) is independent of choice of
y0 P O . Adding up over orbits O gives the meaning of the right-hand side of (22).

REMARK. Suppose that∆ is a compact subgroup of G that stabilizes every point
of G{U . In this case, we can restrict h to get a function h∆ : G{U ˆ G{U Ñ

H˚p∆q. We also have phh1q∆ “ h∆h1∆, where the right-hand multiplication is
the more familiar

h∆h1∆px, zq “
ÿ

yPG{U

h∆px, yq Y h1∆py, zq. (24)

2.4. Double coset description. Finally, we can describe H pG,Uq in terms
of double cosets UzG{U . For x P G{U let

Ux “ U X AdpgxqU

where gx P G represents x (that is to say, x “ gxUq. Then Ux is the stabilizer of
x in U .
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Fix a set of representatives rUzG{U s Ă G{U for the left U -orbits on G{U .
Then we have an isomorphism of S-modules

à

xPrUzG{Us

H˚pUx , Sq „ÑH pG,Uq (25)

given thus: Fix a class z P rUzG{U s, and a representative gz P G for z—thus
z “ gzU . Let α P H˚pUz, Sq. Then the class of α P H˚pUz, Sq, considered
as an element of the left-hand side of (25), is carried to the function hz,α on
G{U ˆ G{U characterized by the following properties:

(i) hz,αpx, yq “ 0 unless px, yq belongs to the G-orbit of pz, eUq.

(ii) hz,α sends pz, eUq to α P H˚pUz, Sq—note that Uz is exactly the common
stabilizer of z and eU .

This gives another description of H pG,Uq. It is harder to directly describe
the multiplication rule in this presentation, and we use instead the isomorphism
to the previous description. Later on we describe explicitly the action of hz,α on
the cohomology of an arithmetic manifold.

Now let us examine the ‘size’ of H pG,Uq; this discussion is really only
motivational, and so we will be a little informal. Suppose, for example, that G is
split and U is hyperspecial. In this case, the quotient UzG{U is parameterized by
a dominant chamber X˚pAq` inside the cocharacter group X˚pAq of a maximal
split torus A. Moreover, if x P G{U is a representative for a double coset
parameterized by λ P X˚pAq, then the group Ux is, modulo a pro-p-subgroup,
the Fv-points MλpFvq of the centralizer Mλ of λ. Thus we obtain an isomorphism
of S-modules:

H pG,Uq :“
à

λPX˚pAq`
H˚pMλpFvq, Sq.

For ‘generic’ λ—that is, away from the walls of X˚pAq`—the group Mλ is a
split torus; the order of its Fv-points is a power of pqv ´ 1q. Thus if pqv ´ 1q is
invertible on S, all the terms of H pG,Uq corresponding to dominant λ vanish.

In this paper we will be primarily concerned with the case when qv ´ 1 “ 0
inside S. Although it is certainly interesting to study H pG,Uq in general,
the preceding discussion shows that this case (that is, qv “ 1 in S) is where
H pG,Uq is ‘largest.’

2.5. Derived invariants. If M is any complex of G-modules, we may form
the derived invariants

derived U -invariants on M :“ HomSGpSrG{U s,Mq P DpModSq
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where Hom is now derived Hom in the derived category of G-modules, taking
values in the derived category of S-modules.

Then the derived Hecke algebra automatically acts on the cohomology of the
derived invariants:

H pG,Uq ýH˚pderived U -invariants on Mq. (26)

Indeed, the derived invariants are represented by the complex HomSGpP,Mq,
where P is as before any projective resolution of SrG{U s. The action of
HomSGpP,Pq on this complex furnishes the desired (right) action of H pG,Uq.

Let us describe the derived invariants in more familiar terms. Let V be
as in (20), and consider the explicit projective resolution P discussed in
Section 2.2; we see that the derived U -invariants are computed by the complex
HomSU pQ,Mq. This coincides with U{V -homomorphisms from Q to the
termwise invariants M V ; since Q is a projective resolution of S in the category
of U{V -modules, we see that

derived U -invariants on M » HomSU{V pS,M V q P DpModSq, (27)

where the right-hand side is derived homomorphisms, in the derived category of
U{V -modules. In other words, there is an identification

H˚pderived U -invariants on Mq » H˚pU{V,M V q,

the group hypercohomology of the finite group U{V acting on the complex of
termwise invariants M V .

2.6. Arithmetic manifolds. In the remainder of this section, we describe how
the derived Hecke algebras act on the cohomology of arithmetic manifolds.

We follow the notation of Section 1.7. In particular, we fix K Ă GpAfq an
open compact subgroup, which we are supposing to have a product structure
K “

ś

w
Kw; let us split this as

K “ K pvq ˆ Kv

where K pvq “
ś

w‰v
Kw is the structure ‘away from v.’ Associated to this is an

arithmetic manifold Y pK q, as in (17).
We construct an action of the derived Hecke algebra Hv “HvpGv, Kvq on the

cohomology of Y pK q. To do so, we exhibit Y pK q as the derived Kv-invariants
on a suitable Gv-module, and then apply (26).

For Uv any open compact subgroup of Gv, let us abridge:

C˚pUvq “ cochain complex of Y pK pvq ˆUvq with S coefficients. (28)
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Now let
M “ lim

ÝÑ
Uv

C˚pUvq,

where the limit is taken over open compact subgroups Uv ď Gv. Visibly, M is a
complex of smooth Gv-modules. Choosing Vv Ă Kv as in (20), we have

M Vv » C˚pVvq,

since we may interchange invariants and the direct limit; and then for a finite
cover X Ñ Y with Galois group D we have an isomorphism C˚pY q „

Ñ

C˚pXqD. However, the derived invariants of Kv{Vv on C˚pVvq ‘coincide with’
the cohomology of Y pK q: the natural map

C˚pY pK qq “ C˚pVvqKv{Vv Ñ HomSrKv{VvspS,C˚pVvqq

is a quasi-isomorphism, in the derived category of S-modules. This follows from
the fact that the terms C˚pVvq have no higher cohomology as Kv{Vv-modules,
because each C jpVvq is the module of S-valued functions on a free Kv{Vv-set
and is, in particular, induced from a representation of the trivial group.

We have exhibited a quasi-isomorphism

C˚pY pK qq » derived Kv-invariants on M

between C˚pY pK qq and a complex that represents the derived invariants of
Kv acting on M . Thus (26) gives a natural right action of H pGv, Kvq on the
cohomology of Y pK q.

REMARK. Although this is strictly a right action, we often write it on the left,
which conforms more to the usual notation for Hecke operators; the reader
should therefore remember that the multiplication needs to be appropriately
switched at times, but this will cause almost no issue because the derived Hecke
algebra will prove to be graded-commutative at all the places we use.

Of course, this description is totally incomprehensible; thus we now work on
translating it to something more usable.

2.7. Digression: pullback from a congruence quotient. We first need a
brief digression to construct certain cohomology classes on Y pK q. These are
called ‘congruence classes’ in [10], because they capitulate in congruence covers
of Y pK q.

There is a natural map

H˚pKv, Sq ÝÑ H˚pY pK q, Sq, (29)
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where, on the left, H˚pKv, Sq is the continuous cohomology of the profinite
group K with coefficients in (discretely topologized) S. Indeed, any cohomology
class for H˚pKv, Sq is inflated from a quotient Kv{Kv,1. Let K1 be the preimage
of Kv,1 in K . The covering Y pK1q Ñ Y pK q has deck group Kv{Kv,1, and thus
gives rise to a map, well defined up to homotopy,

Y pK q ÝÑ classifying space of Kv{Kv,1. (30)

We may then pull back cohomology classes along this map to get (29).
These ‘congruence’ cohomology classes have a very simple behavior under

Hecke operators:

LEMMA 2.8. Let h be in the image of the map (29). For any prime w of F that
does not divide the level of K or the size of S, such that GpFwq is split, and any
usual Hecke operator T supported at w, we have

T h “ degpT qh.

We give a direct proof, but let us note that one can also deduce the result
from the commutativity of the Hecke algebra at w (which is proved, under mild
restrictions on w, in Section 3). It is also likely that the assumption that GpFvq
is split is unnecessary (since w does not divide the level of K , it is automatically
quasisplit by our definitions, which should be enough for the argument below to
go through).

Proof. It is easy to verify this if w ‰ v, so we examine only the case w “ v.
By the assumptions, we may suppose that Kv “ GpOvq, for a split reductive

G over Ov. Suppose that T arises from the double coset KvavKv, where, without
loss, a lies in a maximal split torus ApFvq that is in good position relative to
Kv—that is, it extends to a maximal split torus of G.

We show that h has the same pullback under the two natural maps

π1, π2 : Y pK X AdpavqK q Ñ Y pK q,

namely, the natural map, and the map induced by multiplication by av; this
implies the Lemma.

There is an isomorphism X˚pAq » Av{pAvXKvq; let M be the centralizer in
G of the cocharacter in X˚pAq that corresponds to the class of a. Let K2 be the
preimage, under Kv Ñ GpOv{$

D
v q, of MpOv{$

D
v q; here D is a large enough

integer, and $v a uniformizer.
Then, on the one hand, the inclusion K2 ãÑ K XAdpavqK has index equal to

a power of qv. In particular, it induces an injection on H˚p´, Sq, so it is enough
to verify that π˚1 h “ π˚2 h after pullback under Y pK2q Ñ Y pK X AdpavqK q.
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However, the pullback H˚pGpFvq, Sq Ñ H˚pKv, Sq is an isomorphism. The
class h is therefore actually pulled back from GpFvq. Our assertion then follows
from the fact that the natural maps K2 ÝÑ GpFvq—namely, the reduction map,
and the conjugate of the reduction map by av— actually coincide. This proves
that π˚1 h “ π˚2 h, and concludes the proof of the Lemma.

This motivates the following definition:

DEFINITION 2.9. We say a class h P H˚pY pK q, Sq is Hecke-trivial if, for
all places v that do not divide the level of K and with residue characteristic
invertible on S, and all Hecke operators T supported at v,

pT ´ degpT qqnh “ 0,

for a sufficiently large integer n “ npT q. We denote by H˚pY pK q, Sqtriv the
submodule of Hecke-trivial classes.

2.10. Concrete expression for the action of Hv on H˚pYpKq, Sq. Let us
now give a more down-to-earth description of the action of Hv,S on H˚pY pK q,
Sq, with notation as above. In particular, we show that the action of elements hz,α

can be described in a fashion that is very close to the usual definition of Hecke
operators.

From z “ gz Kv P Gv{Kv, and α P H˚pKv X AdpgzqKvq, we obtain a class
hz,α PH pGv, Kvq, by the recipe of Section 2.4. Then:

LEMMA 2.11. Write

Kz “ K X AdpgzqK , K 1
z “ K X Adpg´1

z qK .

Also, let xαy be the image of α under H˚pKv X AdpgzqKvq
p29q
Ñ H˚pY pKzq, Sq.

Then the action of hz,α on H˚pY pK q, Sq coincides with the following composite

H˚pY pK qq
rgzs

˚

Ñ H˚pY pKzqq
Yxαy
Ñ H˚pY pKzqq Ñ H˚pY pK qq, (31)

where all cohomology is taken with S coefficients, and the arrows are
(respectively) pullback by the map Y pKzq Ñ Y pK q induced by the map
g ÞÑ ggz , cup with xαy, and pushforward for the standard map Y pKzq Ñ Y pK q.

Note that this is almost exactly the same as a usual Hecke operator; we have
just inserted the operation ofYxαy on the way. The fact that xαy is Hecke-trivial,
in the sense of Definition 2.9, is the key point that makes this operation commute
with usual Hecke operators.
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Proof. Routine but extremely tedious; see Appendix A.

REMARK. Note also the following trivial case: taking gz “ 1, we see that the
operation of ‘cup with α P H˚pKv, Sq’ always belongs to the derived Hecke
algebra.

REMARK. As an example let us write out the argument that derived Hecke
operators at different places always commute with one another. Fix places
v ‰ w, elements gv P Gv, gw P Gw, and classes αv P H˚pKv X AdpgvqKvq and
αw P H˚pKw XAdpgwqKwq. We claim that the composite of the two associated
derived Hecke operators can be described in the following way, which makes
graded commutativity clear: Push–pull along

Y pK q Ð Y pKgv X Kgwq Ñ Y pK q,

but cup in the middle with the class of αv Y αw. To verify this claim, examine
the following diagram:

Y pKgv X Kgw q

ˆgwxx &&
Y pKgv q

ˆgvzz &&

Y pKgw q

ˆgwxx $$
Y pK q Y pK q Y pK q

(32)

When we write (for example) ˆgv we mean that the map is induced by right
multiplication by gv. The composite of the derived Hecke operators is, by
definition, obtained by going along the bottom two rows. However, the middle
diagram is a fiber product square, and so the two ways of going from Y pKgvq

to Y pKgwq, via ‘push–pull’ or ‘pull–push,’ coincide. To prove the desired claim,
then, it suffices to show that the two pullbacks of the class xαvy P H˚pY pKgvqq

to H˚pY pKgv X Kgwqq—via the natural map, and via the map ˆgw – actually
coincide.

Equivalently, the classes obtained from αv, in the natural way on Y pKgv X

gwK g´1
w q and on Y pKgv X g´1

w K gwq are in fact compatible, under the map ˆgw
from one space to the other. However, these cohomology classes are obtained
from a certain covering of the spaces, obtained by adding extra level at v, and
the compatibility follows from the fact that ˆgw lifts to these coverings.
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2.12. Change of coefficients. Let us examine what happens under a change
of rings S Ñ S1. The description of Section 2.4 and the explicit action of
Section 2.10 means that there is a map of Hecke algebra Hv,S Ñ Hv,S1

compatible with the actions on H˚pY pK q, Sq Ñ H˚pY pK q, S1q. However,
this does not make quite clear that the change of rings map is an algebra
homomorphism. For completeness let us explain this now, since we want to
freely pass between Z{`n coefficients for various ns.

The tensor product bS S1 is a right exact functor from SG-modules to S1G
modules and so it can be derived to a map of derived categories. Note that this
carries projectives to projectives since HomS1Gv

pP bS S1,´q “ HomSGv
pP,´q.

This derived tensor product (let us write it as b) ‘carries SrGv{Kvs to
S1rGv{Kvs:’ if we choose a projective replacement P Ñ SrGv{Kvs the natural
map

PbS S1 ÝÑ S1rGv{Kvs

is a quasi-isomorphism. Indeed it is possible to choose P so that each term of P is
free as an S-module (see the explicit resolution after (21)). Then PbS S1 has no
cohomology in higher degree (since this complex computes the TorSpSrGv{Kvs,

S1q and the former is free) and thus it is a resolution of S1rGv{Kvs.
This yields at once a map

Hv,S ÑHv,S1,

from the Hecke algebra with S coefficients, to the same with S1 coefficients.
Explicitly, the left-hand side is represented by the cohomology of the differential
graded algebra HomSGpP,Pq, and this dga maps to HomS1Gv

pPbS S1,PbS S1q,
whose cohomology computes Hv,S1 . This is the desired algebra map ‘change of
coefficients.’

Consider now the obvious map

ι : lim
ÝÑ
Uv

C˚pUvq Ñ lim
ÝÑ
Uv

C˚pUv; S1q,

where the notation is as in (28), and the right-hand side is defined the same way
but with S1 coefficients. This induces

ι1 : HomSG

´

P, lim
ÝÑ
Uv

C˚pUvq

¯

Ñ HomS1G

´

PbS S1,
´

lim
ÝÑ
Uv

C˚pUv; S1q
¯¯

wherein we compose with ι and extend by S-linearity. There are compatible
actions of Hv,S and Hv,S1 on the left and right sides. On the other hand, the map
ι1 induces on cohomology the natural map H˚pY pK q, Sq Ñ H˚pY pK q, S1q.

To summarize: the actions of Hv,S on H˚pY pK q, Sq and Hv,S1 on H˚pY pK q,
S1q are compatible, with respect to the natural maps Hv,S Ñ Hv,S1 and
H˚pY pK q, Sq Ñ H˚pY pK q, S1q.
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2.13. Passage from mod `n to `-adic; the global derived Hecke algebra.
We now write out in grotesque detail certain minor details of the passage from
mod `n to `-adic coefficients, which will be used without comment in our later
proofs. This section should probably be skipped by the reader and consulted only
as needed.

In what follows, we describe the straightforward version of the global derived
Hecke algebra using all good primes for K that do not divide `; here ‘good’ is
defined after (19). When we refer to the global derived Hecke algebra without
any further remark, we are always referring to this version. We remark, after
the construction, how to make a definition using a restricted set of primes.

The action of the derived Hecke algebra gives an algebra of endomorphisms
rTn Ă EndpH˚pY pK q,Z{`nqq, namely the algebra of endomorphisms generated
by all the derived Hecke algebras Hv,Z{`n where v varies over good primes of K
that are not above `.

Now we have

H˚pY pK q,Z`q “ lim
ÐÝ

H˚pY pK q,Z{`nq

and we define the global derived algebra to be

T̃ Ă EndpH˚pY pK q,Z`qq (33)

to be those endomorphisms of the form lim
ÐÝ

tn , for some compatible system tn P

T̃n , that is, tn ‘reduces to tm’ for n ą m in the sense that the following diagram
should commute:

H˚pY pK q,Z{`nq
tn //

��

H˚pY pK q,Z{`nq

��
H˚pY pK q,Z{`mq

tm // H˚pY pK q,Z{`mq.

(34)

Let T̃˚n be the systems of elements ptn, tn´1, . . . , t1q, where tr P rTr for r ď n
are all compatible in the sense that the above diagram should commute for each
tr , tr 1 . In particular, T̃˚n acts on Z{`r -valued cohomology for each r ď n. The
inverse limit lim

ÐÝ
T̃˚n acts on H˚pY pK q,Z`q, and its image in EndH˚pY pK q,Z`q

is precisely the global derived Hecke algebra T̃.
Fix m. For n ě m consider the map

T̃˚n Ñ T̃˚m .

For increasing n and fixed m, the image of this map gives a decreasing sequence
of subsets of the finite set T̃˚m . This sequence must stabilize. Call this stabilization
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T̃8,m ; it is a subring of rT˚m and thus acts by endomorphisms of H˚pY pK q,Z{`mq;
also, there exists Nm such that T̃8,m coincides with the image of T̃˚Nm

in T̃˚m .
The natural map

lim
ÐÝ

T̃˚n Ñ T̃8,m (35)

is onto, since we are dealing with an inverse system of finite sets.
Let Hv,Z{`n be the local derived Hecke algebra at v with Z{`n-coefficients. We

show later (Section 3.4) that, if `n divides qv´1, then the natural map Hv,Z{`n Ñ

Hv,Z{`m is surjective. It follows that if qv´1 is divisible by `Nm , then the image of
T̃˚Nm

acting on H˚pY pK q,Z{`mq contains the image of Hv,Z{`m . Therefore, the
image of T̃8,m acting on H˚pY pK q,Z{`mq contains the image of Hv,Z{`m .

In practice, we establish ‘bigness’ results of the following type:

(*) For all m ď n, there exists sets of primes Qn “ tq1, . . . , qru

such that `n divides qi ´ 1 and the image of biHqi ,Z{`m acting
on H˚pY pK q,Z{`mq is ‘large:’ H˚pY pK q,Z{`mq is generated over
biHqi ,Z{`m by elements of some fixed degree D.

When we prove such results, it will not be for the full cohomology of Y pK q but
rather for its localization at some ideal of the Hecke algebra, but we suppress
that for the current discussion.

Let us prove that, under this assumption (*), H˚pY pK q,Z`q is generated over
T̃ by elements of degree D. The assumption implies (by the previous discussion,
with n “ Nm) that H˚pY pK q,Z{`mq is generated over T̃8,m by elements of
degree D; by (35), it is also generated over lim

ÐÝ
T̃˚n by elements of degree D.

That is to say,
plim
ÐÝ

T̃˚n q b H DpY pK q,Z{`mq

surjects onto H˚pY pK q,Z{`mq for every m. By a compactness argument the
same assertion holds with Z`-coefficients.

More generally, the same type of argument allows us to show that various
types of ‘largeness’ can be passed from Z{`m coefficients to Z`.

2.14. Restricting places and the strict global derived Hecke algebra. We
can restrict the primes and the powers of ` used in the above construction. It is
convenient to index these restrictions by a function

V : primes ÝÑ t0, 1, 2, . . . , u Y t8u

where primes v with V pvq “ 0 will be not used at all in the definition.
In the above construction, replace rTn by the algebra generated by Hv,Z{`n

where n ď V pvq. Proceeding as above, then, we obtain a restricted global Hecke
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algebra T̃pV q acting on cohomology with Z` coefficients. Informally, each prime
v can be used at most at torsion level Z{`V pvq.

For example, taking

V0pvq “

#

0, v not good;

largest power of ` dividing qv ´ 1, else,
(36)

the resulting algebra T̃pV0q has the advantage that it will be graded-commutative
by the results of Section 3, at least if ` does not divide the order of the Weyl
group.

It will be sometimes convenient to enlarge this by the usual Hecke algebra,
that is, defining the ‘strict’ global derived Hecke algebra

T̃1 :“ algebra generated by T̃pV0q and all underived
Hecke operators at good places prime to `.

However, by default, when we write T̃, we mean the ‘full’ version using V “
8 for all good primes not above `, and V “ 0 at all other primes. Thus we have
inclusions of algebras, each inside endomorphisms of cohomology:

usual (underived) Hecke algebra T Ă T̃1 Ă T̃.

The advantage of T̃1 is that it is clearly graded-commutative.
Thus, for example, if m is a maximal ideal of T, the strict global derived

Hecke algebra T̃1 induces an algebra of endomorphisms of the m-completion
H˚pY pK q,Z`qm:

H˚pY pK q,Z`qm b T̃1 ÝÑ H˚pY pK q,Z`qm.

While a priori we do not know that the full T̃ preserves H˚pY pK q,Z`qm, this is
true under a mild additional assumption: For each good place w not equal to `,
let Tpwq be the prime-to-w usual Hecke algebra, and mpwq the induced maximal
ideal. Suppose that the natural map

H˚pY pK q,Z`qmpwq Ñ H˚pY pK q,Z`qm (37)

is an isomorphism. This is true, for example, if there exists Galois representations
associated to cohomology classes (by the argument of [21, Lemma 6.20]). In this
case, the local derived Hecke algebra at w clearly preserves the left-hand side,
and so also preserves the right-hand side. Since this is true for all good w not
dividing `, the full T̃ also preserves the m-completion of cohomology.
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3. Torus localization and Satake isomorphism

Our main goal here is to prove a version of the Satake isomorphism that applies
to the derived Hecke algebra. Namely, take m “ `r a prime power. Suppose q ” 1
modulo `r . We show (see (40) for the precise statement)

derived Hecke algebra for split q-adic group with Z{`r -coefficients

– pderived Hecke algebra for maximal torus with Z{`r coefficientsqW

where the W superscript means Weyl-fixed, and we also require that ` does not
divide the order of W .

For example, if q ” 1 modulo `, the derived Hecke algebra of PGL2pQqq with
coefficients in Z{` is isomorphic to

Z{`rx0, x´1
0 , y1, z2s

Z{2

where x0, y1, z2 have (respectively) degree 0, 1, 2, and the action of Z{2 switches
x˘1

0 and negates y1, z2.
A consequence of our results is that (under our assumptions on q,m) the

derived Hecke algebra is graded-commutative. We do not know if this is valid
without any assumption on q and the coefficient ring S. Recall, however, that
q ” 1 in S is precisely the case where the Hecke algebra is largest, by the
discussion of Section 2.4, and understanding this case will be enough for our
global analysis.

3.1. It is a curious fact that, in characteristic dividing qv ´ 1, the Iwahori–
Hecke algebra of a split Fv-group is isomorphic to the group algebra of its
affine Weyl group. A related interesting phenomenon is that, under the same
assumptions, the Satake isomorphism

Hecke algebra ÝÑ Hecke algebra of torus

is given simply by restriction (!)
These points can be explained by ‘torus localization,’ as we now explain.

Using that method we derive our Satake isomorphism below. Of course this is a
little bit cheap, but it turns out to be exactly what we need anyway.

I am very grateful to David Treumann for conversations about this material.
In particular, I learned about localization in the context of local geometric
Langlands from his paper Smith theory and geometric Hecke algebras [34].
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3.2. In this section and the next, G will be a split group over the
nonarchimedean local field Fv. The coefficient ring for all our Hecke algebras
will be taken to be S “ Z{`r , for a prime ` and r ě 1. We shall suppose that
`r divides pqv ´ 1q, where qv is the cardinality of the residue field Fv. We also
assume that ` is relatively prime to the order of the Weyl group of G.

We fix other notations as follows: Let G be a split group over Ov whose
generic fiber is identified with G. Let Kv “ GpOvq, a maximal compact subgroup
of Gv “ GpFvq. Let A be a maximal torus in G, and B a Borel subgroup of G
containing A; we suppose them to extend to a torus A and Borel B inside G.
We write Av, Bv for the Fv-points of A,B. We shall use the notation ApFvq˝
for the maximal compact subgroup of ApFvq, and similar notation whenever the
maximal compact subgroup is unique.

Let W be the Weyl group for A. We write X˚ “ X˚pAq for the cocharacter
group of A. We identify X˚ with Av{Av X Kv Ă Gv{Kv by means of the map

χ P X˚ “ HompGm,Aq ÝÑ χp$vq, (38)

with $v a uniformizer.
We write for short T “ ApFvq. The reduction map Av X Kv Ñ T splits

uniquely, and so we obtain a ‘Teichmüller’ lift

T ãÑ Av X Kv. (39)

This induces a cohomology isomorphism, with Z{`r coefficients.
We have a Cartan decomposition

Gv “ Kv ¨ Av ¨ Kv.

The Av component of this decomposition is unique up to the action of the Weyl
group W .

THEOREM 3.3. Let notations be as above; in particular, the coefficient ring is
always S “ Z{`r , where `r divides qv´ 1, and ` does not divide the order of the
Weyl group.

Then restriction (in the model of Section 2.3) defines an isomorphism

derived Hecke algebra for pGv, Kvq
„
ÝÑ derived Hecke algebra for pAv, Av X Kvq

W
. (40)

Let us explicate what we mean by ‘restriction.’ As per Section 2.3, an element
h of the left-hand side is an association:

px, yq P pGv{Kvq
2 ù hpx, yq P H˚pGxy, Sq,
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and its image h1 on the right-hand side is obtained by restricting to Av{pAv X
Kvq ãÑ Gv{Kv and pulling back cohomology classes under the inclusion Axy ãÑ

Gxy . The element h1 is clearly Av-invariant, and it is also W -invariant:

rws˚h1pwx, wyq “ hpx, yq

because of the G-invariance of h.
Because Axy “ Av X Kv for each x, y, and the (Teichmüller) inclusion

(39) T ãÑ Av X Kv induces a cohomology isomorphism, we can regard h1

as a function X˚ ˆ X˚ ÝÑ H˚pT, Sq. We often regard h1 as such without
explicit comment. The multiplication in this model is usual convolution in the X˚
variable, together with multiplication in H˚pT, Sq. We may therefore identify
the right-hand side of (40) with

pSrX˚s b H˚pT, SqqW
, (41)

just as in (25), that is, restrict to X˚ˆt0u and identify functions on X˚ with the
group algebra in the obvious way.

3.4. A useful corollary to this result is the following (although even easier, as
it does not use the algebra structure): The induced map

derived Hecke algebra over Z{`n Ñ derived Hecke algebra over Z{`m

is a surjection for n ą m, under our assumption that `n divides qv ´ 1. (We used
this in the discussion of Section 2.13).

In fact, we are reduced to checking the same fact when C is a cyclic group of
order divisible by `n , that is,

H˚pC,Z{`nq Ñ H˚pC,Z{`mq

is surjective. This follows from a straightforward computation.

3.5. Some useful Lemmas.

LEMMA 3.6. Any nontrivial root α of A on G is nontrivial on the `-Sylow of
Av X Kv. In particular, α induces a nontrivial character ApFvq Ñ Fˆv .

Proof. This is just a matter of checking the residue characteristic is forced to be
big enough: if the claim is not true, the root α would be divisible by `r in X˚pAq;
but roots are divisible at most by 2 because xα, α_y “ 2, and ` ą 2 because it is
prime to the order of the Weyl group.
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LEMMA 3.7. Use notation as above; in particular, Fv is a finite field of
cardinality qv ” 1 modulo `r , and the order of the Weyl group is not divisible
by `.

Then the restriction map from the cohomology H˚pGpFvq,Z{`rq to Weyl-fixed
cohomology of the torus H˚pApFvq,Z{`rqW is an isomorphism.

Proof. Write for short (and just for this proof) G, A, B for the Fv-points of G,
A,B.

Consider the composite of restrictions

H˚pG,Z{`rq Ñ H˚pB,Z{`rq
„
Ñ H˚pA,Z{`rq. (42)

The second map is an isomorphism and its inverse is specified by corestriction.
Therefore we can transport the W -action on H˚pAq to a W -action on
H˚pB,Z{`rq; explicitly the action of w is

CoresB
A ˝ rwsA ˝ ResB

A, (43)

where rwsA is pullback of cohomology classes under Adpw´1q : A Ñ A.
We now show that ResG

B ˝ CoresG
B “

ř

wPW w, where the w-action on H˚pBq
is that just defined. Since CoresG

B ResG
B “ |W |, which is invertible in Z{`r , we

see that ResG
B is injective and CoresG

B is surjective; so ResG
B is an isomorphism

onto the W -invariants on H˚pB,Z{`rq, which implies the Lemma.
By the usual formula [6, Proposition 9.5], using the Weyl group W as a system

of representatives for double cosets, the composite equals
ÿ

wPW

CoresB
wBw´1XB ¨ Adpw´1q˚ ¨ ResB

BXw´1 Bw.

But w´1 BwX B contains A, and rwBw´1 X B : As “ 1 modulo `r . So we can
rewrite the w-term as

CoresB
wBw´1XB ¨ Adpw´1q˚ ¨ CoresBXw´1 Bw

A ResB
A “ CoresB

A ¨ rwsA ¨ ResB
A

which is exactly the W -action on H˚pBq, by (43).

LEMMA 3.8. Let G1,G2 be finite groups. Suppose that G1 ãÑ G1 ˆ G2 is the
natural inclusion, and M is a module for G1 ˆ G2, with trivial G2 action, and
whose order #M is killed by the order #G2 of G2. Then the corestriction map
H˚pG1,Mq Ñ H˚pG1 ˆ G2,Mq is zero.

Proof. Indeed, the composite H˚pG1 ˆ G2q
Res
Ñ H˚pG1q

Cores
Ñ H˚pG1 ˆ G2q is

multiplication by the order of G2, and is therefore zero with M coefficients; but
the first Res is surjective because G1 Ñ G1 ˆ G2 is split.
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LEMMA 3.9. Let Γ Ă Gv be a finite `-subgroup. Let S be the double centralizer
of Γ , considered as an algebraic Fv-subgroup of G. Then:

(a) S has component group of prime-to-` order,

(b) the maximal compact subgroup SpFvq˝ of its Fv-points fixes every point of
Gv{Kv that is fixed by Γ .

Proof. Let x P Gv{Kv be fixed by Γ . Conjugating Γ by Gv we may suppose
that x “ Kv, the identity coset in Gv{Kv.

Now, the quotient of the orders of G and A over the finite field Fv is congruent
to |W | modulo `, because of our assumption ` divides q ´ 1. Therefore there is
an `-Sylow of Kv contained in Av X Kv. Thus, further conjugating Γ by Kv we
can further assume that Γ Ă ApFvq X Kv. The centralizer ZpΓ q of Γ is then a
subgroup containing A. The double centralizer S is thus contained in A and, of
course, it contains Γ .

Because S Ă A, the maximal compact subgroup of SpFvq is contained in the
maximal compact ApFvq X Kv of A; the latter fixes x . This proves (b).

To verify the assertion about the component group of S, we first verify that
ZpΓ q is connected. Note that S is contained in ZpΓ q by the analysis above, so it
is in fact the center of ZpΓ q. Then we are reduced to the following assertion: for
any reductive group Z, the component group of the center of Z is only divisible
by primes dividing the order of the Weyl group. Replacing Z by its quotient by
the connected center, we can check the same assertion for Z semisimple; so it is
enough to check for Z simply connected semisimple. There it is obvious case by
case.

To see that Z “ ZpΓ q is connected, we can reason as follows: A is a maximal
split torus within Z, so any element of Z{Z0 has a representative in Z that belongs
to the normalizer of A. Here Z0 denotes the connected component. So it is
enough to show that any Fv-point n in the normalizer of A that belongs to Z
actually belongs to Z0. Let w P AutpAq be the element of the Weyl group of A
corresponding to such an n. Fix γ P Γ . Since n centralizes Γ , we see that w
fixes γ . Write N for the `-part of q ´ 1. So γ P ArN s » X˚ b µN ; fixing a
primitive N th root, we can identify ArN s with X˚{N . Since the order of w is
relatively prime to `, we see—by taking invariants in X˚Ñ X˚Ñ X˚{N—that
γ actually lies in the image of some w-fixed character Gm Ñ A.

Applying this reasoning for each γ P Γ , we see that w actually centralizes a
subtorus of A containing Γ . But the centralizer of that torus is a connected group,
thus contained in Z0. We conclude that Z is connected, as we claimed.
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LEMMA 3.10. Suppose z P Gv{Kv does not belong to the image of X˚ (where
the map X˚ãÑGv{Kv was defined in (38)).

Let Γ be an `-Sylow of Av X Kv. Let Γz be the stabilizer of z in Γ .
Then the corestriction map H˚pΓzq Ñ H˚pΓ q is zero with Z{`r coefficients.

Proof. Note that the centralizer and so also the double centralizer of Γ is simply
A. (Any root of A is nontrivial on the `-Sylow of AvXKv, by Lemma 3.6, so the
connected centralizer is A; the centralizer cannot be larger than A because any
element of the Weyl group acts nontrivially on Γ » X˚pAq{`r .)

Let S be the double centralizer of Γz . Since Γz Ă Γ we also have S Ă A.
Let S0 be the identity component of S; it is a split torus. Because ((a) of

Section 3.9) the component group of S is prime-to-`, we see that Γz lies inside
S0, and thus inside the maximal compact subgroup of S0

pFvq. Let Γ ˚z be the
`-Sylow of S0

pFvq. Thus Γz Ă Γ ˚z .
Choose a complement S1 Ă A to S0, that is, a subtorus with the property that

S0
ˆS1Ñ A is an isomorphism. Now Γ Ă ApFvq˝ is an `-Sylow by computation

of orders, so therefore
Γ “ Γ ˚z ˆ Γ

1

where Γ 1 is the `-Sylow of S1pFvq˝.
If S1 were trivial, then S0

“ A; in that case, by (b) of Section 3.9, z lies in the
fixed set of ApFvq˝, which is none other than

X˚ Ă Gv{Kv,

which contradicts our assumption. (To see this, let N be the unipotent radical of
the Borel B Ą A. If ApFvq˝x Kv “ x Kv, we have x´1ApFvq˝x Ă Kv. By using
the Iwasawa decomposition, it is enough to check that if this inclusion holds for
some x “ n P NpFvq, then in fact n P Kv. In that case we have n´1an P Kv

for all a P ApFvq˝, and in particular, n´1pAdpaqnq P Kv for all such a. Choose
a generic positive element λ P X˚pAq, giving an enumeration of the positive
roots α1, . . . , αs so that xαi , λy is increasing. For each such root we have a
root subspace ui : Ga Ñ N , and the product map uspxsqus´1pxs´1q . . . u1px1q,
from Gs

a Ñ N, extends to an isomorphism of schemes over Ov. In this ordering,
the commutator rui , u j s involves only uk with k ą maxpi, jq. Let x1 be the α1

coordinate of n. We have pα1paq ´ 1qx1 P Ov for all a P ApFvq˝, which implies
x1 P Ov, cf. second paragraph of the proof of Lemma 3.10. Adjust n on the
right by u1p´x1q to arrange that x1 is trivial. Now proceed the same way for the
α2, α3, . . . coordinate.)

Therefore, S1 is nontrivial. We see at once that the order of Γ 1 is divisible by
the `-part of q ´ 1.
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Thus, by Lemma 3.8, the corestriction from Γ ˚z to Γ is zero with Z{`r

coefficients. The corestriction from Γz to Γ factors through this one, so it is
zero too.

3.11. Proof of Theorem 3.3. Throughout the proof, as in the statement of
the theorem, we take coefficients in S “ Z{`r . Accordingly, we drop explicit
mention of the coefficients from the notation.

Recall the explicit description of the Satake map, using the identification (41)
of the toral derived Hecke algebra:

Given an assignment px, yq P Gv{Kv ÞÑ hpx, yq P H˚pGxyq, we associate to
it the function X˚ ˆ X˚ ÝÑ H˚pT q, given by

h1 : px, yq P pAv{Av X Kvq
2 ÞÑ ResGxy

T hpx, yq P H˚pT q.

We must show that the rule h ÞÑ h1 gives an isomorphism

derived Hecke algebra for pGv, Kvq

» derived Hecke algebra for pAv, Av X Kvq
W
. (44)

We first verify that h ÞÑ h1 is bijective. Each element of the derived Hecke
algebra for pGv, Kvq is uniquely of the form

ř

ha,α where a P X`˚ and α P
H˚pKvXAdpaqKvq, with notation as in Section 2.4. The intersection of KvaKv

with X˚ is precisely given by the W -orbit of a by uniqueness of the Cartan
decomposition. So the map h ÞÑ h1 sends ha,α to the function h1a,α on X˚ ˆ X˚
characterized by W -invariance and:

(i) hz,αpx, eq “ 0 unless x P Wa;

(ii) hz,α sends pa, eq to the image of α P H˚pKv X AdpaqKvq Ñ H˚pT q.

It is enough, then, to show that each element of derived Hecke algebra for
pAv, Av X Kvq

W is uniquely a sum of such elements h1a,α. This comes down
to the fact that the map

H˚pKv X AdpaqKvq ÝÑ H˚pT qWa (45)

is an isomorphism, where Wa is the stabilizer of a in the Weyl group. But, if we
write M for the Levi subgroup of G that centralizes a, then Kv X AdpaqKv is,
modulo a pro-p-group, the k-points Mpkq, and Wa is identified with the Weyl
group of M . So (45) follows from Lemma 3.7.

To show that h ÞÑ h1 preserves multiplication, we compute ph1h2q
1px, zq; it

equals the restriction, from Gxz to T , of
ÿ

OĂGv{Kv

ÿ

yPO

h1px, yq Y h2py, zq,
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the sum being grouped, as before, over orbits O of Gxz on such y. Recall that
the inner sum is understood by computing the cup product h1px, yq Y h2py, zq
for a single y P O , and then corestricting from Gxyz to Gxz . Therefore,

ph1h2q
1px, zq “

ÿ

O

ResGxz
T CoresGxz

Gxyz
h1px, yq Y h2py, zq

loooooooooooooooooooomoooooooooooooooooooon

:“HpOq

and as usual we can express HpOq a sum over T -orbits on Gxz{Gxyz , that is to
say, as a sum of T orbits O 1 Ă O:

HpOq “
ÿ

O1

CoresT
Ty1

ResGxyz
Ty1
p. . . q (46)

where we have chosen a representative y1 P O 1 for each T -orbit O 1 upon O;
and the injection Ty1 Ñ Gxyz that defines the restriction map is induced by an
element of Gxz conjugating y1 to y.

We saw in Lemma 3.10 that the corestriction map vanishes unless y1 actually
belongs to X˚. (Indeed, writing Γ for the unique `-Sylow of the abelian group
T , then Γy1 is an `-Sylow of Ty1 , and the corestriction map induced by Γy1 Ñ Ty1

is surjective on cohomology.) In the case when y1 P X˚, we have Ty1 “ T in
which case O 1 “ ty1u. We conclude that

HpOq “
ÿ

y1POXX˚

ResGxyz
T ph1px, yq Y h2py, zqq

and finally adding up all O we get

ph1h2q
1px, zq “

ÿ

yPX˚

ResGxyz
T ph1px, yq Y h2py, zqq

“
ÿ

yPX˚

ResGxy
T h1px, yq Y ResG yz

T h2py, zq “ h11h12px, zq.

This concludes the proof of the theorem.

4. Iwahori–Hecke algebra

In this section, we collect a few important facts about Iwahori–Hecke algebras.
In particular, we discuss the structure of the Iwahori–Hecke algebra at a Taylor–
Wiles prime (Section 4.2), the relation between modules over the (usual, that
is, nonderived) Iwahori–Hecke algebra and modules over the (usual) spherical
Hecke algebras (Section 4.4) and finally briefly discuss a localization result for
the derived Iwahori–Hecke algebra (Section 4.6).
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These results are presumably well known to experts but they help us polish
our presentation of the Taylor–Wiles method—indeed similar ideas appear in
the paper of Khare and Thorne [21].

4.1. We continue with the notation of the prior section (Section 3.2). In
particular, Gv is the Fv-points of a reductive split group.

In this section, we also make use of the affine Weyl group W̃ attached to G;
by definition this is the semidirect product X˚¸W where X˚ is the cocharacter
group of the maximal torus A, and W is the Weyl group of A.

Let S be the ring Z{`r , for a prime `; this will be the coefficient ring for all our
Hecke algebras and derived Hecke algebras. We suppose that qv ” 1 modulo `r

and that ` does not divide the order of the Weyl group.
Let Iv be an Iwahori subgroup of Gv contained inside Kv and in good position

with reference to A. By this we mean that Iv stabilizes a chamber of the building
that lies inside the apartment defined by A. An explicit choice of such an Iv can
be obtained from an integral model B of a Borel subgroup containing A:

Iv “ preimage of BpFvq inside GpOvq,

and the other such Ivs are W -conjugate to this one.
It will be helpful to keep in mind that the index rKv : Ivs ” |W | modulo `r ,

in particular, this index is invertible in S. Take the Haar measure on Gv which
assigns Iv mass 1.

4.2. The structure of the Iwahori algebra. Let HI be the Hecke algebra for
Iv. We understand this to be defined as

HI :“ HomSGv
pSrGv{Ivs, SrGv{Ivsq.

This is identified with the set of S-valued and finitely supported functions
f on IvzGv{Iv. Namely, identifying such functions with measures (multiplying
by the Haar measure on Gv, thought of as valued in S), each such function f
acts by right convolution on SrGv{Ivs, and therefore defines an element of HI .
Therefore, in the text, we often produce elements of HI by describing the

associated bi-invariant function.
Warning: the resulting identification

HI » pfunctions on IvzGv{Ivq (47)

is an anti-isomorphism of algebras if we equip the right-hand side with the
convolution product. When we multiply elements of HI , we always understand
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the multiplication to be that of HI , not the multiplication induced from the right-
hand side of (47).

We similarly define

HK “ HomSGv
pSrGv{Kvs, SrGv{Kvsq,

HI K “ HomSGv
pSrGv{Kvs, SrGv{Ivsq,

HK I “ HomSGv
pSrGv{Ivs, SrGv{Kvsq.

If V is any G-representation, the algebra HomSGv
pSrGv{Kvs, SrGv{Kvsq acts

on the right on V Kv “ HomGv
pSrGv{Kvs, V q. Similarly, elements HI K induces

endomorphisms V Iv Ñ V Kv . Indeed a useful mnemonic for the subscript ‘I K ’
is that, acting as explained above, HI K goes from I -invariants to K -invariants,
and so on. Also HI K ,HK I are bimodules for HK and HI .

As before, each of these can be identified with a space of functions. Thus, for
example,

HI K » functions on KvzGv{Iv, (48)

and similarly for HI K ,HK . As before, these identifications arise from the right
convolution action of the functions on SrGv{Kvs or SrGv{Ivs.

Note that, somewhat contrary to what the notation might suggest, an element
of HI K considered as a function is left Kv-invariant and right Iv-invariant.
Again, we use these identifications such as (48) without comment to produce
elements inside the various Hecke algebras. The same warning applies here: the
identifications do not preserve multiplication; the order must be switched, just
as (47) is an antiautomorphism. To avoid confusion here, our convention is that
products are always to be understood in the sense of the HI ,HK , and so on, and
not via convolution of functions.

It is useful later to define

eK “
1Kv

measurepKvq
. (49)

Considered as an element of HI it is idempotent. When considered as an element
of HI K , it carries the identity coset of SrGv{Kvs to

ř

kPK{I k Iv P SrGv{Ivs, and
when considered as an element of HK I , carries the identity coset of SrGv{Ivs to

1
rKv :Ivs

eKv P SrGv{Kvs. In particular, eK P HI K induces the corestriction map
V Iv Ñ V Kv , and eK P HK I induces the map V Kv Ñ V Iv which is the natural
inclusion divided by the index rKv : Ivs.

Because q is congruent to 1 modulo `r , the structure of HI is very simple. It is
isomorphic simply to the group algebra of the affine Weyl group:

HI » SrW̃ s. (50)
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An explicit anti-isomorphism sends the characteristic function of Ivw Iv to the
element w, for w P W̃ ; in particular, eK is sent to 1

|W |

ř

wPW w, the sum over the
usual Weyl group.

This follows from the standard presentation of the Iwahori–Hecke algebra (for
a reference with complex coefficients, see [12, Theorem 4.2]); the key point is
that the relation pTs ´ qqpTs ` 1q simplifies to T 2

s “ 1 when q “ 1 in the
coefficients. Actually it is also possible to verify HI is isomorphic to SrW̃ s by
using torus localization, although we omit the details.

4.3. Central element and discriminant. Every element of SrX˚sW is central
in SrW̃ s. Therefore, (50) yields a natural map (indeed an isomorphism) from
Z :“ SrX˚sW to the center of HI .

Then HI ,HK have structures of Z -algebra and HI K ,HK I have structure of Z -
module, all of which are compatible in the obvious way.

For example, the ring homomorphism Z Ñ HK is given by z ÞÑ eK zeK “ eK z.
In fact this is a ring isomorphism, as follows easily from the explicit presentation.
Then for example, HI K has two structures of Z -module, one via Z Ñ HI and
one via Z Ñ HK , and the ‘compatibility’ is that these two structures coincide.

4.4. Iwahori–Hecke algebra. The next statement asserts that the bimodules
HK I ,HI K give equivalences of categories, at least over the open subset of
SpecpZq where the ‘W -covering’ Spec SrX˚s Ñ Spec SrX˚sW is étale. (I am
grateful to Peter Schneider for correcting an error. In an earlier version of this
paper, this Lemma was formulated over a larger open subset of Spec Z , but one
step in the proof was not correct in this greater generality.)

LEMMA 4.5. Let m be a maximal ideal of Z over which the map Z Ñ SrX˚s is
étale, and write Z 1 for the localization of Z at m.

Write H1K “ HK bZ Z 1 and define similarly H1I ,H1I K ,H1K I . Then the bimodules
H1I K and H1K I induce inverse equivalences of categories between H1K modules
and H1I modules.

This is probably well known in characteristic zero at least.

Proof. (Sketch). Let us show, for example, that the natural map induced by
multiplication

HI K bHK HK I Ñ HI (51)

yields an isomorphism after localization at m. In what follows, we denote such
localization with a prime: SrX˚s1 “ SrX˚s bZ Z 1.
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Note that HI is free of rank w as a right module over SrX˚s (clear from (50))
and, being finite étale, SrX˚s1 is free as a right module over Z 1 of rank w.

So H1I is free of rank w2 over Z 1. Similarly, H1I K and H1K I are free of rank w
and H1K is locally free of rank 1 as a Z 1-module. The obstruction to (51) being an
isomorphism then given by the vanishing of a suitable determinant; it is enough,
therefore, to show that (51) is onto after reducing modulo the maximal ideal m1

of Z 1.
We can extend the natural homomorphism Z 1 Ñ Z 1{m1 to a homomorphism

χ : SrX˚s1 Ñ k, with k an algebraically closed field containing the finite field
Z 1{m1. Note that k has characteristic `, and that χ is not fixed by any element
of W .

Now a homomorphism from X˚ Ñ kˆ is the same as an unramified k-valued
character χ of the maximal torus Av; so we may identify χ to a character of Av.
We form the corresponding induced representation V “ Vχ . Its elements consist
of locally constant k-valued functions on Gv that transform according to χ on a
Borel subgroup containing Av. Now V Iv is a k-vector space of rank w, and V Kv

is a k-vector space of rank 1, and Z acts on these spaces via the character χ (as
follows, for example, from (53) below).

We now show that the natural maps

Hab bZ k Ñ HompV a, V bq

are isomorphisms for a and b belonging to tI, Ku; that implies the desired claim,
that is to say, that (51) is onto after reducing modulo m.

Because the two sides have the same rank it is enough to check surjectivity. In
fact, it is enough to show surjectivity in the case of HI I and to show that all the
other maps are nonzero (because then, for example, the image for HI K would
be a nonzero subspace of HompV Iv , V Kvq which is stable under HompV Iv , V Ivq).
The other maps are clearly nonzero: the element eK induces a nonzero map in
each of the cases I K , K I, K K . So we are reduced to seeing that

HI � HompV Iv , V Ivq. (52)

But there is a standard basis for V Iv indexed by the Weyl group: vw pw P W q,
whose restriction to K is the characteristic function of the Bruhat cell indexed by
w. The group algebra of W , inside HI , acts by permuting the elements vw. Also
the element λ P X˚, considered again inside HI , acts by

λ ¨ vw “ xwχ, λyvw. (53)

In other words, as a representation of W̃ , this is the representation induced
from the generic character χ , and so clearly irreducible. The surjectivity of (52)
follows.
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4.6. Localization for the derived Iwahori–Hecke algebra. It will later on
be helpful to make use of localization for the derived Iwahori–Hecke algebra.

We define the derived Iwahori–Hecke algebra as per the recipe of Section 2,
that is,

HI :“ Ext˚SGv
pSrGv{Ivs, SrGv{Ivsq.

As before this is isomorphic to the algebra of functions h that associate to
px, yq P Gv{Iv ˆ Gv{Iv a class hpx, yq P H˚pGxy, Sq, with the product as
described in Section 2.3. In a similar way, we get derived versions HI K ,HK I

of the bimodules HK I ,HI K defined earlier.
Now, we can consider ‘restriction to W̃ ,’ that is,

h1 PHI I ÝÑ h11 P functions W̃ ˆ W̃ Ñ H˚pT, Sq (54)

where T is as in Section 3.2 and we identify w P W̃ with w I P Gv{Iv; and

h2 PHI K ÝÑ h12 P functions W̃ ˆ X˚ Ñ H˚pT, Sq (55)

where here we identify x P X˚ with the associated coset x Kv; and we used the
fact that T stabilizes pointwise both W̃ ¨ Iv and X˚ ¨ Kv to restrict cohomology
classes to T . Finally we have a similar map for HK I .

Note that the right-hand side of (54) has an algebra structure, at least restricting
to functions supported on finitely many W̃ -orbits, by means of the formula
H1 H2px, yq “

ř

zPW̃ H1px, zq Y H2pz, yq (where all of x, y, z all belong to W̃ ).
This algebra acts on the right-hand side of (55), by means of the same formula,
but H2 now belongs to the right-hand side of (55), and therefore y is now taken
to belong to X˚.

LEMMA 4.7. Under our current notation and assumptions, (see Section 3.2), the
map (54) is an algebra morphism. Similarly, the map (55) is compatible with the
map (54) and the product HI I ˆHI K ÑHI K ; similarly for HK I .

Proof. We want to show that (where h1, h2 PHI I )

Resph1h2q “ h11h12,

where Res means to restrict all Gv{Iv arguments to W̃ and restrict cohomology
classes to T ; we also want similar statements for the HI I -action on HK I and
HI K .

By precisely the same argument as in Section 3.11, we are reduced to the
following claim:
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Claim: Let y1 belong to either Gv{Kv or Gv{Iv. Let Γ be an `-Sylow
of AvXKv. Let Γy1 be the stabilizer of y1 in Γ . Then the corestriction
H˚pΓy1, Sq Ñ H˚pΓ, Sq vanishes, unless y1 P X˚ Ă Gv{Kv or
y1 P W̃ Ă Gv{Iv.

We repeat the reasoning of Lemma 3.10: let S be the algebraic double
centralizer of Γy1 . As before, Γy1 Ă Γ gives S Ă A. Let S0 be the identity
component of S. By Lemma 3.9, the component group of S is prime-to-`.
Therefore, Γy1 lies inside S0. Let Γ ˚y1 Ă S0

pFvq˝ be an `-Sylow of the maximal
compact subgroup. Thus Γy1 Ă Γ ˚y1 .

Choose a complement S1 Ă A to S0, that is, a subtorus with the property that
S0
ˆ S1 Ñ A is an isomorphism. Then Γ ˚y1 Ă S0

pFvq˝ is an `-Sylow, and Γ Ă
ApFvq˝ is an `-Sylow. Therefore

Γ “ Γ ˚y1 ˆ Γ
1

where Γ 1 is the `-Sylow of S1pFvq˝.
If S1 were trivial, then S0

“ A. In that case y1 lies in the fixed set of ApFvq˝. In
the case where y1 P Gv{Kv this was proved in Section 3.9. However, the proof
of this assertion also applies word for word to establish the same assertion in the
case y1 P Gv{Iv.

The fixed set of ApFvq˝ on Gv{Kv is X˚, as before, and the fixed set of ApFvq˝

on Gv{Iv is precisely W̃ Iv Ă Gv{Iv. (Here is a proof of the latter claim: if
gIv is fixed, then gKv P X˚Kv, and modifying g by an element of ApFvq, we
can suppose g P Kv. We are reduced to computing the ApFvq˝-fixed points on
Kv{Iv, which amount to the torus fixed points on a flag variety over Fv—using
Lemma 3.6 to avoid problems with small residue field, these fixed points are
precisely the w Iv with w P W , as desired.)

Otherwise, S1 is not trivial, the corestriction Γ ˚y1 Ñ Γ vanishes as before, and
so the corestriction Γy1 Ñ Γ vanishes too.

5. The trivial representation

In this section we give our first piece of global evidence that the derived Hecke
algebra can account for the ‘degree spreading’ of Hecke eigenclasses.

5.1. Let D be a division algebra of dimension d2 over an imaginary quadratic
field F . Let G be the algebraic group of elements of norm 1 inside D. Let Y pK q
be the arithmetic manifold (17) associated to G and a level structure K . We shall
suppose K to be contained in the stabilizer of some maximal order OD. Observe
that dim Y pK q “ d2 ´ 1.
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In this section, we study the derived Hecke action on ‘Hecke-trivial part’ (see
Definition 2.9) of the cohomology of Y pK q.

Recall that the global derived Hecke algebra T̃ consists of all endomorphisms
of H˚pZ`q that are limits (Section 2.13), under H˚pZ`q » lim

ÐÝ
H˚pZ{`nq, of

endomorphisms that lie in the algebra generated by all Hv,Z{`n .

THEOREM 5.2. For all but finitely many primes `, the action of T̃ on H˚pY pK q,
Z`q preserves the trivial summand H˚pY pK q,Z`qtriv, and:

(i) The trivial part of the cohomology H˚pY pK q,Z`qtriv is cyclic over T̃,
generated by the trivial class;

(ii) The image T̃triv of T̃ in End H˚pY pK q,Z`qtriv is graded-commutative. Also
T̃triv bQ` coincides with Q`-algebra generated by H˚pY pK q,Qqtriv acting
on itself by means of the cup product.

Note the significance of the second part of the statement: inside the Q`-derived
Hecke algebra there is a natural ‘preferred’ rational structure. Our general
conjecture (Conjecture 8.8) says that this should be true in great generality and
the preferred rational structure is related to motivic cohomology. Certainly the
situation that we discuss here is quite easy compared to the general case, but
nonetheless it has several points of interest.

We also note that the theorem is almost certainly false (in the form stated
above) if F is not totally imaginary, for reasons related to (a) of Section 1.6.

We deduce the Theorem from the following:

LEMMA 5.3. Notation as above, so that G is the algebraic group arising from a
division algebra over the imaginary quadratic field F. For all sufficiently large
`, the following statement holds:

For each integer n there are infinitely many places v of the field F,
with qv ” 1 modulo `n and where the division algebra is locally split,
such that the pullback map of (29)

H˚pGpFvq,Z{`q Ñ H˚pY pK q,Z{`qtriv

is surjective.

Note that the map above really does take values in the Hecke-trivial
cohomology, by Lemma 2.8.

Proof. (Summary) The proof of Lemma (5.3) occupies Sections 5.5–5.11. After
some initial setup, we give in Section 5.8 certain conditions (a), (b), (c), (d)
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which imply the Lemma; and then after Section 5.8 we check these conditions
can actually be satisfied.

First of all, let us explain why the Lemma implies the theorem:

5.4. Lemma (5.3) implies the theorem.

Proof. First of all, T̃ preserves H˚pY pK q,Z`qtriv. This follows by the argument
described around (37). Explicitly, fixing any prime w, we may find a prime-to-w
usual Hecke operator T for which the trivial part of Z`-cohomology coincides
with the generalized zero eigenspace for T ´ degpT q. (This can be checked over
C, since we are supposing the prime ` to be large enough. See for example,
discussion after (59)).

By avoiding a finite set of `, we may clearly suppose that H˚pY pK q,Zq has
no `-torsion, and that ` ą d . Similarly, we suppose that

H˚pY pK q,Zqtriv bZ Z{`Ñ H˚pY pK q,Z{`qtriv

is an isomorphism: see Section 5.6 for an explanation.
By Lemma 3.7, the map H˚pGpFvq,Z{`nq Ñ H˚pGpFvq,Z{`q is surjective

if qv ” 1 modulo `n . It follows from this that the surjectivity assertion of
Lemma 5.3 continues to hold with coefficients modulo `n .

Now we can consider an element of H˚pGpFvq,Z{`nq as an element of the
derived Hecke algebra for G at v (see the Remark of Section 2.10). So the
assertion implies that the cup product action of each h P H˚pY pK q,Z{`nqtriv
is contained in the action of the derived Hecke algebra; by passage to the limit,
the cup product action of H˚pY pK q,Z`qtriv on itself is contained in the action of
the derived Hecke algebra.

Let B` be the image of cup product H˚pY pK q,Z`qtriv Ñ EndpH˚pY pK q,
Z`qtrivq. Let T̃triv be the image of T̃ inside EndpH˚pY pK q,Z`qtrivq. It remains to
show that these are equal. This comes down to the fact that T̃triv is contained in
the commutant of B` and so cannot be larger than it. In more detail:

Let T̃pV0q

triv be the subring of T̃triv defined by only using local derived Hecke
algebras Hq,Z{`n with `n dividing q ´ 1, that is, the restricted variant of the
global derived Hecke algebra defined after (36).

We have inclusions
B` Ă T̃pV0q

triv Ă T̃triv, (56)

where the first inclusion follows from the argument just given. To conclude the
proof, we show that these are both equalities. Note, first of all, that each element
of T̃pV0q

triv commutes, in the graded sense, with each element of T̃triv. Indeed, if
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q ” 1 modulo `n , the global action of Hq,Z{`n is readily seen to commute with
Hv,Z{`n for v ‰ q, and it commutes in the case v “ q because Hq,Z{`n is known
to be graded-commutative.

Choose now h P T̃triv. There is b P B` such that h.1 “ b.1 (here 1 is the trivial
class in H 0). Then ph ´ bq.1 “ 0. The same is true then for both the even and
odd components of ph ´ bq. But, as we just saw, both components commute in
the graded sense, with T̃pV0q

triv , so in fact both of these components kill all of H˚
triv.

Thus h ´ b “ 0, so h P B`, as required.

5.5. Recollections. Let N be an integer. (We shortly fix it to be ‘large
enough.’)

Let UN be the standard unitary group, the stabilizer of
řN

i“1 |zi |
2. There are

natural maps

bi-invariant differential forms on UN
„
Ñ H˚pUN ,Cq ÝÑ H˚pGLN pOFq,Cq

(57)
obtained by the natural identification of GLN pCq-invariant differential forms
on GLN pCq{UN with bi-invariant differential forms on UN (and then Hodge
theory). The notation is a little confusing: H˚pUN q above refers to the singular
cohomology of UN as a topological space, whereas H˚pGLN pOFqq refers to the
group cohomology of GLN pOFq.

Moreover, the algebra of invariant differential forms on UN is a free-exterior
algebra with primitive generators Ω1,Ω3, . . . ,Ω2N´1 in degree 1, 3, 5, . . . ,
2N ´ 1; ‘primitive’ is taken with respect to the coproduct on cohomology,
induced by UN ˆ UN Ñ UN . An explicit representative for Ω j can be taken
as

X1, . . . , X j P LiepUN q ÞÑ antisymmetrization of tracepX1 ¨ ¨ ¨ X jq. (58)

The same symbols Ωi will also be used to denote the corresponding invariant
differential forms on GLN pCq{UN . For later use, note that these can be restricted
to cohomology classes for SUN and also to invariant differential forms on
SLN pCq{SUN ; these restrictions kill Ω1.

There are natural inclusions UN ãÑ UN`1 and GLN pOFq ãÑ GLN`1pOFq. For
fixed j and large enough N , these induce isomorphisms in H jp´,Cq. Moreover,
these isomorphisms are compatible with increasing N . By passage to the inverse
limit we get

H˚pU8,CqÝÑH˚pGL8pOFq,Cq.
Here (for example) GL8 means in fact lim

ÝÑ
GLN .

Both sides here carry compatible coproducts; for the right-hand side we can
take the coproduct induced by ‘intertwining’ map (see for example, [33, Ch. 2])
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GL8 ˆ GL8 Ñ GL8. (To see that the coproducts are compatible amounts
to say that the group multiplication and the intertwining map both induce the
same homomorphism on the stable cohomology of UN . This follows from the
Eckmann–Hilton argument, or more directly as follows: Embed two commuting
copies U paq

N ˆ U pbq
N Ñ U2N by the intertwining map. The group multiplication

U2N ˆ U2N Ñ U2N when restricted to U paq
N ˆ U pbq

N on the source gives the
intertwining map U paq

N ˆ U pbq
N Ñ U2N . This fact, together with stability of

homology, shows that the two coproducts are compatible, as claimed.).
The corresponding Pontryagin product on homology will be denoted by ˚.
In what follows, we fix N to be divisible by d2 and chosen so large that

- the inclusion GLN ãÑ GL8 induces an isomorphism of integral group
homology in degrees ď d2, both with entries in OF and with entries in any
residue field. (This is possible because, by a theorem of van der Kallen [20,
page 289], the range of homological stability can be taken uniformly in these
cases; indeed, van der Kallen’s bounds for stability involve only the Krull
dimension in the case of commutative rings.)

We denote the stabilization map

HipGLN pOFqq Ñ HipGL8pOFqq

by a ÞÑ ap8q and its inverse by b ÞÑ bpNq. We use this notation for any choice
of coefficients, not merely Z.

- The map (57) induces an surjection in degrees ă d2. (That this is possible is
a consequence of Borel’s result [3, (7.5)] asserting that cohomology classes
in sufficiently low degree are representable by invariant differential forms on
the symmetric space; Borel’s result is for a semisimple group, but we readily
deduce the claimed result by applying it to SLN .) We have written ‘surjection’
instead of isomorphism just because of the issue of working with GL rather
than SL: the differential form corresponding to Ω1 dies under (57)).

In a similar way to (57), we have an isomorphisms

H˚pSUd,Cq Ñ SLdpCq invariant diff. forms on SLdpCq{SUd
„
Ñ H˚pY pK q,Cqtriv. (59)

For the surjectivity of the final map: if a differential form ω on Y pK q satisfies
Tω “ degpT qω for even one Hecke operator T , then by an easy ‘maximum
modulus’ argument it must be invariant, that is, represented by a GpF b Rq
invariant form on the corresponding symmetric space. (This uses compactness
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of Y pK q; in the general case the answer is substantially more complicated.) In
particular, the cohomology H˚pY pK q,Cqtriv is a free-exterior algebra, generated
in degrees 3, 5, . . . , 2d ´ 1.

Finally let us recall (Borel) that the K -theory of OF is, modulo torsion, one-
dimensional in each odd degree, and that (Quillen) for any finite field F of size
q , the even K -groups vanish and the odd K2s`1pFq » Z{pqs ´ 1q.

5.6. The constraints on `. We impose the following constraints on `:

(i) The cohomology of Y pK q with coefficients in ` is torsion-free.

(ii) ` does not divide gcdvppqv´1q ¨ ¨ ¨ pq2d´1
v ´1qq, where the gcd is taken over

all qv ě q0 for large enough q0. (This gcd stabilizes for q0 large enough.)

(iii) ` is relatively prime to the numerator and denominator of the rational
number M P Q˚ defined in (62).

(iv) the cohomology H˚pY pK q,Z{`qtriv is a free-exterior algebra on generators
in degree 3, . . . , 2d ´ 1.

(v) ` ą d2

(vi) The cohomology of GL8pOFq is free of `-torsion in degrees less than d2.

All these assertions are automatically true for ` big enough. This is obvious
for (i), (ii), (iii), (v) and follows from the standard stability results for (vi). We
examine (iv): We saw after (59) that H˚pY pK q,Qqtriv is a free-exterior algebra;
fix generators e3, e5, . . . that belong to H˚pY pK q,Zq. The products of the ei are
linearly independent over Q, so their reductions are also linearly independent
over Z{` for large enough `. It remains to show that they span H˚pY pK q,
Z{`qtriv. But that is obvious by counting dimensions: if we fix a Hecke operator T ,
then for sufficiently large ` the generalized zero eigenspace of T ´ degpT q on
H˚pY pK q,Z{`q has the same dimension as the generalized zero eigenspace of
T ´ degpT q on H˚pY pK q,Cq.

This concludes the proof that all of (i)–(vi) above are automatically valid for
large enough `. It would be interesting to see what happens for ‘bad’ `.

5.7. Let N be a large integer, as chosen in Section 5.5. Fix an embedding

ι : G ãÑ SLN (60)

for some large N , by taking a sum of many copies of the representation that
arises from the division algebra acting on itself. Then (in suitable coordinates)
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we may suppose that the open compact subgroup K is carried into the standard
maximal compact

ś

v
SLN pOvq of SLN pAfq, and the arithmetic group GpFqXK

is consequently carried into SLN pOFq.
The map ι gives rise to a map of symmetric spaces, that is, a map

GpCq{SUd Ñ SLN pCq{SUN ,

where we have chosen a maximal compact for GpCq, which is isomorphic to
SUd , and then we have chosen a hermitian form on CN whose stabilizer SUN

contains ιpSUdq. Thus we get an embedding of locally symmetric spaces, also
denoted by ι:

ι : Y pK q Ñ SLN pOFqzSLN pCq{SUN
looooooooooooomooooooooooooon

»BpSLN pOF qq

. (61)

We can further compose ι with the inclusion of SLN pOFq to GLN pOFq to give a
map

Y pK q Ñ BpGLN pOFqq.

5.8. In this section, we formulate four claims (a)–(d) that will imply
Lemma 5.3. We verify the claims in the remainder of the section.

Let 3 ď i ď 2d ´ 1 be odd and let ai P KipOFq be chosen so that it generates
KipOFq modulo torsion. Let rai s be the image of ai inside HipGL8pOFq,

Z`q; as per our notation above, rai s
pNq is its preimage under the isomorphism

HipGLN pOFq,Z`q Ñ HipGL8pOFq,Z`q.
We show that (for any n) there are infinitely many places v, splitting the

division algebra and with qv ” 1 modulo `n , and classes ξi P H ipGLN pFvq,Z{`q
with the property that:

(a) The image of ai in KipFvq{` is nonzero. Call its image bi P KipFvq{`;
therefore, bi is a generator of KipFvq{`.

(b) The pairing xξi , rbi s
pNqy ‰ 0 where rbi s is defined similarly to rai s: it is

the associated homology class under KipFvq Ñ HipGL8pFvq,Z{`q, and
correspondingly we have rbi s

pNq P HipGLN pFvq,Z{`q.

(c) xξ3 Y ¨ ¨ ¨ Y ξ2d´1, prb3s ˚ ¨ ¨ ¨ ˚ rb2d´1sq
pNq
y ‰ 0, where * is the Pontryagin

product on the homology of GL8pFvq.

(d) Let rY pK qs P Hd2´1pY pK q,Qq be the fundamental class of Y pK q. Then
there exists M P Q˚ such that the image ι˚rY pK qs P H˚pGLN pOFq,Qq
satisfies:

ι˚rY pK qs “ M ¨ pra3s ˚ ra5s ˚ ¨ ¨ ¨ ˚ ra2d´1sq
pNq
, (62)
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where on the right we have the Pontryagin product for GL8pOFq, and ι is
as in (61).

Let us first see why (a)–(d) implies Lemma 5.3. Recall that we chose ` to
not divide the numerator or denominator of M , and also that the cohomology
of GL8pOFq and so also GLN pOFq is `-torsion free in degrees ă d2; therefore,
condition (d) implies an equality in Z`-homology:

ι˚rY pK qs “ punitq ¨ pra3s ¨ ¨ ¨ ˚ ra2d´1sq
pNq
. (63)

Let π be the projection from GLN pOFq to GLN pFvq. Write Ξi “ π˚ξi P

H˚pGLN pOFq,Z{`q and ηi “ ι˚Ξi P H˚pY pK q,Z{`q. We have then

xΞi , rai s
pNqy “ xπ˚ξi , rai s

pNqy “ xξi , π˚rai s
pNqy “ xξi , rbi s

pNqy ‰ 0

since π˚rai s “ rbi s. Also, in a similar way,

xΞ3 Y ¨ ¨ ¨ YΞ2d´1, pra3s ˚ ¨ ¨ ¨ ˚ ra2d´1sq
pNq
y

“ unit multiple of xξ3 Y ¨ ¨ ¨ Y ξ2d´1, prb3s ˚ ¨ ¨ ¨ ˚ rb2d´1sq
pNq
y ‰ 0 (64)

because the Pontryagin products and the stabilization maps are compatible with
π˚. From this and (63) we get

xη3 Y ¨ ¨ ¨ Y η2d´1, rY pK qsy “ xΞ3 Y ¨ ¨ ¨ YΞ2d´1, ι˚rY pK qsy ‰ 0.

But the Hecke-trivial cohomology of Y pK qmodulo ` is a free-exterior algebra
on generators in degrees 3, . . . , p2d´ 1q. Fix such generators—call them ν3, ν5,

. . . . Each ηi is also an element of this Hecke-trivial cohomology by Lemma 2.8.
It follows that

ηi “ unit ¨ νi ` pproduct of ν j s with j ă iq

because otherwise the cup product η3Y¨ ¨ ¨Yη2d´1 would be trivial. We conclude
that, in fact, the map

H˚pGpFvq,Z{`q Ñ H˚pY pK q,Z{`qtriv (65)

is onto as required. Therefore, to prove Lemma 5.3 it is sufficient to prove (a)–(d)
above.
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5.9. Verification of (d) from Section 5.8. Since we are supposing (57) to be
a surjection in degrees up to d2, it is enough to verify that there is a nonzero
M P C such that

xι˚rY pK qs, ωy “ Mxpra3s ˚ ¨ ¨ ¨ ˚ ra2d´1sq
pNq
, ωy (66)

whenever ω is an invariant differential form on GLN pCq. We compute in the case
(see (58) for the definition):

ω “ ΩJ “ Ω j1 ^ ¨ ¨ ¨ ^Ω jt

where J “ t j1, . . . , jtu, and show that both sides are nonzero if and only if
J “ t3, 5, . . . , 2d ´ 1u. That is enough to prove (66).

The right-hand side of (66) equals

xra3s ˚ ¨ ¨ ¨ ˚ ra2d´1s, ω
p8qy “ xra3s b ¨ ¨ ¨ b ra2d´1s, coproductpωp8qqy, (67)

where we allow ourselves to write ωp8q P H˚pGL8pOFq,Cq for the
stabilization of the cohomology class corresponding to ω. Now coprodpωp8qq is
the product of various terms of the shape

pΩ j1 b 1b 1b ¨ ¨ ¨ 1` 1bΩ j1 b 1b ¨ ¨ ¨ b 1` ¨ ¨ ¨ qp8q

and from this we see (just for degree reasons) that the term on the right of (67)
vanishes if there is even one ji larger than 2d´1 or one ji equal to 1. So J Ă t3,
. . . , 2d´1u. Again, for degree reasons, equality must hold. That shows the right-
hand side is zero unless J “ t3, 5, . . . , 2d ´ 1u. When J “ t3, 5, . . . , 2d ´ 1u,
the right-hand side becomes

xa3,Ω3y ¨ xa5,Ω5y . . . xa2d´1,Ω2d´1y

and each factor xa j ,Ω jy is nonzero: this is the nontriviality of the Borel
regulator.

Now let us examine the left-hand side of (66), which equals xrY pK qs,
ι˚Ω j1 ^ ¨ ¨ ¨ ^ ι

˚Ω jd y. It is easy to see that ι˚Ω1 vanishes. We also claim that
ι˚Ω j must vanish for j ą 2d ´ 1. Indeed we claim that ι˚Ω j , which defines an
invariant form on Y pK q and thus corresponds by (59) to an invariant differential
form in the cohomology of SUd , is primitive as such. For that consider this
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diagram:

invariant forms on SLN pCq{SUN
//

��

invariant forms on GpCq{SUd

��
SUN -invariant forms on isuN

//

��

SUd-invariant forms on isud

��
H˚pSUN q // H˚pSUdq

(68)

where the various maps of groups arise from the map ι of (60), and the top
vertical maps arise by restriction to the tangent space of the identity coset. In
other words, the element of H˚pSUdq corresponding to ι˚Ω j is just the pullback
of the element of H˚pUN q corresponding toΩ j under the group homomorphism

ϕ : SUd Ñ UN

induced by ι. In particular, ϕ˚Ω j is also primitive.
This shows that the left-hand side of (66) vanishes unless J “ t3, 5, . . . ,

2d´1u. We must still check that it is actually nonvanishing in this case. For this,
we must show that ι˚pΩ3 ^ ¨ ¨ ¨ ^Ω2d´1q is nonvanishing, equivalently that

ϕ˚Ω3 ^ ¨ ¨ ¨ ^ ϕ
˚Ω2d´1

is a nonvanishing element of the cohomology of SUd . Since each ϕ˚Ω j is
primitive it is enough to see that they are all nonzero. The N -dimensional
representation of SUd defined by ϕ is isomorphic to the sum of many copies
of the standard representation of SUd . Now one can just compute explicitly
with (58).

5.10. Verification of (b) and (c) from Section 5.8. In words, what we have
to do is produce elements θi P H ipGL8pFvq,Z{`q for each odd 3 ď i ď 2d´ 1;
these θi should detect (pair nontrivially with) a generator of KipFvq, and the
cup product θ3 Y ¨ ¨ ¨ Y θ2d´1 should detect the Pontryagin product of the
homology classes associated to those generators. Then we may take ξi “ θ

pNq
i P

H ipGLN pFvq,Z{`q.
Quillen shows a natural choice for θi : an equivariant Chern class derived from

the standard representation of GLN . In other words, write G “ GLN pFvq and
write Γ for the Galois group of Fv. The standard representation of GLN can be
considered a G-equivariant vector bundle on SpecpFvq, and thus we get a Chern
class

c2i P H 2i
G,etpSpecFv,Z{`piqq Ñ H 1

etpSpecFv,Z{`piqq b H 2i´1pG,Z{`q
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where on the left we have equivariant etale cohomology, and on the right we have
usual etale cohomology; the arrow is explicated in [32, II.1.2, Lemma 1]. We may
identify the étale cohomology of Fv with the (continuous) group cohomology of
Γ , and here Γ is acting trivially on µ`, and so H 1pSpec Fv,Z{`piqq “ H 1pΓ,

Z{`piqq is identified with simply µbi
` . Fix a generator α for µ`. Thus the image

of c2i is of the form αi b θ2i´1, for some θ2i´1 P H 2i´1pG,Z{`q. Similarly we
can map c2i into H 0pΓ,Z{`piqq b H 2ipG,Z{`q; in that way we get a class θ 12i P

H 2ipG,Z{`q so that the image of c2i is αi b θ 12i . The class c2i gives a morphism
( the ‘Soulé Chern class’)

s : H2i´1pG,Z{`q Ñ H 1pΓ,Z{`piqq (69)

which sends λ P H2i´1 to xθ2i´1, λyα
bi .

These constructions are ‘stable’ under increasing N—see [32, page 257]—
and so we can consider θ2i´1, θ

1
2i as classes in H˚pGL8pFvq,Z{`q, and the Soulé

map as a map H2i´1pGL8pFvq,Z{`q Ñ H 1pΓ,Z{`piqq.
Now Soulé Chern class is known to be surjective when precomposed with

K2i´1 Ñ H2i´1 ([32, Proposition 5, page 284]) (so long as i ă `—true by
assumption on `). This immediately verifies property (b), that is to say if we
fix a generator b2i´1 for K2i´1pFvq with associated homology class rb2i´1s we
have

0 ‰ sprb2i´1sq “ xθ2i´1, rb2i´1syα
bi

so xθ2i´1, rb2i´1sy ‰ 0 as desired.
To compute, for example,xθ3 Y θ5 Y θ7, rb3s ˚ rb5s ˚ rb7sy we rewrite it as

“ xcoprodpθ3qcoprodpθ5qcoprodpθ7q, b3 b b5 b b7y. (70)

Let us note that each rbi s is primitive in homology—that is, xrbi s, αYβy “ 0 if
α, β are cohomology classes both in positive degree. This is because rbi s comes
from the image of the Hurewicz map πi Ñ Hi , so we can just pull back to the
sphere Si and compute.

Quillen has shown [26, Proposition 2] (see also [26, Remark 2, p.569]) that
the coproduct of (for example) θ7 equals

coprodpθ7q “ θ 10
loomoon

1

bθ7 ` θ
1
2 b θ5 ` θ

1
4 b θ3 ` θ

1
6 b θ1 ` symmetric terms.

Thus, when we take the product coprodpθ3qcoprodpθ5qcoprodpθ7q, we get a sum
of several terms; because of the primitivity of rbi s just noted, the only terms that
contribute to (70) will be those coming from

p1b 1b θ3 ` 1b θ3 b 1` θ3 b 1b 1q

https://doi.org/10.1017/fmp.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.6


A. Venkatesh 52

p1b 1b θ5 ` 1b θ5 b 1` θ5 b 1b 1q
p1b 1b θ7 ` 1b θ7 b 1` θ7 b 1b 1q

and the only term of these with degree 3, 5, 7 in the first, second and third factors
is θ3 b θ5 b θ7. Therefore,

xθ3 Y θ5 Y θ7, rb3s ˚ rb5s ˚ rb7sy “ xθ3 b θ5 b θ7, rb3s b rb5s b rb7sy

“
ź

xθ3, rb3syxθ5, rb5syxθ7, rb7sy ‰ 0

which gives (c) in the case d “ 4; the general case is the same.

5.11. Verification of (a) from Section 5.8. Write O1 “ OFr1{`s. The Soulé
maps from (69) fit in a commutative diagram

K2i´1pO1q b Z`
//

��

K2i´1pFvq b Z`

��
H 1pΓ,Z`piqq // H 1pGalpFv{Fvq,Z`piqq

(71)

where Γ is now the Galois group of the maximal unramified extension of O1;
note that OF Ñ O1 induces an isomorphism on K2i´1 for i ą 1 (see [36,
Theorem 4.6]). The right-hand vertical arrow is an isomorphism for i ă ` (Soulé,
loc. cit.), and the left-hand vertical arrow is a surjection (see [19]).

The map H 1pΓ,Z`piqq{`Ñ H 1pΓ,F`piqq is an injection. Choose an element
a2i´1 P K2i´1pO1q whose image in H 1pΓ,F`piqq is nonzero (note that H 1pΓ,

Z`piqq{` is nonzero, by computing Euler characteristic). A nontrivial class in
H 1pΓ,F`piqq is represented by a nontrivial extension

F`piq Ñ M Ñ F`, (72)

in other words, by a homomorphism Γ Ñ GL2pZ{`q of the form
ˆ

ωi ρ

0 1

˙

.

Note that the image of this homomorphism must have size divisible by `; for
otherwise the extension (72) splits. By Chebotarev density, we may find infinitely
many Frobenius elements Frobv which map to

ˆ

1 1
0 1

˙
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which implies that the restriction of the extension class to H 1pFv,F`piqq is
nontrivial.

In other words, the image of a2i´1 in H 1pGalpFv{Fvq,F`piqq, and so also in
K2i´1{`, is nontrivial for finitely many v. This proves our assertion.

6. Setup for patching

We continue in a global setting, but now turn to the study of tempered
cohomology. This study will occupy most of the remainder of the paper
(Sections 6–8).

In the current section (Section 6), we set up the various assumptions needed,
and in the next section (Section 7) we use the relationship between the Taylor–
Wiles method and the derived Hecke algebra (outlined in Section 1.4) to prove
our target theorem, Theorem 7.6: it says the global derived Hecke algebra
actually is big enough to be able to account for the degree spread of cohomology.

In Section 8, we explain how to index elements of the global derived Hecke
algebra by a Selmer group, and use this to formulate our main Conjecture 8.8.

A few apologies are in order:

• We switch notation slightly, working with mod pn coefficients rather than
mod `n , to better make contact with the standard presentations of Galois
representations and the Taylor–Wiles method.

• We have made no attempt to optimize the method for small primes, And, in
particular, make rather strong assumptions; in particular, we assume both that
we are in the ‘minimal case’ of formally smooth local deformation rings, and
that the Hecke ring at base level is isomorphic to Zp (no congruences).

6.1. Assumptions.

(1) Our general notations are as in Section 1.7, but we now specialize to the case
that the number field F is Q, and that G is a simply connected, semisimple
Q-group. We assume that G is split, and we fix a Borel subgroup B and a
maximal torus A contained inside B.

(2) We fix a level structure K0 Ă GpAfq, the ‘base level.’ We write

Y p1q “ Y pK0q

for the arithmetic manifold (17) of level K0. We sometimes refer to this as
the ‘level 1’ arithmetic manifold even though it is not literally so.

https://doi.org/10.1017/fmp.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.6


A. Venkatesh 54

(3) Let Π be a tempered cohomological automorphic cuspidal representation
for G, factorizing asΠ “ Π8bΠ f over archimedean and finite places. We
suppose that Π K0 ‰ 0, so that Π actually contributes to the cohomology of
Y p1q.

(4) We write TK0 for the Hecke algebra at level K0. It will be convenient to
follow the definition of [21] and define this in a derived sense: Consider the
chain complex of Y pK0q, with Zp coefficients, as an object in the derived
category of Zp-modules; each (prime to the level, and to p) Hecke operator
gives an endomorphism of this object. Define TK0 to be the Zp-algebra
generated by such endomorphisms. This has the advantage that TK0 acts
on cohomology with coefficients in any Zp-module.

We may similarly form the Hecke algebra TK at a deeper level K Ă K0;
unless specified, it will be generated only by Hecke operators at good primes
for K .

(5) We shall suppose that the coefficient field of Π is Q, for simplicity—by
this, we mean that the eigenvalues of Hecke correspondences at all good
places for K0 lie in Q, or equivalently the underlying representation Πv has
a Q-rational structure for all such v. Under this assumption, Π gives rise to
a ring homomorphism

TK0 Ñ Zp. (73)

(6) Let T be the set of ramified places forΠ , together with any places at which
K0 is not hyperspecial.

(7) Write
k “ Z{pZ

and fix an algebraic closure k for k where p ą 5 is a prime such that:

(a) H˚pY pK0q,Zq is p-torsion free.

(b) p does not divide the order of the Weyl group of G, and also p R T ,
that is, p is not a bad place for Π or K .

(c) ‘No congruences between Π and other forms at level K0:’
Consider the composite homomorphism

χ : TK0 Ñ Zp Ñ k, (74)
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where the first map is the action onΠ , and the second map the obvious
one. Let m “ kerpχq be its kernel. We shall require that the induced
map of completions is an isomorphism:

TK0,m
„
ÝÑ Zp (75)

and moreover we shall assume the vanishing of homology after
completion at the maximal ideal m:

H jpY p1q,Zpqm “ 0, j R rq,q` δs. (76)

Observe that in favorable situations (75) implies (76), and both
should be true for all large enough p— see the Remark below for a
further discussion. Informally, (75) and (76) enforce that there are no
congruences, modulo p, between Π and other cohomological forms
at level K0.
Note that the definitions of χ,m make sense at any level. Thus we use
the notation χ,m sometimes for the corresponding notions for other
level structures Y pK q, where K Ă K0.

(8) We put
S “ T Y tpu,

the collection of all primes that we have to worry about.

REMARK. We expect that 7(c) should be automatically valid for p sufficiently
large; in practice, for the purposes of this paper, it is not an onerous assumption
(the minimal level conditions, enforced in (e) of Section 6.2, is more restrictive).

We give a proof that 7(c) is valid for all large enough p, for G an inner
form of SLn such that Y pK q is compact. It is likely this can be generalized
to other settings, with more work. In what follows, denote by TK0 the Hecke
algebra defined as above, but with Z coefficients; this is easily seen to be finitely
generated over Z. Firstly, the algebra TK0 b C is semisimple, because it acts
faithfully on H˚pY pK0q,Cq and this action is semisimple (there is an invariant
metric on harmonic forms). Thus, for all large enough primes p, TK0 is étale
over Z and thus (75) must be valid. If the homology in (76) is nonvanishing,
then there exists an eigenclass for TK0 on H j whose associated character factors
through TK0,m; by (75), this character must coincide with the action of TK0 on
Π . In other words, the Hecke eigensystem associated to Π occurs in degree j .
This eigensystem corresponds to an automorphic representation Π 1 such that
Π 1
v “ Πv for almost all v. By the strong multiplicity one theorem for GLn ,

this implies that Π 1
8 is tempered cuspidal, and then it has nonvanishing pg, K q

cohomology only in degrees rq,q` δs.

That is the basic setup; now for Galois representations.
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6.2. Assumptions about Galois representations; the deformation ring Rρ .
We make assumptions very close to [14, Conjecture 6.1]. We briefly summarize
them and refer the reader to [14] for full details:

Let K Ă K0 be a deeper level structure, TK be as above, and let TK Ñ k be a
character. We require that there exist a Galois representation

GalpQ{Qq Ñ G_pk̄q

satisfying the usual unramified compatibility, see (a) below.
Moreover, for the specific character TK Ñ k as in (74), that is, the map

associated to the fixed automorphic representation Π , reduced modulo p, we
require more precise statements: Let m be the kernel of TK Ñ k, and TK ,m the
completion of TK at m. We require there to exist a Galois representation

ρ̃ : GalpQ{Qq ÝÑ G_pTK ,mq

with the following properties:

(a) (Unramified compatibility): Fix a representation τ of G_. For all primes
q not dividing the level of K , the representation ρ is unramified at q , and
the action of tracepτ ˝ ρ̃qpFrobqq P TK ,m coincides with the image of the
(Satake)-associated Hecke operator Tq,τ .

(b) Let ρ be the reduction modulo p of ρ̃, so that

ρ : GalpQ{Qq Ñ G_pkq.

Then ρ has big image: when restricted to the Galois group of Qpζp8q, the
image of ρ contains the image of the k-points of the simply connected cover
of G_.

(c) (Vague version: see [14, Conjecture 6.1] for precise formulation): There is
a reasonable notion of ‘crystalline at p’ representation into G_, and the
representation ρ̃ is ‘crystalline at p.’

(d) (Vague version: see [14, Conjecture 6.1] and references therein for precise
version): The representation ρ̃ satisfies the expected local constraints
(‘local–global compatibility’) when restricted to Qq ; here q is a Taylor–
Wiles prime (Section 6.3) that divides the level of K . We also assume
a natural version of local–global compatibility at Iwahori level Y0pqq,
formulated before Lemma 6.6.

(e) ‘All local deformation rings are all formally smooth:’ we suppose that

H 0pQq,Adρq “ H 2pQq,Adρq “ 0 for all q P S “ T Y tpu.
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This means that the local deformation ring of ρ at primes q P T is
isomorphic to Zp, and the local deformation ring of ρ at q “ p is formally
smooth. This keeps our notation as light as possible. (We also use the
formal smoothness to squeeze the most out of the Taylor–Wiles method,
but probably one can get something without it.)

(Note that the assumption that there is a T-valued Galois representation, rather
than a weaker notion such as a determinant, is not reasonable unless one has
a condition like ‘residual irreducibility.’ In our case, however, we are assuming
that the residual representation ρ has very large image anyway—see (b) above.)

In particular, the natural map TK0,m Ñ Zp of (75) gives rise to a Galois
representation valued in G_pZpq, which we shall just call ρ:

ρ : GalpQ{Qq ÝÑ G_pZpq, (77)

which of course lifts the residual representation:

ρ : GalpQ{Qq ÝÑ G_pkq.

Let Rρ be the universal crystalline deformation ring of ρ, allowing ramification
only at the set S. Good references for deformation rings are [13] or [15].

Let us now set up notations for Taylor–Wiles primes.

6.3. Taylor–Wiles primes and auxiliary level structures. A Taylor–Wiles
prime of level n is a prime q (we also occasionally use the letter `), not dividing
the level of K0, such that:

- pn divides q ´ 1, and

- ρpFrobqq is conjugate to a strongly regular element of T_pkq.

Here an element t P T_pkq is strongly regular if its centralizer inside G_ is
equal to T_.

We are really interested in systems of such primes, and it is useful to keep
track of the strongly regular element as part of the data. Fix once and for
all a sufficiently large integer s. We work with collections of such primes of
cardinality s, which we call Taylor–Wiles data:

- A Taylor–Wiles datum of level n is a set of primes Qn “ pq1, . . . , qsq together
with strongly regular elements pFrobT

q1
, . . . ,FrobT

qs
q P T_pkq such that

- pn divides qi ´ 1, and

- ρpFrobqi q is conjugate to FrobT
qi

.
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We usually use q to denote a typical element of a Taylor–Wiles set of primes,
but occasionally we also use the letter `. Note that the set of possible choices
for each FrobT

qi
has size |W |, the order of the Weyl group.

- Let r be the rank of the maximal torus A. Set

R “ rs, T_s “ pT_qs, Ws “ W s (78)

thus T_s is a torus and R is the rank of T_s , and Ws acts on T_s .

- Level structures: If q R S is prime, we denote by

Y0pqq Ñ Y p1q (79)

the covering obtained by adding Iwahori level structure at q , that is, we replace
K0 by the preimage of a Borel subgroup under K0 Ñ GpFqq. Similarly, we get
Y1pqq by taking the preimage of a unipotent radical of a Borel subgroup under
the same mapping. The covering Y1pqq Ñ Y0pqq is ‘Galois,’ with Galois group
ApFqq » pFˆq qr .

Suppose that pn divides q ´ 1. In that case, define Y1pq, nq to be the unique
subcovering of Y1pqq Ñ Y0pqq such that the covering Y1pq, nq Ñ Y0pqq has
covering group pZ{pnqr . In summary:

ApFqq»pFˆq qr
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

Y1pqq Ñ Y1pq, nq Ñ Y0pqq
looooooooomooooooooon

ApFqq{pn»pZ{pnqr

. (80)

- For a Taylor–Wiles datum Qn of level n, we let Y ˚1 pQnq be the fiber product,
over Y p1q, of all the coverings Y1pqi , nq Ñ Y p1q. Similarly we define Y0pQnq.
Therefore, Y ˚1 pQnq Ñ Y0pQnq is Galois; we write

Tn “ pGalois group of Y ˚1 pQnq Ñ Y p1qq “
ź

qPQn

ApFqq{pn, (81)

thus we have (noncanonically)

Tn » pZ{pnqR. (82)

As a shorthand we write

H˚pQn, Sq :“ H˚pY ˚1 pQnq, Sq

where S is a ring of coefficients.
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6.4. Rings of diamond operators. We now set up the rings that are generated
by ‘diamond operators,’ that is, the deck transformation groups of our various
coverings Y ˚1 pQnq Ñ Y0pQnq. Continuing with the notation of the prior section,
put

Sn “ Z{pnrTns, S1n “ ZprTns, (83)

so these act on the Z{pn and Zp-valued chain complex of Y ˚1 pQnq. Fixing, as in
(82) , an isomorphism of Tn with pZ{pnqR , we can identify this ring as follows.

Sn » Z{pnrx1, . . . , xRs{pp1` xiq
pn
´ 1q, (84)

where xi “ rei s ´ 1, ei being a generator of the i th factor Z{pn under the
isomorphism (82). Recall R “ rs as in (78).

Finally we form a ‘limit ring’

S :“ Zprrx1, . . . , xRss. (85)

The presentation (84) gives rise to obvious maps S � Sn and (compatible)
augmentations of S and Sn to Zp and Z{pn respectively, carrying all the xi

variables to zero; we denote by I and In the corresponding kernels, so that
S{I » Zp and Sn{In » Z{pn . We need the following easy Lemma:

LEMMA. Let notations be as above. The natural map

Ext˚Sn
pZ{pn,Z{pnq Ñ Ext˚S{pnpZ{pn,Z{pnq (86)

(change of rings) is surjective. Also, the natural map

Ext˚S{pnpZ{pn,Z{pnq Ñ Ext˚SpZp,Z{pnq (87)

(change of ring, and functoriality of Ext in the first argument) is an isomorphism.

Recall that the change of ring map ExtB Ñ ExtA induced by a ring map AÑ B
can be realized by thinking of ExtB in terms of extensions of B-modules, and
then just regarding it as an extension of A-modules.

Proof. For (86), it is sufficient to check surjectivity on Ext1 because the right-
hand side is generated by Ext0,Ext1: it can be computed to be an exterior
algebra using a Koszul resolution, see Lemma B.1. Now ‘morally speaking’ this
is because it is the pullback on group H 1p´,Z{pnq induced by ZR

p Ñ pZ{pnqR ,
but this is not a real proof (at least without discussing the relation between
cohomology of profinite groups, and Exts over the corresponding ‘completed’
group algebra).
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So we just compute both sides by using the compatible (under S{pn Ñ Sn)
sequences In Ñ Sn Ñ Z{pn and I{pn Ñ S{pn Ñ Z{pn; taking homomorphisms
into Z{pn , we get

Ext1
Sn
pZ{pn,Z{pnq » HomSnpIn,Z{pnqp» HompIn{I 2

n ,Z{pnqq (88)

and similar. (Note that the image of HomSnpSn,Z{pnq in HomSnpIn,Z{pnq is
zero.)

So we need to check that the map

I{pn Ñ In (89)

induces an isomorphism when we take HomSp´,Z{pnq.
The homomorphisms HomSpIn,Z{pnq are precisely given by homomorphisms

ϕ : Tn Ñ Z{pn , namely, we send xi “ rei s ´ 1 P In to ϕpeiq, using the notation
after (84). Since I{ppn, I2

q is a free Z{pn module on x1, . . . , xR , it follows at
once that (89) induces an isomorphism as desired.

Now we discuss (87), which is not hard but we spell it out, mainly to be
clear because I find change of rings confusing. Let π : P Ñ Zp be the Koszul
resolution of Zp as an S-module, and P “ P{pn its reduction mod pn , so that
π : P Ñ Z{pn is the Koszul resolution of Z{pn as an S{pn-module. There is
an identification Ext˚S{pnpZ{pn,Z{pnq with the cohomology of HompP,Z{pnq;
it sends a closed element C P HompP,Z{pnrmsq to the class α P Extm

S{pnpZ{pn,

Z{pnq represented by the diagram Z{pn π
ÐÝ P C

Ñ Z{pnrms in the derived
category of S{pn-modules (one can invert quasi-isomorphisms in the derived
category).

Consider now the diagram

Z{pn P„

πoo C // Z{pnrms

Zp

A

OO

P„

πoo oo

B

OO (90)

where „ means quasi-isomorphism; A, B are the natural projections.
Now, the image α1 P ExtSpZp,Z{pnq of α, under the map (87), is represented

by the map C ˝ π´1 ˝ A inside the derived category of S-modules, equivalently,
by the composition C ˝ B ˝π´1. In other words, the image α1 of α is represented
by the class C 1 P HompP,Z{pnrmsq obtained by pulling back C P HompP,
Z{pnrmsq via P Ñ P . That pullback induces an isomorphism of complexes

HomS{pnpP,Z{pnq » HomSpP,Z{pnq,

and thus, passing to cohomology, the desired isomorphism of Ext-groups.
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6.5. Adding level q structure: The relationship between homology at level
Yp1q and level Y0pqq. Fix a prime q that does not divide the level of K0,
satisfying q ” 1 modulo pn . This section and the next two Sections 6.5, 6.8, 6.11
all gather some ‘standard’ properties of passing between level 1 and level q,
working with Z{pn-cohomology. We remind the reader that ‘level 1’ does not
literally mean level 1, but just the base level K0 at which we work.

In the current section, we discuss the relationship between the homology of
Y p1q and Y0pqq; recall that Y0pqq was obtained by adding Iwahori level at q
(see (79)).

We can use the discussion of Section 4.4: For S “ Z{pn , let HI ,HK and so
on be the (usual, that is, no ‘derived’!) Hecke algebras for pGq, Kqq, with S-
coefficients and let HI K ,HK I be the bimodules previously defined in Section 4.2.
There are natural maps

H˚pY p1q, Sq bHK HK I ÝÑ H˚pY0pqq, Sq, (91)

H˚pY0pqq, Sq bHI HI K ÝÑ H˚pY p1q, Sq.

These maps are defined by the ‘usual double coset formulas.’ More formally,
we may identify HK with HomSGq pSrGq{Kqs, SrGq{Kqsq, HK I with
HomSGq pSrGq{Kqs, SrGq{Iqs) and so forth; one may then proceed as in
the discussion of Section 2.6 to define the maps of (91).

Before we go further, let us formulate a natural notion of ‘local–global
compatibility’ at level Y0pqq: the center of the Iwahori–Hecke algebra HI at level
q , which is identified (Section 4.3) with the Hecke algebra HK . We shall suppose:

(Local–global compatibility at level Y0pqq:) HK , identified with the
center of HI as just explained, acts on H˚pY0pqq, kqm by means of
the same (generalized) eigencharacter HK Ñ k by which HK acts
on Π .

It is feasible that this assumption could be avoided entirely but since it is
very likely to be proven along with the other, more essential, local–global
compatibility at Taylor–Wiles primes it seems harmless to assume it.

LEMMA 6.6. Let notation be as above, and assume the local–global
compatibility just mentioned. Suppose that the prime q is such that ρpFrobqq

is conjugate to a strongly regular element of T_pkq. Then the maps (91) are
isomorphisms when we localize at a maximal ideal of HK induced by m. In
particular, if q is part of a Taylor–Wiles datum of level n, then (91) induces

H˚pY0pqq,Z{pnqm
„
ÐÝ H˚pY p1q,Z{pnqm bHK HK I . (92)
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Proof. The assertion that (92) is an isomorphism follows from the assertion that
(91) is an isomorphism by ‘localization at m’ (taking a little care because the
Hecke algebra for Y0pqq and Y p1q are not quite identically defined, the former
omitting the prime above q . For a more detailed treatment of this point, please
see [21, Lemma 6.20]).

So it is enough to prove the first assertion. Everything will be with Z{pn

coefficients. First note that the two natural ways of making a map

H˚pY p1qq bHK HK I bHI HI K ÝÑ H˚pY p1qq.

(that is, first contracting the first two coordinates, or first contracting the second
two coordinates) both coincide; similarly the other way around. We make the
rest of the argument in a more abstract setting.

Suppose R1, R2 are two rings, and we are given an pR1, R2q-bimodule M12

and an pR2, R1q-bimodule M21, giving associated functors

Fp´q “ ´bR1 M12, Gp´q “ ´bR2 M21

from (right) R1-modules to (right) R2-modules and vice versa, respectively.
We assume that F,G define an equivalence of categories, that is, there are

natural equivalences from FG to the identity functor and from G F to the
identity functor. (In our setting above R1 “ H1K , R2 “ H1I —the primes denote
localization at the ideal of HK induced by m – and the bimodules are H1K I ,H1I K ;
the assumptions are satisfied by Lemma 4.5.)

Next let X be an R1-module, let Y be an R2-module. (In our setting these are
given by the localized homology of Y p1q and Y0pqq, respectively.) Suppose also
we are given maps α : FpXq Ñ Y, β : GpY q Ñ X in such a way that the induced
maps

GpFpXqq
Gpαq
ÝÑ GpY q

β
ÝÑ X (93)

FpGpY qq
Fpβq
ÝÑ FpXq α

ÝÑ Y (94)

arise from the specified maps G F Ñ id and FG Ñ id.
Then the maps FpXq Ñ Y and GpY q Ñ X must be surjections (by inspection

of (93) and (94)); then in the diagram GpFpXqq Ñ GpY q Ñ X we have a
composite of surjections giving an isomorphism, so both are isomorphisms; in
particular, GpY q Ñ X and FpXq Ñ Y must be isomorphisms.

Applied to our original context, this concludes the proof of the first assertion
of the Lemma.

Note also that inside HI we have a copy of the monoid algebra krX`˚ s, namely,
the action of ‘Uq-operators’ Iqχ Iq for χ P X`˚ (see (38) for identification of
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X˚ with a coset space; X`˚ is the positive cone corresponding to the Borel
subgroup B). Each element t P T_pkq defines a character χt : krX`˚ s Ñ k of
this monoid algebra: t corresponds (by ‘Local Langlands’, easy in this split case)
to an unramified character ApQqq Ñ kˆ, that is, to a homomorphism X˚ Ñ kˆ

and then we just take the linear extension

χt : krX`˚ s Ñ k. (95)

Using the previous Lemma, it is easy to compute the action of this monoid
algebra:

COROLLARY 6.7. Suppose that q is part of a Taylor–Wiles datum. Then the
generalized eigenvalues of krX`˚ s acting on H˚pY0pqq, kqm are all of the form
χFrobT , where FrobT P T_pkq is conjugate to the Frobenius at q, and the notation
is defined in (95).

The corollary asserts just the usual relationship between ‘Tq eigenvalues at
level 1 and Uq eigenvalues at level q .’ We omit the proof; it follows from the
prior Lemma and a straightforward computation.

REMARK. Let H˚pY0pqq,Z{pnqm,χFrobT be the summand of H˚pY0pqq,
Z{pnqm corresponding to the χFrobT -eigenspace of krX`˚ s. For later use, we
note that there is an isomorphism:

H˚pY0pqq,Z{pnqm,χFrobT – H˚pY p1q,Z{pnqm (96)

where the map from left to right is the pushforward π˚, and an inverse in the
other direction is given by the pullback π˚ together with projection to the χFrobT

eigenspace.
To see these are inverses we compute in HI : with reference to the actions of

(91), the forward (pushforward) map corresponds to eK P HI K , and the reverse
map corresponds to |W |eK q P HK I where q P SrX`˚ s ãÑ HI is chosen to realize
to the projection on the χFrobT eigenspace, and eK q means the product of eK P

HK I with q P HI . (See remarks after (49)).
When we compose them we get |W |eK q P HI or |W |eK qeK P HK ; to see,

for example, that the former acts as the identity endomorphism on H˚pY0pqq,
Z{pnqm,χFrobT , observe that it can be written as

ř

wPW ewq with ew “ Iw I , and
then we just use the fact that q annihilates all the krX`˚ s-eigenspaces except the
one indexed by FrobT , whereas the ew permutes the various eigenspaces.
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6.8. Adding level q structure continued: The homology at level
Y1pq, nq. This section together with the previous and subsequent ones—
Sections 6.5, 6.8, 6.11—all gather some ‘standard’ properties of passing
between level 1 and level q . So continue with q as in the prior Section, that is,
part of a Taylor–Wiles datum of level n.

We now consider the homology of Y1pq, nq—as defined in (80)—and the
action of its Hecke algebra at level Y1pq, nq. Now this homology is basically
glued from the homology of Y0pqq: if we letF be the pushforward of the constant
sheaf k from Y1pq, nq to Y0pqq, then F is a successive extension of copies of the
constant sheaf k, in a Hecke equivariant way.

We state some consequences of this more formally:

LEMMA 6.9. Assume that q is part of a Taylor–Wiles datum of level n. Assume
local–global compatibility for Y0pqq, in the sense described after (91); let other
assumptions be as in Section 6.1. Let q, δ be as in (18). Then the homology
H jpY1pq, nq,Zpqm vanishes for j R rq,q` δs.

Proof. Clearly we can replace the role of Zp by Fp “ k, and then by the remark
before the proof, it is enough to prove the same for Y0pqq. By (92), it suffices to
prove the same vanishing statement for Y p1q with Fp “ k coefficients. But this
is part of our assumption (7(a) from Section 6.1).

Now we want to say that this relationship between the homology of Y1pq,
nq and Y0pqq is equivariant for Hecke operators at q . The full Hecke algebra
is somewhat complicated and we just deal with its ‘positive, commutative
subalgebra.’ Set ĂX˚ to be the quotient of ApQqq by the subgroup pnApZqq.
Denote by ∆q the quotient of Qˆq by the subgroup of Zˆq of index pn . Therefore

∆q and ĂX˚ depend on n but we suppress that from the notation for simplicity.
We may identify

ĂX˚ “ X˚pAq b∆q,

and we think of ĂX˚ as a thickened version of the character lattice X˚pAq. From
the valuation ∆q Ñ Z we get

ĂX˚ Ñ X˚ (97)

and we can define the ‘positive cone’ ĂX˚` Ă ĂX˚ as the preimage of X`˚ .
Let I be an Iwahori subgroup of GpQqq, and I 1 Ÿ I the subgroup

corresponding to the covering Y1pq, nq, that is, I{I 1 » pZ{pnqr . Then there is
a natural map from ZprĂX`

˚ s to the Iwahori–Hecke algebra at level I 1 sending
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χ P ĂX˚ to the coset I 1χ I 1. In particular, we get an action of ZprĂX`
˚ s on the

homology of Y1pq, nq.

LEMMA 6.10. Any generalized eigenvalue of krĂX`
˚ s acting on H˚pY1pq, nq,

kqm is also a generalized eigenvalue of krĂX`
˚ s acting on H˚pY0pqq, kqm via the

map krĂX`
˚ s Ñ krX`˚ s induced by (97).

Thus, by Corollary 6.7, we get a splitting

H˚pY1pq, nq, kqm “
à

FrobT PT_pkq

FrobT„ρpFrobqq

pH˚pY1pq, nq, kqqm,χFrobT
(98)

into the sum of generalized eigenspaces associated to the characters χFrobT :

krĂX`
˚ s Ñ k. (In the subscript,„ means ‘is conjugate to.’) Again, this is nothing

but a fancy way of talking about the decomposition into ‘Uq-eigenspaces.’ The
only point to note is that the decomposition is canonically indexed by elements
of T_pkq conjugate to the Frobenius.

Proof. Write for short G “ GpQqq; let I be an Iwahori subgroup of G, and I 1 Ÿ
I the subgroup corresponding to the covering Y1pq, nq, that is, I{I 1 » pZ{pnqr .
We prove the same statement in cohomology and without the m; the desired
statement follows by dualizing and localizing.

By the discussion of Section 2.6 we can identify

H˚pY1pq, nq, kq » Ext˚kGpkrG{I 1s,Mq

H˚pY0pqq, kq » Ext˚kGpkrG{I s,Mq

where M is the direct limit of cochain complexes of a family of coverings,
obtained by adding more and more level structure at q .

Claim: We may filter krG{I 1s by G-submodules F0 Ă F1 Ă F2 Ă ¨ ¨ ¨ such
that:

(i) each successive quotient F i`1{F i is isomorphic as G-module to a sum of
copies of krG{I s,

(ii) For every χ PĄX`
˚ , the action of I 1χ I 1 preserves the filtration, and the action

on the quotients coincides with the action of Iχ I .

Assuming the existence of this filtration, the result follows easily: we get long
exact sequences of the form

Ext j
kGpF

i´1,Mq Ñ Ext j
kGpF

i ,Mq Ñ Ext jpkrG{I s,Mq
À

e Ñ

https://doi.org/10.1017/fmp.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.6


A. Venkatesh 66

and these are equivariant for the action of I 1χ I 1, which acts by via Iχ I on the
right-hand summand. The result follows immediately by a descending induction.

To construct the desired filtration regard krG{I 1s as the compact induction
from I to G of the I -representation krI{I 1s, that is,

krGs bkrI s krI{I 1s

In particular, ∆ “ I{I 1 acts by G-endomorphisms on krG{I 1s, which is the
action ‘by right multiplication.’ This action of δ P ∆ coincides with the action of
I 1δ I 1 and, in particular, commutes with the action of krĂX`

˚ s.
Now we filter krG{I 1s by the kernels krG{I 1sxm jy of successive powers m j

of the maximal ideal m in kr∆s. This filtration is stable for krĂX`
˚ s because the

actions of ∆, krĂX`
˚ s commute. Also the j th term of the resulting filtration is

thus
F j “ krGs bkrI s kr∆sxm jy

and the j th graded is just krGs bkrI s
xm j y

xm j`1y
, that is, a direct sum of copies of

krG{I s, as claimed.
It remains to check assertion (ii) in the Claim. For any y Pm j´1, multiplication

by y gives a map
F j{F j´1 Ñ F1 “ F1{F0

and a suitable sum of such maps is an isomorphism (as we see by checking
the corresponding assertion for kr∆s). Since these multiplication maps commute
with the action of krĂX`

˚ swe are reduced to computing the action of I 1χ I 1 on F1;
now F1 is identified with krG{I s is a natural way and the assertion is clear.

6.11. Adding level q structure continued: Galois representations for level
Y1pq, nq. This section and the prior two Sections 6.5, 6.8, 6.11 all gather some
‘standard’ properties of passing between level 1 and level q . We now consider
more closely the action of the Iwahori–Hecke algebras at level Y1pq, nq and
formulate local–global compatibility. First let us look at the Galois side.

LEMMA 6.12. Let q be a Taylor–Wiles prime of level n and assume
that the unramified representation ρ|GQq has image inside T_. Then
any deformation of ρ|GQq

can be conjugated to one taking values in
T_. In particular, any such deformation of ρ|GQq

actually factors through
Gab

Qq
» profinite completion of Qˆq .

Proof. We may present the tame quotient of GQq as xF, t : Ft F´1 “ tqy, where
t is a generator of tame inertia.

https://doi.org/10.1017/fmp.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.6


Derived Hecke algebra and cohomology of arithmetic groups 67

Suppose that A is an Artin local ring with maximal ideal m, and md “ 0.
We are given F, t in G_pAq that satisfy Ft F´1 “ tq , where t reduces to the
identity in G_pkq and F reduces to (after conjugating) a strongly regular element
of T_pkq. Conjugating, we may suppose that F belongs to the maximal torus
T_pAq. We prove by induction on d that this forces t P T_pAq too. By the
inductive hypothesis (obvious for d “ 1) the image of t in G_pA{md´1q belongs
to T_pA{md´1q. Write thus t “ t0δt where t0 P T_pAq and δt P G_pAq lies in
the kernel of reduction modulo md´1.

Now in fact t0 lies in the kernel of reduction modulo m, and so t0 and δt actually
commute; indeed, t0 commutes with anything in the kernel of reduction modulo
md´1. Also δq´1

t “ e. (To check these statements, just compute in the formal
group of G_ at the identity.) Now, Ft F´1 “ tq so that

Fpt0δtqF´1pt0δtq
´1 “ pt0δtq

q´1 P T_pAq.

But the left-hand side equals t0 pAdpFqδt ¨ δ
´1
t q t´1

0 , and so

AdpFqδt ¨ δ
´1
t P T_pAq

and since F is strongly regular this means that δt P T_pAq as desired.

We now want to connect the Galois deformation ring relevant to Y1pq, nq with
the Iwahori–Hecke algebra.

Let q be a Taylor–Wiles prime of level n. Suppose fixed an element FrobT P

T_pkq conjugate to the Frobenius at q . Consider a deformation σ : GQ Ñ

G_pRq of ρ, where one allows now ramification at q , and R is an Artin local
ring with residue field k. Then we can uniquely conjugate σ so its restriction to
GQq factors as

Gab
Qq
» xQˆq ÝÑ T_pRq,

and the image of a uniformizer in Qˆq reduces to FrobT . This map factors through
(the profinite completion of) Qˆq {p1` qZqq. Restricting to Fˆq we get

Fˆq Ñ T_pRq

and pairing with characters of T_ we get Fˆq ˆ X˚pT_q Ñ R˚; by the duality
of T_ and A, this is the same thing as

ApFqq Ñ R˚. (99)

We emphasize that the map (99) depended on the choice of a toral element
FrobT conjugate to Frobenius; changing this element changes the map through
the action of the Weyl group.
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Let Runiv
SYtqu be Mazur’s universal deformation ring for ρ, allowing ramification

at q . By our assumptions (Section 6.2) on the existence of Galois representations,
there is a map

Runiv
SYtqu Ñ TK1pq,nq,m,

where K1pq, nq is the level structure for Y1pq, nq. By means of this map, Runiv
SYtqu

acts on H˚pY1pq, nq,Zpqm, And, in particular, on the summand H˚pY1pq, nq,
Zpqm,FrobT

q
under (98). Thus, by (99), we get an action of ApFqq this cohomology

group.
Now the assumption of local–global compatibility alluded to in Section 6.2 is

a strengthened version of the following:

Local–global compatibility: The action ApFqq ýH˚pY1pq, nq,
Zpqm,FrobT

q
just defined coincides with the ‘geometric’ action, that is,

wherein ApFqq acts by deck transformations on Y1pq, nq (see (80)).

By ‘strengthened version,’ we mean that we require a similar assertion at a
derived category level, not just at the level of cohomology, and we also require
the assertion for several auxiliary primes q rather than a single one. For details,
see [14, Section 13.5].

We say a deformation of ρ|GQq is of ‘inertial level ď n’ if, when considered
as a representation of Qˆq by Lemma 6.12, and restricted to Fˆq , it factors through
the quotient Fˆq {pn . We denote by Runiv,ďn

SYtqu the quotient of Runiv
SYtqu that classifies

deformations of ρ such that ρ|GQq has inertial level ď n. Explicitly, Runiv,ďn
SYtqu is

the quotient of

Runiv
SYtqu{xt ´ 1 : t is in the image of pnApFqq under (99)y. (100)

Then local–global compatibility implies that the action of Runiv
SYtqu on the

homology of Y1pq, nq factors through Runiv,ďn
SYtqu , according to our previous

discussion.

7. Patching and the derived Hecke algebra

We continue with the notation and assumptions of the previous section
Section 6; see in particular Sections 6.1 and 6.2. That section was primarily
setup, and now we get down to proving that the global derived Hecke algebra
is ‘big enough,’ in the sense discussed around (2). The main result is Theorem
7.6.

We use the patching of the Taylor–Wiles method; more specifically, we use
the version of that method that was discovered [9] by Calegari and Geraghty,
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which applies to situations where the same Hecke eigensystem occurs in multiple
degrees. We also use heavily the presentation of the Calegari–Geraghty method
given by Khare and Thorne [21].

7.1. Deformation rings and chain complexes at level Qn. Fix now a
Taylor–Wiles datum Qn of level n. (We abusively use Qn both to denote the
Taylor–Wiles datum and simply the set of primes associated to that datum.)

Recall the definition of Y ˚1 pQnq from Section 6.3: it is the fiber product of
coverings Y1pq, nq Ñ Y p1q over q P Qn . We now collect together various results
about the homology of Y ˚1 pQnq, which are essentially the same results as those
already discussed for Y1pq, nq, but using all the primes in Qn instead of just tqu.

LEMMA 7.2. The homology H jpY ˚1 pQnq,Zpqm vanishes for j R rq,q` δs.

Proof. As in Lemma 6.9.

Just as in (98), this homology group is split (by ‘U -operators’) into summands
indexed by collections FrobT

q P T_pkq pq P Qnq, where each FrobT
q is conjugate

to the Frobenius at q . In particular, since the Taylor–Wiles datum is equipped
(Section 6.3) with a specific choice of such a FrobT

q for each q P Qn , we can
consider the summand

H˚pY ˚1 pQnq,Zpqm,FrobT
Qn
Ă H˚pY ˚1 pQnq,Zpqm (101)

indexed by these prescribed lifts.
Recall from (81) that Y ˚1 pQnq Ñ Y0pQnq is Galois, with Galois group Tn . Let

us introduce notation for the deformation rings of interest to us: let

RQn “ universal deformation ring at level S
š

Qn ,
Rn “ quotient of RQn classifying deformations of inertial level
ď n at primes in Qn. (102)

For example, in the case when Qn “ tqu this was the ring Runiv,ďn
SYtqu discussed

around (100).
By the discussion of (99) and after, we get a morphism ApFqi q{pn Ñ Rˆn , and

therefore we get (see (81)):
Tn Ñ Rˆn .

What we know (local–global compatibility, assumed in Section 6.11) is that
the natural action of Tn (deck transformations) on homology of Y ˚1 pQnq is
compatible with its action via Tn Ñ Rˆn . To say differently, we get a map

Sn :“ Z{pnrTns Ñ Rn{pn, (103)
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and the natural action of Sn on the Z{pn homology of Y ˚1 pQnq is compatible
with that via the map to Rn{pn .

Now consider the complex of singular chains

rCn “ ChainspY ˚1 pQnq; Z{pnq

with Z{pn coefficients. We think of it as a complex of Sn modules, because of
the action of Tn by deck transformations on Y ˚1 pQnq. It is quasi-isomorphic
to a bounded complex of finite free Sn-modules and we have canonical
identifications:

H˚ rCn » H˚pY ˚1 pQnq,Z{pnq (104)

H˚HomSnp
rCn,Z{pnq » H˚pY0pQnq,Z{pnq (105)

H˚pĂCn bSn Z{pnq » H˚pY0pQnq,Z{pnq. (106)

Note that rCn is a free Sn-module, with basis given by the characteristic
functions of an arbitrarily chosen set of representatives for Tn-orbits on
singular simplices. Therefore, the homology of HomSnp

rCn,Z{pnq computes
the homomorphisms from rCn to Z{pn in the derived category of Sn-modules. By
composition of homomorphisms in this derived category, we get a map

H˚

´

HomSnp
rCn,Z{pnq

¯

looooooooooooomooooooooooooon

»H˚pY0pQnq,Z{pnq

ˆExt˚Sn
pZ{pn,Z{pnq

looooooooomooooooooon

»H˚pTn ,Z{pnq

Ñ H˚

´

HomSnp
rCn,Z{pnq

¯

looooooooooooomooooooooooooon

»H˚pY0pQnq,Z{pnq

.

(107)
With respect to the identifications noted underneath the respective terms, this
is precisely the ‘natural’ action of H˚pTn,Z{pnq on H˚pY0pQnq,Z{pnq. This
natural action arises thus: the covering Y ˚1 pQnq Ñ Y0pQnq has covering group
Tn , that is, can be regarded as a map

Y0pQnq Ñ BTn (108)

from Y0pQnq to the classifying space of Tn; this allows one to pull back
cohomology classes from Tn and take cup product. The coincidence of (107)
and this ‘natural action’ is a general fact; for lack of a reference we sketch a
proof in Section B.4.

It is possible to ‘cut down’ rCn in a fashion that corresponds to the summand
(101), as is explained in [21] (see Lemma 2.12 thereof, and surrounding
discussion). This can be done compatibly for Y0pQnq and Y ˚1 pQnq and thus one
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gets a perfect complex Cn of Sn-modules, equipped with identifications that are
analogous to (104) and (105):

H˚pCn; Z{pnq » H˚pY ˚1 pQnq,Z{pnqm,FrobT , (109)
H˚pHomSnpCn,Z{pnqq » H˚pY0pQnq,Z{pnqm,FrobT (110)

and again the action of Ext˚Sn
pZ{pn,Z{pnq on the latter group corresponds to

the natural action by pulling back cohomology classes via (108). (As a sanity
check on this, note that the action of H˚pTn,Z{pnq on H˚pY0pQnq,Z{pnq

indeed does preserve the splitting into summands of the type (101); one can
see this directly by seeing that H˚pTn,Z{pnq, considered inside the derived
Iwahori–Hecke algebra, commutes with the ‘positive subalgebra’ used to define
the splitting (101).)

7.3. Extracting the limit. Now we ‘pass to the limit’ as per Taylor–
Wiles and Calegari–Geraghty. The idea is roughly speaking to extract, by
a compactness argument, a subsequence of n along which the Cn, Sn, Rn

are compatible, and then get limits C,S,R by an inverse limit. Usually in
modularity lifting one is only concerned with the limit of the process; but in
our case we also want to remember some facts about how this relates to the
Cn, Sn, Rn . A discussion of this process which emphasizes exactly what we need
is given in [14, Section 13], see in particular Theorem 13.1 therein.

We choose a sequence of Taylor–Wiles data Qn with n Ñ8. After replacing
the Qn by a suitable subsequence and then reindexing—that is to say, replacing
Qi by Qni for some ni ą i , and then regarding Qni as a set of Taylor–Wiles
primes of level i—we can arrange that we can ‘pass to the limit.’ After having
done this, we obtain at last the following data:

(a) A sequence of Taylor–Wiles data Qn of level n.

Recall to this we have associated coverings Y ˚1 pQnq Ñ Y0pQnq Ñ Y p1q,
as in Section 6.3, and the Galois group of the former map is called Tn; also
(103) we set Sn “ Z{pnrTns, the group algebra of Tn .

(b) With S “ Zprrx1, . . . , xRss as in Section 6.4, a complex C of finite free
S-modules, equipped with a quasi-isomorphism

CbS Sn » Cn, (111)

where Cn is as described in Section 7.1: a version of the chain complex of
Y ˚1 pQnq with Z{pn coefficients, but localized at m and FrobT .
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(c) A quotient Rn of Rn , defined as follows:
Recall from (102) the definition of Rn; a quotient of the crystalline
deformation ring at level S

š

Qn . We set

Rn “ Rn{ppn,mKpnqq (112)

for a certain explicit function K pnq, chosen so that, for example, action of
Rn on H˚pCnq automatically factors through Rn . We can and will assume
K pnq ě 2n. (The main function of K pnq is to make Rn Artinian, while still
retaining enough information about all of Rn for our purposes.)

(d) A ‘limit deformation ring’ R » Zprrx1, . . . , xR´δss equipped with maps
SÑ R and maps RÑ Rn,R � Rρ which are compatible, in the sense that
this diagram commutes:

S //

��

R

��

// Rρ

��
Sn

// Rn
// Rρ{ppn,mKpnqq

(113)

(Recall here that Rρ is the deformation ring of ρ, with crystalline conditions
imposed, without adding any level, cf. Section 6.2.)
Moreover, the composite S Ñ R Ñ Rρ factors through the augmentation
S Ñ Zp; and also the left-hand square induces an isomorphism

RbS Sn » Rn. (114)

(e) An action of R on H˚pCq, compatible with the S action, and with the maps
H˚pCq Ñ H˚pCnq, where R acts on H˚pCnq via R Ñ Rn .

(f) An identification of

H˚pHomSpC,Zpqq
„
ÝÑ H˚pY p1q,Zpqm, (115)

compatible under (111) with the identification H˚pHomSnpCn,Z{pnqq »

H˚pY p1q,Z{pnqm that is the composition of (110) with the pushforward.
(This is described in dual form in [14, Theorem 13.1(d)] but one gets
similarly this result, and the statement about compatibility is just a matter
of looking at the definition of the map (115).

(g) (These last results use heavily the formal smoothness, assumption (e) from
Section 6.2): C has homology only in degree q , and its homology there
HqpCq is free as R-module. Moreover, one has an ‘R “ T result’

RbS Zp » Rρ » image of TK0 in End HqpY p1q,Zpqm. (116)
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7.4. The structure of S Ñ R. The limit process has given a map of rings
S Ñ R, where S and R are formal power series rings that represent, roughly
speaking, ‘limits’ of the rings Sn, Rn as n Ñ8.

As in (77), the representation Π gives a lift ρ to Zp of the residual
representation ρ; this corresponds to an augmentation Rρ Ñ Zp. Thus we also
get an augmentation

f : R Ñ Zp,

and the pullback of this to S is the natural augmentation of S Ñ Zp ((d) of
Section 7.3). In particular, the kernel of f on S is precisely the ideal I.

Our assumptions imply that the map S Ñ R is surjective. Indeed, because S
is complete for the I-adic topology it is enough to verify that S{I Ñ R{IR is
surjective. But R{I is a Hecke ring by (116) and so isomorphic to Zp by (75).
Note, in particular, that this also means that IR is precisely the kernel of f .

The following easy lemma is now useful for explicit computations.

LEMMA 7.5. We can choose generators xi , y j for S,R, that is,

S “ Zprrx1, . . . , xRss, R “ Zprry1, . . . , yR´δss

such that the xi , y j s lie in the kernel of the compatible augmentations

S Ñ R Ñ Zp,

and the map SÑ R is given by xi ÞÑ yi for i ď R´ δ and xi ÞÑ 0 for i ą R´ δ.

Proof. Write f : R Ñ Zp for the augmentation. Abstractly, R » Zprru1, . . . ,

u R´δss where all the ui lie in the maximal ideal. Set yi “ ui ´ f puiq P kerpRÑ
Zpq. Then still R » Zprry1, . . . , yR´δss. We have noted above that J :“ IR is
precisely the kernel of the augmentation R Ñ Zp; thus, the yi freely span as
Zp-module the quotient J{J2.

Lift the yi to x1, . . . , xr P kerpS Ñ Zpq. Necessarily the xi span a saturated
Zp-submodule of rank s inside I{I2

» Zs
p; they are Zp- independent because any

linear relation
ř

ai xi P I2 (with ai P Zp) would give rise to a corresponding linear
relation in R, a contradiction. (Here we say that a submodule Q of a free Zp-
module Q1 is saturated if the quotient Q1{Q is torsion-free.) Similarly, they are
saturated because given x 1 and pa1 . . . , arq with gcdpa1, . . . , arq “ 1 and px 1 “
ř

ai xi ` I2, we would get a corresponding relation in R, again a contradiction.
Now extend the xi to a full Zp-basis xr`1, . . . , xs for I{I2. Each x j for j ą r

is sent under S Ñ R an element of J Ă R, which means that it can be written
as a formal polynomial Pjpy1, . . . , yrq in y1, . . . , yr , with no constant term; so
replacing x j by x j ´ Pjpx1, . . . , xrq we may suppose that x j ÞÑ 0 in R.
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Now we come to the main theorem of the section.

THEOREM 7.6. Let assumptions be as in Sections 6.1 and 6.2. The cohomology
H˚pY p1q,Zpqm is generated, as a module over the strict global derived Hecke
algebra (see Sections 2.13 and 2.14 for definition with Zp coefficients), by its
minimal degree component H qpY p1q,Zpqm.

Proof. We use the setup of the Taylor–Wiles limit process (Section 7.3),
beginning with the fact that the natural map

H qpHomSpC,Zpqq b Ext j
SpZp,Zpq� H q` jpHomSpC,Zpqq (117)

is a surjection for all j : by (g) of Section 7.3 and Lemma 7.5, we can
choose coordinates so that S » Zprrx1, . . . , xRss, and the complex C is quasi-
isomorphic to a sum of copies of S{pxR, . . . , xR´δ`1q concentrated in a
single degree. So the surjectivity of (117) follows from the ‘Koszul algebra’
computations in Appendix B.

Examine now the diagram, where all the maps are the obvious ones;

(118)
Here, the middle square ‘commutes’ in the sense that the image of px,U yq is
the same as the image of pV x, yq, that is, U, V are adjoint for the pairing. The
top and bottom squares commute. All this is obvious, except for perhaps the
bottom square which involves change of rings, so let us talk through it: The map
S Ñ Sn induces a forgetful map T from the derived category of Sn-modules to
the derived category of S-modules. Take

α P H qpHomSnpCbS Sn,Z{pnqq, β P Exti
Sn
pZ{pn,Z{pnq.

We can regard α as a map C bS Sn Ñ Z{pnrqs and β as a map Z{pnrqs Ñ
Z{pnrq ` is, both in the derived category of Sn-modules. Applying the functor
T , we see that Tβ ¨Tα “ T pβαq. On the other hand, Tα is simply the morphism
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CbS Sn Ñ Z{pnrqs considered as a map of S-modules. If we precompose with
γ : C Ñ C bS Sn , considered as a map of S-modules, we get f pαq. Similarly,
T pβαqγ “ f pβαq ¨ γ . So Tβ. f pαq “ f pβαq: that is the commutativity of the
bottom square.

It follows from the Lemma of Section 6.4 that the composite U ˝ U 1 is
surjective. Also the map V is surjective (because the cohomology of HomSpC,
Zpq is torsion-free, by (115) and assumption 7(a) of Section 6.1). Tracing
through the above diagram, this is enough to show that the image of Q generates
the codomain of Q.

Now, recall from (111) the quasi-isomorphism C bS Sn » Cn; we have
therefore shown that H˚pHomSnpCn,Z{pnqq is generated by H qpHomSnpCn,

Z{pnqq as a module over Ext˚Sn
pZ{pn,Z{pnq. As in the discussion after (107),

this is equivalent to saying that H˚pY0pQnq,Z{pnqm,FrobT is generated by its
degree q component as a H˚pTn,Z{pnq-module, that is,

H qpY0pQnq,Z{pnqm,FrobT b H˚pTn,Z{pnq� H˚pY0pQnq,Z{pnqm,FrobT .

(119)
In what follows, let us write HI ,HK for the tensor product of (derived)

Iwahori–Hecke algebras HI,q and derived Hecke algebra Hq over q P Qn;
and write HK ,HK I ,HI K ,HI for the (nonderived) algebras and bimodules of
Section 6.5, but tensoring over all q P Qn . All of these will be taken with Z{pn

coefficients.
Note that the action of H˚pTn,Z{pnq on H˚pY0pQnq,Z{pnq factors through

the action of HI (for example, see the Remark in Section 2.10). So H˚pY0pQnq,

Z{pnqm,FrobT is generated in degree q over HI . Taking the sum over all possible
lifts FrobT , as in (98), we see that H˚pY ˚0 pQnq,Z{pnqm is also generated in
degree q over the derived HI .

Now, each of the following maps are surjective:

H qpY p1q,Z{pnqm b HK I � H qpY0pQnq,Z{pnqm,

H qpY0pQnq,Z{pnqm bH j
I � H q` jpY0pQnq,Z{pnqm,

H q` jpY0pQnq,Z{pnqm b HI K � H q` jpY p1q,Z{pnqm,

where the second statement is what we just proved, whereas the first and third
statement come from Lemma 6.6. Also there is a map pHK IbH j

I bHI K q ÑH j
K

compatible with the respective actions, just arising from composition of Exts. We
get

H qpY p1q,Z{pnqm bH j
K � H q` jpY p1q,Z{pnqm.

Passing to the limit (as in the discussion of Section 2.13) concludes the proof.

https://doi.org/10.1017/fmp.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.6


A. Venkatesh 76

8. The reciprocity law

In Section 7, we proved, conditional under assumptions (Sections 6.1, 6.2)
on the existence of Galois representations attached to modular forms and other
assumptions that simplify the integral situation (Section 6.1), that the global
derived Hecke algebra is ‘big enough,’ in the sense discussed around (2).

We now turn to the question mentioned in Section 1.3: we index elements of
this global derived Hecke algebra by means of a certain dual Selmer group. This
is achieved in Theorem 8.5. This Theorem is not an end in itself; rather, it just
gives the correct language for us to formulate the central conjecture of the paper,
Conjecture 8.8.

8.1. The coadjoint representations. We are interested in the coadjoint
representation, that is, the dual of the representation of G_ on its Lie algebra
g_. Denoting by rg the Z-dual to this Lie algebra, we obtain

Ad˚ : G_ Ñ GLprgq

which we regard as a morphism of algebraic groups over Z. (Why the coadjoint
representation rather than the adjoint? They are isomorphic for G semisimple, at
least away from small characteristic. However, canonically what comes up for
us is the coadjoint; for example, when one works with tori, as in Section 9.1, the
difference is important.)

In particular, given a representation σ : GQ Ñ G_pRq we denote by Ad˚σ :

GQ Ñ GLpRbZrgq the composition of σ with the coadjoint representation. When
σ is valued in Zp, we write Ad˚σn for the reduction of Ad˚σ modulo pn .

8.2. Galois cohomology. We freely use the theory of Fontaine and Laffaille
which (in good circumstances) parameterizes crystalline representations of
GalpQp{Qpq, even with torsion coefficients. For a summary, see Section 4 of [2].

Fix once and for all the interval r´ p´3
2 ,

p´3
2 s Ă N of Hodge weights. We

say that a representation of GalpQp{Qpq on a finitely generated Zp-module is
‘crystalline’ if it is isomorphic to a subquotient of a crystalline representation
with Hodge weights in r´ p´3

2 ,
p´3

2 s. This indexing of Hodge weights is useful
for adjoint representations which have weights symmetric around 0.

Recall that for any p-torsion crystalline M we can define

H 1
f pQp,Mq Ă H 1pQp,Mq

which classifies those extensions M Ñ? Ñ 1 which are crystalline; it is in
fact a submodule and it is identified (by Fontaine–Laffaille theory) with a
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corresponding Ext-group in the category of filtered Dieudonné modules. In
particular, this allows one to check that H 1

f is isomorphic to the cokernel of
the map

F0 DpMq 1´Frob
Ñ DpMq, (120)

where DpMq is the associated filtered Dieudonné module. Also, the kernel of
1 ´ Frob in (120) is isomorphic to H 0pQp,Mq. In particular, for M finite we
have

#H 1
f pQp,Mq “

|DpMq|
|F0 DpMq|

¨ #H 0pQp,Mq, (121)

which can be effectively used to compute the size of H 1
f (note: the size of DpMq

and M coincide).
We need to know that the subspaces H 1

f pQp,Mq and H 1
f pQp,M˚q (with

M˚
:“ HompM, µp8q are each other’s annihilators under the local duality

pairing H 1pQp,Mq ˆ H 1pQp,M˚q » Q{Z. This follows from the fact they
annihilate each other (their product would come from an Ext2 in the category of
Fontaine–Laffaille modules, but the relevant Ext2 vanishes by [2, Lemma 4.4])
and a size computation using (121).

8.3. Selmer groups. Let QS be the largest extension of Q unramified outside
S, and let M be a module for the Galois group of QS{Q; thus M defines an étale
sheaf on Zr 1

S s. We write

H 1

ˆ

Z
„

1
S



,M
˙

Ą H 1
f

ˆ

Z
„

1
S



,M
˙

for (respectively) the étale cohomology of M (equivalently the group
cohomology of GalpQS{Qq with coefficients in M), and the subset of this
group consisting of classes that are crystalline at p, that is, classes whose image
in H 1pQp,Mq lies in the subgroup H 1

f pQp,Mq defined above.
Note that we impose no local condition on classes in H 1

f pZr
1
S s,Mq except for

the crystalline condition at p.
We write H 1

f pQ,Mq for the usual Bloch–Kato Selmer group: this is the
subgroup of classes in H 1pGalpQ{Qq,Mq which are unramified away from p,
and crystalline at p. In general, we have an inclusion H 1

f pQ,Mq Ă H 1
f pZr

1
S s,

Mq; the former is more restrictive, requiring that the cohomology class be
unramified at places of S ´ tpu. However, in our applications, M will be
a module such that H 1pQv,Mq vanishes for v P S ´ tpu, and so H 1

f pQ,
Mq “ H 1

f pZr
1
S s,Mq.
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8.4. We follow the notation of the previous section, described in Section 6.1;
in particular, we have an arithmetic manifold Y p1q “ Y pK0q, an automorphic
representationΠ , corresponding to a maximal ideal m of the Hecke algebra; and
an associated Galois representation ρ : GQ Ñ G_pZpq. We let S be the set of
ramified primes for ρ or K0, together with p.

Put

V :“ H 1
f pZ

„

1
S



,Ad˚ρp1qq_, (122)

where we wrote ´_ for Homp´,Zpq. We prove in Lemma 8.9 that both the H 1
f

above and V are (under our assumptions) free Zp-modules of rank δ.
We produce an action of V on H˚pY pK q,Zpqm. To explain it, fix A a maximal

torus of G and let q be a Taylor–Wiles prime of level n, equipped with an element
of T_pkq conjugate to Frobenius at q . Let

Tq “ ApFqq{pn.

From this data we construct:

- A natural embedding (Section 8.17) of

ιq,n : H 1pTq,Z{pnq ãÑ

´

H
p1q

q,Z{pn

¯

m
(123)

into the degree 1 component H p1q of the local, full level, derived Hecke
algebra Hq,Z{pn . (More precisely, we use its completion at the maximal ideal
m.)

- A map
fq,n : H 1pTq,Z{pnq Ñ V{pn. (124)

We have already explained, in a special case, the construction of fq,n in (16).
We briefly outline the general case: Given α P H 1pTq,Z{pnq, we obtain, by
(139), an element α1 in the quotient of H 1pQq,Adρnq by unramified classes;
now, we associate to α the functional sending β P H 1

f pZr
1
S s,Ad˚ρp1qq to the

local pairing xα1, βqyq P Z{pn , where βq is the restriction of β to H 1pQq,

Ad˚ρp1qq.

Finally recall that under our assumptions (7(a) of Section 6.1) , H˚pY p1q,
Zpqm is torsion-free; its reduction modulo pn coincides with H˚pY p1q,
Z{pnqm.

THEOREM 8.5. Let notation and assumptions be as established in Section 6 (in
particular, Sections 6.1, 6.2). Let V be as in (122).
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There exists a function a : Zě1 Ñ Zě1 and an action of V on H˚pY p1q,Zpqm
by endomorphisms of degree `1 with the following property:
p˚q For any n ě 1 and any prime q ” 1 modulo papnq, equipped with a

strongly regular element of T_pkq conjugate to ρpFrobqq, the two actions of
H 1pTq,Z{pnq on H˚pY p1q,Z{pnqm coincide: one via fq,n and one via ιq,n .

The property (*) uniquely characterizes the V action (this is true for any
function a).

In particular, the strict global derived Hecke algebra contains V, and so
also the exterior algebra freely generated by V (the induced map from ^˚V to
endomorphisms of H˚pY p1q,Zpqm is injective).

Note that the uniqueness part of the statement is straightforward, because the
condition pins down the action of V{pr for arbitrarily large r : by Chebotarev,
the images fq,npH 1pTq,Z{pnqq generate V{pn even when restricted to primes
q ” 1 modulo papnq; this basically follows from the existence of Taylor–Wiles
data (see in particular, (142)).

Finally, under a further ‘multiplicity one’ assumption, this result is sufficient
to force the whole derived Hecke algebra to be graded-commutative. We separate
this result from the main analysis because it is inessential to our main goals and
it requires this additional multiplicity one assumption.

Before we state the proposition, we note that, by the argument of (37) together
with [21, Lemma 6.20], the action of global Hecke algebra T̃ on cohomology
induces an action of T̃ on H˚pY p1q,Zpqm.

PROPOSITION 8.6. If H qpY p1q,Zpqm “ Zp, then the image of the full global
derived Hecke algebra T̃ inside End H˚pY p1q,Zpqm in fact precisely coincides
with the exterior algebra generated by V, and, in particular, the global derived
Hecke algebra (acting on m-part of cohomology) is graded-commutative.

This same conclusion of graded commutativity holds, more generally, when
there exists a semisimple Qp-algebra S of (degree-preserving) endomorphisms
of H˚pY p1q,Qpq commuting with T̃ and such that H qpY p1q,Zpqm b Qp has
multiplicity one as a S-module.

REMARK.

- A natural choice for the commuting subalgebra S in Proposition 8.6 is the
Qp-algebra generated by the local underived Hecke algebras at all primes that
are not good. However, the multiplicity one condition is only realistic when
there is a unique tempered representation π8 of GpRq with nontrivial pg,Kq-
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cohomology. If this uniqueness condition is satisfied, then we would likely
expect the multiplicity one condition to be valid in the great majority of cases.

Under the assumptions we are currently working (simply connected group, and
working over Q) only SL2n`1 has this property. However, this unicity of π8
in fact applies whenever we work over a CM base field, or for PGLn over Q.
(Note that, for PGLn with n even, one should enlarge S using the action of
the component group of the archimedean maximal compact.) The analysis of
Sections 6–8 would extend to those cases with only some notational changes.

- That we get an integral isomorphism of T̃ and ^˚V, in the first statement of
the Proposition, is an artifact of our simplifying hypotheses. We do not expect
T̃ to be an integral exterior algebra in general, but corresponding statements
should remain valid bQ.

In general, we would expect the T̃ to be Tb^˚V, where T is the usual Hecke
algebra, after tensoring with Q. But here our assumptions mean that T is just
Zp, and moreover that the conclusion is true integrally.

8.7. Formulation of the conjecture. We are now ready to state the
conjecture, the formulation of which is the main point of this paper. (Although
the trip was fun too.)

The formulation of the conjecture itself rests on the conjecture of Langlands
that associates to Π a motive, or more precisely a system of motives indexed
by representations of the dual group. Unfortunately it is difficult to find a
comprehensive account of this conjecture in print; the reader may consult the
brief remarks in [22] or the appendix of [25].

Continue with notation as in Theorem 8.5. As in the discussion of Sections 1.2
and 1.3, let Mcoad be the motive with Q coefficients associated to Π and the
coadjoint representation of G_, if it exists. A priori, one may not always be able
to descend the coefficients of Mcoad to Q, although we expect this is possible in
most if not all cases. (See discussion in [25, Appendix, A.3]). In what follows
we assume that Mcoad can indeed be descended to Q coefficients; if not one can
simply reformulate the conjecture by replacing Q by a field extension.

Thus there is an identification of Galois modules

étale realization of Mcoad » Ad˚ρ bQp

and there is a regulator map from the motivic cohomology

H 1
motpQ,Mcoad,Zp1qq ÝÑ H 1

f

ˆ

Z
„

1
S



,Ad˚ρp1q
˙

bQp.
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As in Section 1.2.2, the motivic cohomology group on the left-hand side has
been restricted to classes that extend to an integral model. We assume that this
regulator map is an isomorphism. (In general, the appropriate conjecture is that
the regulator, taken to the group of classes that are crystalline at p and unramified
at all primes in S, is an isomorphism. However, by virtue of our assumptions in
Section 6.2, part (e), it is not necessary to explicitly impose ‘unramified at primes
in S.’) Let VQp “ VbQp, and let VQ be those classes in VQp whose pairing with
motivic cohomology lies in Q.

Write H˚pY p1q,´qΠ for the Hecke eigenspace for the character TK0 Ñ Z
associated with Π (see (73)). Our assumptions imply that H˚pY p1q,ZpqΠ “

H˚pY p1q,Zpqm.

CONJECTURE 8.8. Notation as above. With reference to the action

^˚VQp ýH˚pY p1q,QpqΠ

furnished by Theorem 8.5, the action of VQ preserves H˚pY p1q,QqΠ .

Some rather scant evidence is discussed in the next section (Section 9). As we
have mentioned in the introduction, much more compelling is that we have been
able to obtain numerical evidence for a coherent analog of the conjecture, in a
joint work with Michael Harris.

Recall (Section 6.2) we assume that

H 0pQp,Adρq “ H 2pQp,Adρq “ 0 (125)

which implies the same conclusions for Ad˚ρp1q. In particular, H 1pQp,

Ad˚ρp1qq is torsion-free and surjects onto H 1pQp,Ad˚ρp1qq. Finally, H 1
f pQp,

Ad˚ρp1qq is a saturated submodule of H 1pQp,Ad˚ρp1qq and we have an
equality of ranks

rankZp H 1
f pQp,Ad˚ρp1qq “ rankFp H 1

f pQp,Ad˚ρp1qq,

as follows from explicit computation. In particular, H 1
f pQp,Ad˚ρp1qq surjects

onto H 1
f pQp,Ad˚ρp1qq. Also observe that, because of the assumed ‘big image’

(Section 6.2 assumption (b)) of ρ, we have

H 0

ˆ

Z
„

1
S



,Ad˚ρp1q
˙

“ 0, (126)

and so H 1pZr 1
S s,Ad˚ρp1qq is torsion-free.

LEMMA 8.9. Both H 1
f pZr

1
S s,Ad˚ρp1qq and V are free Zp-modules of rank δ.
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Proof. First of all, because the Taylor–Wiles method in this case implies an
R “ T theorem (see (116)) and we are assuming that the Hecke algebra is
isomorphic to Zp (see (75)) we get from a tangent space computation that
H 1

f pZr
1
S s,Adρq “ 0. We now apply Tate global duality to this statement. It

implies both the surjectivity of

H 1

ˆ

Z
„

1
S



,Ad˚ρp1q
˙

�
H 1pQp,Ad˚ρp1qq
H 1

f pQp,Ad˚ρp1qq
, (127)

and the injectivity of

H 2

ˆ

Z
„

1
S



,Ad˚ρp1q
˙

ãÑ
ź

vPS

H 2pQv,Ad˚ρp1qq
looooooooooomooooooooooon

“0 by Section 6.2

(128)

so in fact H 2pZr 1
S s,Ad˚ρp1qq “ 0.

The surjectivity (127) holds also for Ad˚ρp1q, not just the mod p reduction.
This follows because H 1pZr 1

S s,Ad˚ρp1qq surjects onto H 1pZr 1
S s,Ad˚ρp1qq, by

(128); and the induced map

H 1pQp,Ad˚ρp1qq
H 1

f pQp,Ad˚ρp1qq
{p Ñ

H 1pQp,Ad˚ρp1qq
H 1

f pQp,Ad˚ρp1qq

is an isomorphism.
The Euler characteristic formula, taken together with (126), (127), and (128),

allows one to compute

dimH 1
f

ˆ

Z
„

1
S



,Ad˚ρ p1q
˙

“ δ. (129)

Now examine the short exact sequences

H 1pZr 1
S s,Ad˚ρp1qq

p //

j
��

H 1pZr 1
S s,Ad˚ρp1qq

��

// H 1pZr 1
S s,Ad˚ρp1qq

��
H1pQp,Ad˚ρp1qq
H1

f pQp,Ad˚ρp1qq

p // H1pQp,Ad˚ρp1qq
H1

f pQp,Ad˚ρp1qq
// H1pQp,Ad˚ρp1qq

H1pQp,Ad˚ρp1qq

(130)
Since we have seen that j is onto, it follows that the induced maps of vertical
kernels is a short exact sequence; that and (129) imply that

H 1
f

ˆ

Z
„

1
S



,Ad˚ρp1q
˙

» Zδ
p,
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as claimed.

8.10. Cohomological vanishing in the Taylor–Wiles method. In the
Taylor–Wiles method we choose a set of primes Q such that, with SQ “ SY Q,
we have the following properties:

(a) Q is a Taylor–Wiles datum of some level, and

(b) The map H 1pZr 1
SQ s,Adρq Ñ H1pQp,Adρq

H1
f pQp,Adρq

is surjective, and the map

H 2pZr 1
SQ s,Adρq Ñ

ś

vPQ H 2pQp,Adρq is injective.

(Recall that our local assumptions at S mean there is no local cohomology there:
Section 6.2, assumption (e)).

Observe also that if Q is such a set of primes, and Q1 is a further set
satisfying (a) and (b), then certainly Q Y Q1 satisfies (a) and (b) too. Indeed,
the cohomological criteria of (b) are equivalent to asking that

H 1
f

ˆ

Z
„

1
SQ



,Ad˚ρ p1q
˙

Ñ
ź

vPQ

H 1pQv,Ad˚ρp1qq (131)

is injective, and this is stable under enlarging Q (it is equivalent to the same
injectivity on H 1

f pZr
1
S s,´q, since anything in the kernel would be unramified

at Q).
Now, if we choose a system of such data Qn of level n, we can (by passing to

a subsequence and reindexing, for example, as in [14, Section 13.10]) achieve a
new sequence Qn which satisfy the ‘limit properties’ of Section 7.3.

DEFINITION 8.11. A sequence of Taylor–Wiles data Qn of level n is called
convergent if:

- Qn have the cohomological properties stated in (b) above and,

- One can pass to the limit in the sense of Section 7.3, that is, there exists data R,
S,C, fn, gn , and so on, satisfying all the properties enumerated in Section 7.3.

In particular, any sequence of Taylor–Wiles data has a convergent
subsequence, after reindexing the subsequence.

8.12. The tangent spaces to R and S. As in Section 7.4 both R and S are
augmented to Zp:

S Ñ R Ñ Zp,
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and the composite S Ñ Zp is the standard augmentation of S. The kernel of
these augmentations are denoted by J Ă R and I Ă S.

First of all, we set let tR be the ‘tangent space’ to R over Zp, that is to say

tR » Hom˚pR,Zprεs{ε
2q,

where the subscript ˚ means that the homomorphism lifts the natural
augmentation R Ñ Zp. Equivalently, R is the derivations of R{Zp into Zp,
or the Zp-linear dual of J{J2.

We can make exactly the same definition for S. The surjection S � R induces
a surjection I{I2 � J{J2 and thus a natural injection tR Ñ tS with saturated image
(that is, split). We write W for the cokernel of the map on tangent spaces, so we
have an exact sequence

tR ãÑ tS � W. (132)

Then W is a free Zp-module of rank δ.

8.13. Tangent spaces to Rn and Sn. We suppose now that Qn are a
convergent sequence (Section 8.10) of Taylor–Wiles data.

Recall that S,R are defined as ‘limits,’ roughly speaking, of rings Sn Ñ Rn

that occur at level Qn in the Taylor–Wiles process. We recall that Rn is not the full
(crystalline at p) deformation ring RQn at level Qn , but is a ‘very deep’ Artinian
quotient of it.

These rings are also compatibly augmented over Z{pn , that is,

Sn ÝÑ Rn ÝÑ Z{pn

(see the bottom row of (113), and compose with the reduction of the map Rρ Ñ

Zp which arises from our fixed automorphic representation Π ).

LEMMA 8.14. The map RQn Ñ Rn induces an isomorphism upon applying
Hom˚p´,Z{pnrεs{ε2q, where Hom˚ means that the map lifts the natural
augmentations to Z{pn .

Proof. Write A :“ Z{pnrεs{ε2. A map RQn Ñ A gives rise to a deformation
rρn : GQ Ñ G_pZ{pnq that lifts the modulo pn reduction of ρ.

We want to show that RQn Ñ A must factor through Rn . To do so we must
show (see (112)) that the map dies on the K pnqth power of the maximal ideal
mRQn

, and also that ρn automatically has inertial level ď n at primes in Qn

(see page 68 for definition).
Note that the maximal ideal pp, εq of Z{pnrεs{ε2 satisfies pp, εqn`1 “ 0.

Since K pnq ě n ` 1 by assumption, we only need verify that rρn has inertial
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levelď n at all Taylor–Wiles primes. After suitably conjugating, we can suppose
rρn|Qq to have image in T_ (see Lemma 6.12). Restricted to inertia it takes image
inside the kernel of T_pZ{pnrεs{ε2q Ñ T_pZ{pnq; this group has exponent pn ,
and so rρn has inertial conductor ď n.

We also define
tRn “ Hom˚pRQn ,Z{pnrεs{ε2q.

It does not matter whether we use RQn or Rn in this definition, as we just showed.
Similarly we define

tSn “ Hom˚pSn,Z{pnrεs{ε2q.

There is a natural map tRn Ñ tSn induced by Sn Ñ Rn .
Finally define

Wn “ cokernel ptRn Ñ tSnq . (133)

The maps R Ñ Rn and S Ñ Sn give rise to an isomorphism of short exact
sequences as below:

0 // tRn
//

α,„

��

tSn

β,„

��

// Wn

γ,„

��

// 0

0 // tR{pn // tS{pn // W{pn // 0

(134)

This requires some explanation.
First of all, we explain the maps. Note first of all that there is a natural map

tS{pn » Hom˚pS,Z{pnrεs{ε2q, which is an isomorphism. Similarly for R. This
means that there are maps

α : tSn Ñ tS{pn, β : tRn Ñ tR{pn (135)

that are induced by the projections SÑ Sn and RÑ Rn . This explains α, β; and
the map γ is the induced map on cokernels.

Next we see that α, β, γ are isomorphisms.
For S this is the assertion that homomorphism S Ñ Z{pnrεs{ε2 factors

through Sn . Indeed, referring to the coordinate presentation (84) and (85), each
element xi must go to aε for some a P Z{pn , and then p1 ` xiq

pn is carried to
p1`aεqpn

“ 1. For R, we use the fact (114) that we can identify Rn with RbS Sn .
As above, any homomorphism S Ñ Z{pnrεs{ε2 (lifting the augmentation)
factors through Sn , and in particular any homomorphism R Ñ Z{pn , lifting the
natural one, factors through Rn .

Now, the bottom row is exact, by definition and the freeness of W. The top row
is exact at the left because the vertical maps α, β are isomorphisms, and exact at
the right by definition. Then it follows that γ is an isomorphism too.

This concludes the explanation of diagram (134).
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8.15. Tangent spaces to Sn reinterpreted. Let us reinterpret the tangent
space to Sn in a few different (canonical) ways.

By (88) we have an isomorphism

tSn » Ext1
Sn
pZ{pn,Z{pnq. (136)

Now Sn was, by definition (Section 6.4) , the Z{pn- group algebra of the group
Tn; thus, from the above equation, we get a canonical isomorphism

tSn » H 1pTn,Z{pnq. (137)

Next we connect tSn to Galois cohomology. Recall from Lemma 6.12 that,
for any q P Qn , a deformation of ρ|Gq can be conjugated to lie in the torus,
and in particular factors through the profinite completion of Qˆq . Now we can
identify H 1pGq,Ad ρnq with the set of lifts of ρn to G_pZ{pnrεs{ε2q, modulo
conjugacy. This lift sends tame inertia to the kernel of reduction modulo ε. In
particular, having fixed an element of T_pkq conjugate to ρpFrobqq, we get a
canonical isomorphism

H 1pQq,Adρnq

H 1
urpQq,Adρnq

» Hom
`

Fˆq ,LiepT_q b Z{pn
˘

. (138)

Identifying the Lie algebra with X˚pT_q, we get

H 1pQq,Adρnq

H 1
urpQq,Adρnq

» HompFˆq {pn,Z{pnq b X˚pT_q

» HompX˚pAq b Fˆq {pn
loooooooomoooooooon

ApFqq{pn

,Z{pnq (139)

(here the subscript ‘ur’ means unramified) and thus, from (81) and (137)

tSn »
à

qPQn

H 1pQq,Adρnq

H 1
urpQq,Adρnq

(140)

where we emphasize that the isomorphism depends on the choice of an element
of T_pkq conjugate to Frobenius at q , for each q P Qn .

There is an isomorphism similar to (136) for tS; in particular, tS » Ext1
SpZp,

Zpq and more usefully

tS{pn » Ext1
SpZp,Z{pnq.

The composite

Ext1
Sn
pZ{pn,Z{pnqÝÑExt1

SpZ{pn,Z{pnq Ñ Ext1
SpZp,Z{pnq. (141)

Gives the natural identification—map β from (134)—of Ext1
Sn
pZ{pn,Z{pnq “

tSn with Ext1
SpZp,Z{pnq “ tS{pn .
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8.16. Vn and Galois cohomology. We exhibit now a canonical surjection

tSn � V{pn. (142)

In fact, this surjection uses no more than the fact that Qn is a Taylor–Wiles datum.
If we suppose that Qn are a convergent sequence (Section 8.10) of Taylor–Wiles
data, we see that this actually descends to an isomorphism

Wn » V{pn, (143)

that is, Wn (defined in (133)) is isomorphic to HompH 1
f pZr

1
S s,Ad˚ρp1qq,Z{pnq.

As before, let SQn be the union of the set S with the set Qn . Examine:

Hom˚pRQn ,Z{pnrεs{ε2q //

„

��

Hom˚pSn,Z{pnrεs{ε2q //

„

��

Wn

“

��
H 1

f pZr
1

SQn
s,Adρnq

ϕ //
ś

vPQn

H1pQv ,Adρnq

H1
urpQv ,Adρnq

// Wn

(144)

The first vertical map is just the computation of tangent spaces to deformation
rings (working over Z{pn rather than a field), the second vertical map is (140),
and ϕ is restriction in Galois cohomology.

There is now a natural pairing:

H 1
f

ˆ

Z
„

1
S



, Ad˚ρn p1q
˙

ˆWn ÝÑ Z{pn (145)

which, we emphasize again, depends on the choice of toral elements conjugate
to Frobenius at each prime in Qn . To be explicit, an element of Wn is represented
by a collection

pβvq P
ź

vPQn

H 1pQv,Adρnq

H 1
urpQv,Adρnq

,

modulo imagepϕq; to pair α P H 1
f pZr

1
S s,Ad˚ρnp1qq with pβvqvPQn we take the

sum of local pairings

pα, pβvqvPQnq ÞÑ
ÿ

pαv, βvqv (146)

where the local pairing is defined by restricting α to Qv and using local
reciprocity. This pairing (146) is well defined because each αv, that is, the
restriction of α to Qv, is actually unramified. Moreover, if the collection pβvq
come from a class in H 1

f pZr
1

SQn
s,Adρnq, the value of (146) is zero by global

reciprocity: our local assumptions means that the local pairings for v P S
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vanishes. Thus the pairing (146) descends to the quotient of
ś

vPQn
H 1 by

imagepϕq. This concludes our discussion of (145).
We have also seen (Section 8.13, and similar arguments to Lemma 8.9) that

both Wn and H 1
f pZr

1
S s,Ad˚ρn p1qq are free Z{pn-modules of dimension δ. Let

us check that (145) is a perfect pairing of Z{pn modules, that is, the map

Wn Ñ H 1
f

ˆ

Z
„

1
S



,Ad˚ρnp1q
˙_

is an isomorphism, where _ means homomorphisms to Z{pn . Since both sides
have the same size, it is enough to check that the map is surjective, and thus
enough to show that the induced map

tSn Ñ H 1
f

ˆ

Z
„

1
S



,Ad˚ρ p1q
˙_

(147)

is surjective, where _ now means homomorphisms to Z{p.
Now the Taylor–Wiles set Qn is chosen (131) so that H 1

f pZr
1
S s,Ad˚ρ p1qq ãÑ

ś

vPQn
H 1pQv,Ad˚ρp1qq. The image of this map consists of classes unramified

at Qn , so we also have

H 1
f

ˆ

Z
„

1
S



,Ad˚ρ p1q
˙

ãÑ
ź

vPQn

H 1pQv,Ad˚ρp1qqur.

When we dualize this, and apply local duality at primes in Qn , we get the
surjectivity of (147).

8.17. The injection H1pTqq ãÑH
p1q

q . In this section, we suppose that Qn is
a Taylor–Wiles datum of level n, but do not assume that it is part of a convergent
sequence (Section 8.10) of Taylor–Wiles data. Let q P Qn , thus equipped with
FrobT

q P T_pkq. We work exclusively with S “ Z{pn coefficients. As before,

Hq denotes the local derived Hecke algebra at q , and H
p1q

q denotes its degree 1
component. Let Tq “ ApFqq{pn.

We are going to describe the map (123), which is necessary for the formulation
of the Theorem. More precisely, we are going to describe a map

θ : H 1pTqq Ñ
`

H p1q
q

˘

m , (148)

where the subscript means that we complete at the ideal of the Hecke algebra
(that is, the degree zero component of Hq) corresponding to m.
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The easiest way to think about θ is probably through the following property:
for each α P H 1pTqq, the action of θpαq on H˚pY p1q,Z{pnqm is thus:

Pullback to Y0pqq, project to FrobT
q -eigenspace, cup with α, pushdown to Y p1q,

(149)
where the projection is done with reference to the splitting of Corollary 6.7.

The formal definition of the map θ is given in (154), and the validity of (149)
will follow from the Lemma below.

The Satake isomorphism of Section 3 gives

Hq
„
ÝÑ pSrX˚s b H˚pApFqqqq

W

and, in particular, with Z{pn coefficients the map H 1pTqq Ñ H 1pApFqqq is an
isomorphism, so

H p1q
q

„
ÝÑ

`

SrX˚s b H 1pTqq
˘W
.

Now FrobT
q P T_pkq gives a map X˚pAq “ X˚pT_q Ñ kˆ, that is, it gives

rise to a character χFrobT
q

: SrX˚s Ñ k. The pullback of this to SrX˚sW defines
the maximal ideal m (using the Satake isomorphism). Let us denote by rm the
extension of the ideal m back to SrX˚s; we caution that it is no longer maximal,
and rather it cuts out FrobT

q together with all its W -conjugates. We have an
identification of completions

SrX˚sĂm –
à

wPW

SrX˚swχ , (150)

where we have denoted by SrX˚swχ the completion of SrX˚s at the maximal
ideal that is the kernel of wχ .

Next the natural inclusion

pSrX˚s b H˚pTqqq
W

ãÑ SrX˚s b H˚pTqq (151)

induces the first map of

pSrX˚s b H˚pTqqq
W
m
p151q
Ñ SrX˚sĂm b H˚pTqq

p150q
Ñ SrX˚sχ b H˚pTqq. (152)

The composite map of (152) is an isomorphism, and thus by composing with the
Satake isomorphism we get an isomorphism

`

H p1q
q

˘

m
„
Ñ SrX˚sχ b H 1pTqq. (153)

We then define the map θ : H 1pTqq Ñ pH
p1q

q qm by the rule

θ : h P H 1pTqq ÞÑ 1b h P SrX˚sχ b H 1pTqq
p153q´1

ÝÑ
`

H p1q
q

˘

m (154)
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where the superscript 1 refers to cohomological degree, and the final map is the
inverse of (153). Note that this embedding depends on the choice of FrobT

q ; if
we replace FrobT

q by wFrobT
q then the embedding is modified by means of the

natural action of w on Tq .
This concludes the description of the map H 1pTqq Ñ H

p1q
q . We now want to

justify (149). For this we describe an explicit preimage of θpαq under the map

pHK I bHI b HI K q ÑHK (155)

in the case of the group GpQqq, where notation is as before (see, for example, the
proof of Theorem 7.6); note that HK coincides with what was previously called
Hq . Observe that everything here is a compatibly a module under the center of
HI I , which is identified (Section 4.3) with SrX˚sW . In particular, it makes sense
to complete at m.

Now let eλ P HI I correspond to the characteristic function of IqλIq , where
λ P X˚. Then λ ÞÑ eλ defines an embedding SrX˚s Ñ HI I , and, completing, an
embedding

SrX˚sĂm Ñ pHI I qm. (156)

As before (Section 4.2) we let eK be the characteristic function of Kq , divided
by its measure; if we write ew for the characteristic function of Iqw Iq , we have
eK “

1
|W |

ř

wPW ew. It can be considered, as in Section 4.2, as an element of HK I

or HI K . Also |W |eK eλ P HK I (that is, the product of |W |eK P HK I with eλ P HI I )
corresponds to the characteristic function of IqλKq .

LEMMA 8.18. Let Θ P SrX˚sĂm be chosen so that it projects under (150) to the
identity in SrX˚sχ and to zero in all SrX˚swχ , for w P W not the identity. We
use the same letter for its image Θ P pHI I qm under (156).

For h P H 1pTqq let xhy be the associated element of H
p1q

I , that is, xhy is
supported on the identity double coset of I , and the associated cohomology class
is obtained from h by means of the restriction isomorphism H 1pI q „Ñ H 1pTqq.

Then the m-completion of (155) sends |W |eKΘ b xhy b eK to θphq.

As above, the product eKΘ is understood as the product of eK P HK I with
Θ P HI I . In words, this amounts precisely to the description (149) for θ , taking
into account that Θ realizes precisely the projection onto the FrobT

q component
for the splitting (98).

Proof. Consider the map (no completions, at the moment)

pHK I bH
p1q

I b HI K q ÑH
p1q

K Ñ
`

SrX˚s b H 1pTqq
˘W
. (157)
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We show it sends A :“ eK eλ b xhy b eK , for λ dominant, to the ‘W -average’ of
λb h, that is, |W |´1

ř

wPW w ¨ pλb hq.
The claimed result will follow easily from this: Consider an element Θ 1 “

ř

cλλ P SrX˚s with the property that cλ is nonzero only for λ dominant, and
alsoΘ ” Θ 1 modulo some high power of rm. Our claim implies that |W |eKΘ

1b

xhy b eK is sent to the sum of Weyl translates of
ř

cλpλ b hq. The image of
ř

cλpλ b hq in
À

wPW SrX˚swχ b H 1pTqq is very close to 1 b h in the w “ 1
factor, and very close to zero in the other factors; after summing over W , its
projection to the w “ 1 factor remains very close to 1b h. Here ‘very close’ is
taken in the topology of the complete local rings SrX˚swχ . In other words, θphq
and the image of |W |eKΘ

1 b xhy b eK under (155) and (153) are very close; in
the limit, this shows the desired result.

We now consider everything in the ‘function model’ of Section 2.3. Let
a1 P HK I , a2 P HI K be the images of eK eλ, eK in the function model. Then
a1 corresponds to the function sending px K , y I q to |W |´1 precisely when
I y´1x K “ IλK , equivalently K x´1 y I “ KλI , where we write λ P X˚ for the
negative of λ. Also a2 corresponds to the function px I, yK q which is 1 exactly
when x K “ yK . Moreover, the function xhy is supported on the diagonal in G{I
and sends pI, I q to h P H 1pTqq » H 1pI q.

The second map of (157) is given by restricting arguments to the torus, and
restricting cohomology classes to Tq . We can compute this restriction using the
‘localization’ results of Section 4.6; these results assert that restriction to the torus
actually preserves multiplication.

We restrict to the torus. Suppose that µ P X˚ is dominant, with negative µ P
X˚. We compute:

ApK , µK q “
ÿ

yPW̃

a1pK , y I qxhypy I, y I qa2py I, µK q.

The first term is nonzero only for those y satisfying K yI “ KλI , that is, y P
W̃ X KλI . This implies that y “ wλ, with w P W . So this equals

“ |W |´1
ÿ

wPW

xhypwλI, wλI qa2pwλI, µK q.

The final term is nonzero (and equals 1) exactly when µK “ wλK . Recall that
both λ and µ are dominant. Thus this only happens if λ “ µ and w P Wµ:

ApK , µK q “ |W |´1δλµ

ÿ

wPWµ

xhypwλI, wλI q. (158)

On the right, xhypwλI, wλI q P H 1pTqq equals w ¨ h P H 1pTqq.
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Now, the image of A under the derived Satake map is the W -invariant element
of the derived Hecke algebra of the torus defined by

µ ÞÑ restriction to Tq of ApµK , K q.

As we have just computed, for µ dominant, ApµK , K q “ ApK , µK q is
nonvanishing only when µ “ λ, where its value is |W |´1

ř

wPWµ
wh. Therefore

the image of A under (157) is the W -average of λb h as claimed.

8.19. Producing an action of V{ pn on the cohomology at level 1. Let Qn

be a convergent sequence of Taylor–Wiles data (Section 8.10). For each integer n
we produce an action of V{pn on automorphic cohomology H˚pY p1q,Z{pnqm.
A priori these actions will not be guaranteed to be compatible with one another;
later we see at least that they ‘converge as n Ñ 8’ to give an action of V on
H˚pY p1q,Zpqm.

More exactly, we begin by constructing an action of tSn , then prove (the
Lemma below) that it factors through Wn , and finally we have identified Wn »

V{pn in (143). This gives the desired action, and we discuss the ‘convergence as
n Ñ8’ in the next section.

Thus, let Qn be a convergent sequence of Taylor–Wiles data.
We have

tSn

p137q
– H 1pTn,Z{pnq

p148q
ãÑ degree 1 component of bqPQn pHqqm , (159)

where the Hecke algebras are taken with Z{pn coefficients. The composite
embedding will be denoted

ιQn : tSn ÑbqPQn pHqqm . (160)

This gives rise to an action of tSn by degree `1 endomorphisms of
automorphic cohomology H˚pY p1q,Z{pnqm, whose explicit description is
essentially that already given in (149), just replacing the role of one prime by
many.

The embedding (137) and so also this action depends on the choice of elements
FrobT

q P T_pkq for each prime q P Qn . Should we modify FrobT
q by an element

wq P W , the Weyl group, the action of tSn is also modified (see comments after
(154)) by the action of wq in the obvious way.

LEMMA 8.20. Let Qn be a convergent sequence of Taylor–Wiles data, as in
Definition 8.11. Then, for each n, the action of tSn on H˚pY p1q,Z{pnqm
(via ιQn ) is trivial on the image of tRn , and thus factors through the map tSn Ñ Wn .
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Proof. Consider the diagrams (118) of our previous story, now with
identifications with tS and tSn included:

(161)
In particular, let x P H˚pHomSnpC bS Sn,Z{pnqq be liftable to

x̃ P H˚pHomSpC,Zpqq; let v P tSn » tS{pn be lifted to ṽ P tS . Then the
image of px, vq in the bottom row is obtained from projecting the image of
px̃, ṽq at the top row.

Let us recall from Section 7.3 part (g) that C is quasi-isomorphic to R as
an S-module in a single degree. Thus we can explicitly compute what goes
on in the top row. This explicit computation (see Lemma B.1 in Appendix
Section Appendix B) shows that any element ṽ P tS that lies in the image of
tR acts trivially on H˚pHomSpC,Zpqq.

For later use, note that these explicit computations also show that

H˚pHomSpC,Zpqq is free over ^˚tS{tR. (162)

From (134) it then follows that imageptRn Ñ tSnq acts trivially on

H˚pHomSnpCbS Sn,Z{pnqq » H˚pY0pQnq,Z{pnqm,FrobT ,

where the action of tSn “ H 1pTn,Z{pnq is by cup product, as in (119).
By (149) this means that the action of ιQnptSnq on H˚pY p1q,Z{pnqm is trivial

on imageptRn Ñ tSnq. Thus, this action of tSn on H˚pY p1q,Z{pnqm factors
through Wn as claimed.

8.21. Summary. Let us summarize more carefully what we have said to date:
For any Taylor–Wiles datum Qn we have an action of tSn “ HompTn,Z{pnq

on H˚pY p1q,Z{pnqm constructed via an embedding

ιQn : HompTn,Z{pnq ãÑ derived Hecke algebra
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(see (159)). On the other hand, we have a surjective morphism (see Section 8.16)

fQn : HompTn,Z{pnq� V{pn.

These constructions, for a given n, depend only on Qn; they do not involve the
Taylor–Wiles limit process.

DEFINITION 8.22. We say that a Taylor–Wiles datum Qn of level n is strict of
level n (or just strict) if the map

tSn

ιQn
ÝÑ End H˚pY p1q,Z{pnqm

factors through fQn . Thus, a strict Taylor–Wiles datum of level n gives rise to an
action of V{pn on H˚pY p1q,Z{pnqm.

What we have proved, then, amounts to the following:

LEMMA 8.23. If the Qn are a convergent sequence of Taylor–Wiles data
(Definition 8.11), then each Qn is strict, in the sense of Definition 8.22.

Note we do not know that the resulting actions of V{pn are compatible for
different n, in any sense.

8.24. Dependence of our construction on choices. We now study
dependence on choices. Using the results of this Section, we conclude the
proof of Theorem 8.5 in Section 8.26.

First we discuss a minor point, the choice of FrobT
q s: Suppose we choose two

different such choices for a given set Qn , differing by the action of w P Ws .
(Recall from Section 6.3 that Ws is just a product of copies of the Weyl group,
one copy for each prime in Qn). Then the actions of tSn on cohomology differ by
the action of w P Ws (comment after (154)). Also, w : tSn Ñ tSn is compatible
with the pairings previously constructed, that is, this diagram commutes

tSn

w

��

ˆ H 1
f pZr

1
S s, Ad˚ρn p1qq

“

��

FrobT
q // Z{pn

tSn ˆ H 1
f pZr

1
S s, Ad˚ρn p1qq

wFrobT
q // Z{pn

(163)

This shows that the action of V{pn on H˚pY p1q,Z{pnqm did not depend on the
choice of FrobT

q s for q P Qn .
We now discuss the more serious issue of choice of Taylor–Wiles data.
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LEMMA 8.25. Given two sequences Qn, Q1n of strict Taylor–Wiles data, there is
a subsequence J of the integers with following property:

For each k ě 1, there is j0 such that, for each j P J , j ě j0, the two actions
V on H˚pY p1q,Z{pkqm—arising from reducing modulo pk the ‘Q j -action’ and
the ‘Q1j -action’—coincide with one another. (Recall that we are supposing that
H˚pY p1q,Zpq is free over Zp.)

Proof. It will be convenient to relabel the sequences of strict Taylor–Wiles data
as Qp1qn , Qp2qn . It will be harmless to suppose that the sets of primes underlying
Qp1qn and Qp2qn are disjoint (otherwise, we can, for example, just compare both of
them with a third set, disjoint from both of them).

We compare them both to Qn :“ Qp1qn
š

Qp2qn (with the obvious choice of
FrobT

q for q P Qn). Of course Qn is bigger than either Qp1qn or Qp2qn . However it

still a sequence of Taylor–Wiles data. Let Tn, T p1qn , T p2qn be the analogs of Tn for
Qn, Qp1qn , Qp2qn respectively; then Tn “ T p1qn ˆ T p2qn , and correspondingly tSn “

t
p1q
Sn
‘ t

p2q
Sn

, where tSn “ HompTn,Z{pnq, and so on.
We have a diagram

t
p1q
Sn

//

αp1q

''

tSn

α

��

t
p2q
Sn

αp2qww

oo

H 1
f pZr

1
S s,Ad˚ρnp1qq_

(164)

where all the α-maps are as in Section 8.16.
The upper maps are compatible for the actions on cohomology previously

defined (Section 8.19), and everything maps compatibly to the bottom group
H 1

f pZr
1
S s,Ad˚ρnp1qq_. Moreover the action of t

p1q
Sn

and t
p2q
Sn

on mod pn

cohomology factors through the bottom row by the assumed strictness. However,
we do not know that the action of tSn factors through α.

What is missing is control of the deformation ring after adding level Qn .
To obtain this, we must run now the Taylor–Wiles limit process for Qn . That
involves passing to a subsequence. In other words, all we are guaranteed is that
there is a subsequence n j such that pQn j , jq form a convergent sequence of
Taylor–Wiles data of level j . It is possible that n j is very much larger than j .
Our prior analysis of convergent data (Lemma 8.23) implies that the action of
HompTn j ,Z{p jq on mod p j cohomology of Y p1q factors through V{p j , or to
say it explicitly:

(*) The action of tSn j
on H˚pY p1q,Z{p jqm, via its embedding
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ιQn j
into the derived Hecke algebra, followed by reduction to Z{p j

coefficients, factors through the map

fQn j
: tSn j

Ñ H 1
f

ˆ

Z
„

1
S



,Ad˚ρ jp1q
˙_

.

The proof of the Lemma easily follows. We take J to be the subsequence of
n j s. Let k be as in the Lemma. Take n “ n j , for any j ě k, and take wpiq P
t
piq
Sn

that have the same image in H 1
f pZr

1
S s,Ad˚ρnp1qq_. The images of wpiq in

tSn have the same image in H 1
f pZr

1
S s,Ad˚ρ jp1qq_, (we are using the fact that

the map H 1pZr 1
S s,Adρnp1qq Ñ H 1pZr 1

S s,Adρ jp1qq is surjective, by discussion
before (126)) and therefore they act the same way on mod pk cohomology by (*)
above.

8.26. Conclusion of the proof of Theorem 8.5. Let us call a sequence of
Taylor–Wiles data Qn of level n (where we do not require n to vary through all
the integers, but possibly some subsequence thereof) V-convergent if:

• Each Qn is strict (Definition 8.22) thus giving an action of V on H˚pY p1q,
Z{pnqm.

• The actions converge to an action of V on H˚pY p1q,Zpqm. In other words,
if we fix k, the action of V on H˚pY p1q,Z{pkqm arising from reducing the
Qn-action is eventually constant.

By Lemma 8.23 and passing to a further subsequence, we see that V-
convergent sequences exist. By Lemma 8.25, if Q, Q1 are two V-convergent
sequences, the resulting actions of V on cohomology coincide. Thus at this point
we have defined an action of V on cohomology that is independent of choices,
namely, the action arising from any V-convergent sequence. This action has the
following property:

p:q: For any sequence Qn of Taylor–Wiles data, there is a
subsequence Qnr such that (for every r ) the following two actions
of tSnr

on H˚pY p1q,Z{prqm coincide:

• The action via ι : tSnr
Ñ derived Hecke algebra with Z{pr coefficients

(see (160)).

• The action obtained from the V-action, via f : tSnr
� V{pr (see

(142)).
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To see this, we first pass from Qn to a convergent subsequence pQmr , rq, where
we regard Qmr as having level r ; by Lemma 8.23 this means that Qmr is a
strict datum of level r . We then pass to a further subsequence m1r to extract
a V-convergent sequence; this gives the assertions above, but with Z{pr and
V{pr replaced by Z{pkprq,V{pkprq where kprq Ñ 8 with r . Passing to a further
subsequence gives the desired result.

Proof. (of Theorem 8.5, using p:q). We have already constructed an action of V;
let us prove, by contradiction, that it has property (*) from the theorem. Suppose
that there is an integer A and an infinite sequence of primes qn ” 1 modulo
pn such that the pullback of the action via fqn ,A : H 1pTq,Z{pAq Ñ V{pA fails
to coincide with the action of H 1pTq,Z{pAq via the embedding ιqn ,A into the
derived Hecke algebra with Z{pA coefficients. We can choose a Taylor–Wiles
system Qn containing qn and then get a contradiction to p:q as soon as r ą A.
This proves (*).

Now let us show that the image of ^˚V in endomorphisms of cohomology
coincides with the global derived Hecke algebra.

Refer to the diagram (161), constructed with a convergent sequence of Taylor–
Wiles data Qn . We only use a subsequence of ns which is V-convergent. Consider
for n ě k the map

W “ tS{tR
p134q
ÝÑ tSn{tRn

p142q
ÝÑ V{pk . (165)

By (134) and the discussion after (142), the composite actually gives an
isomorphism

W{pk » V{pk . (166)

For fixed k and large n, the map (165) is independent of n: Choose ṽ P tS . Let vn,

vm be its image in tSn , tSm . As we saw in the diagram (161), the actions of vn, vm

on mod pk cohomology must coincide, because both can be computed by means
of the lift ṽ. For this we are implicitly using (115) to see that the composite map

H˚pHomSpC,Zpqq Ñ H˚pHomSnpCbS Sn,Z{pnqq
„
Ñ H˚pY p1q,Z{pnqm Ñ H˚pY p1q,Z{pkqm (167)

is independent of n, for n ě k.
So the images of vn, vm in V{pk have the same actions on mod pk cohomology.

The V{pk action on mod pk cohomology is faithful (by (166) and (162)) so this
forces the image of vn, vm in V{pk to coincide as claimed.

Therefore, passing to the limit over n, we get a map W{pk Ñ V{pk , which
is easily seen to be compatible as we increase k; thus the inverse limit over k
defines an isomorphism

W „
Ñ V. (168)
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Next, referring to (161) the action of Ext˚SpS{I,S{Iq » ^
˚tS on H˚pHomSpC,

Zpqq certainly factors through^˚W; this action of^˚W on H˚pHomSpC,Zpqq

is compatible under the identifications (115) and (168) with the action of ^˚V
on H˚pY p1q,Zpqm.

Therefore, by (162), V freely generates an exterior algebra inside EndpH˚q,
and H˚ is freely generated over ^˚V by H qpY p1q,Zpqm, its minimal degree
component. On the other hand, the image of ^˚V in EndpH˚q is contained in
the global derived Hecke algebra—the action of an element V is, by definition,
a limit of actions of elements in the derived Hecke algebra. Indeed, V lies inside
the strict global derived Hecke algebra.

8.27. Proof of Proposition 8.6. In our current situation, we have an inclusion

^˚V Ă T̃ (169)

and we have seen that H˚pY p1q,Zpqm is generated by its lowest nonvanishing
degree H q as a ^˚V-module. If we know that H˚pY p1q,Zpqm “ Zp, we argue
that (169) is an equality just as in the corresponding argument after (56).

If we are given S as in the statement of the Proposition, let M “ H qpY p1q,
Zpqm bZp Qp as a S-module. It is semisimple by assumption; let S1 be the
commutant of S inside Qp-linear endomorphisms of M. The natural map

Mb^˚VQp Ñ H˚pY p1q,Zpqm bQp

is now an isomorphism of Sb^˚VQp modules. However,

(graded) commutant of Sb^˚VQp on Mb^˚VQp “ S1 b^˚VQp ,

as can be verified by computing in steps: the commutant of S alone equals
S1 b Endp^˚VQpq, and then inside here the (graded) commutant of ^˚VQp is
S1 b^˚VQp .

Since this commutant contains the image of T̃ acting on Qp-cohomology, the
latter is also graded-commutative, since S1 is commutative by the multiplicity
one hypothesis. Note that the action on Qp cohomology is faithful because of
our torsion freeness assumption, see 7(a) of Section 6.1.

8.28. The action of Hecke operators. To conclude, let us translate what we
have proved into a more concrete assertion about the action of a derived Hecke
operator.
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Let q be a unramified prime for ρ, with q ” 1 modulo pn , and such that
ρpFrobqq is conjugate to a strongly regular element of T_pkq. Let ν P X˚pAq`
be strictly dominant and let

α P H 1pApFqq,Z{pnq.

To this we can associate in a natural way (see below) a derived Hecke operator
Tq,ν,α as well as an element rq, ν, αs P V{pn; we prove that the actions of these
are compatible (see Lemma below), justifying the assertions made in Section 1.5.

First of all, a small piece of linear algebra. Let k be a field. Suppose given
a fixed character ψ P X˚pT_q. Let g P G_pkq be regular semisimple, with
centralizer Zg; this data allows us to construct a homomorphism of k-vector
spaces

eψ,g : LiepT_q Ñ LiepZgq,

eψ,g :

ÿ

φ:T_ „ÑZg

xψ, φ´1pgqy ¨ dφ

where the sum is taken over all conjugations of T_ to Zg over k̄; the morphism
is nonetheless defined over k.

Example: if G_ “ SL2, take T_, B_ in the standard way to be the diagonal
subgroup and upper triangular matrices, and take ψ :

`

x 0
0 x´1

˘

ÞÑ x . Then eψ,g
sends p 1 0

0 ´1 q P LiepT_q to the element 2g ´ tracepgq P M2pkq: it is enough to
check this for g P T_, where the result is clear.

Let q, ν, α be as described at the start of this subsection. We can then construct
a class

rq, ν, αs P V{pn

in the following way: regarding ν as a character of T_, and use the linear algebra
construction mentioned with k “ Qp to make the first map of

LiepT_q
eν,Frobq
ÝÑ LiepZρpFrobqqq ãÑ LiepG_q (170)

(at first we get this bQp but then it preserves the integral structures, with
reference to the natural Zp-models of the three groups above). The resulting
embedding LiepT_q Ñ Adρ is a morphism of GalpQq{Qqq-modules, where
LiepT_q is taken to have the trivial action.

As before, we may identify

H 1pApFqq,Z{pnq “ H 1pX˚pAq b Fˆq ,Z{pnq “ HompFˆq , X˚pT_q{pnq

and so from α we obtain a class

α1 P
H 1pQq,LiepT_q{pnq

H 1
urpQq,LiepT_q{pnq

.
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Here LiepT_q is taken as a trivial Galois module. We can then form

pushforward of α1via (170) P
H 1pQq,Adρnq

H 1
urpQq,Adρnq

,

and, as usual, this can be paired with H 1
f pZr

1
S s,Ad˚ρp1qq by means of local

reciprocity. In this way we obtain a functional H 1
f pZr

1
S s,Ad˚ρp1qq Ñ Z{pn ,

which we denote as
rq, ν, αs P V{pn.

LEMMA 8.29. Let q, ν, α be as above. Let rq, ν, αs P V{pn be as defined above.
Let Tq,ν,α be the derived Hecke operator with Z{pn coefficients which is

supported on the Gq-orbit of pνKq, Kqq and whose value at pνKq, Kqq which
corresponds to α under the cohomology isomorphism H˚pKq X νKqν

´1,

Z{pnq – H˚pApFqq,Z{pnq.
Then Tq,ν,α corresponds to rq, ν, αs P V{pn , in the following asymptotic sense:
There is N0pmq such that for q, ν, α as above with q ” 1 modulo pN0pmq, the

actions of Tq,ν,α and rq, ν, αs on H˚pY p1q,Z{pmqm coincide.

Proof. Under the derived Satake isomorphism, Tq,ν,α is sent to
ÿ

w

wν b wα P
`

SrX˚s b H 1pApFqqq
˘W
.

With notation as in Section 8.17, letΘν P SrX˚sWm be defined so that its image
under SrX˚sWm ãÑ SrX˚sm̃Ñ SrX˚sχ is equal to ν. Here, we regard ν P X˚ ãÑ

SrX˚s.
Then, after completing at m, we have an equality

SatakepTq,ν,αq “
ÿ

wPW

Θwν ¨ Satakepθpwαqq P pSrX˚s b H 1pApFqqqq
W
m

where θ is as in (154). (We can check this using the isomorphism (152): it gives
an isomorphism of the target group with SrX˚sχ b H 1pTqq, under which θpwαq
is, by its very definition, sent to 1 b wα; under the same isomorphism Θwν is
sent to wν b 1, and the result follows.)

As before we have fixed FrobT
q P T_pFpq an element conjugate to ρpFrobqq;

fix a lift tq P T_pZpq that is conjugate to ρpFrobqq. Then Θwν (more exactly, its
preimage under Satake) acts on H˚pY p1q,Zpqm by xwν, tqy (this makes sense:
wν P X˚pT_q and tq P T_pZpq, so they can be paired to get an element of
Zˆp ). Using Theorem 8.5, we see that the action of Tq,ν,α on H˚pY p1q,Zpqm
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corresponds (in the sense of the lemma statement) to the element
ÿ

wPW

xwν, tqy ¨ fq,npwαq “
ÿ

wPW

xν,w´1tqy fq,npwαq P V{pn.

Winding through the definitions, this element of V{pn is exactly rq, ν, αs.

9. Some very poor evidence for the main conjecture: Tori and the trivial
representation

We verify that the main conjecture (Conjecture 8.8) holds in the case when G
is an anisotropic torus. This is straightforward, but still slightly comforting.

One may also verify that a certain analogous statement to Conjecture 8.8 holds
in the situation studied in Section 5, but there we do not understand the situation
clearly at present—hopefully it will eventually prove to be a specialization of the
general conjecture to the nontempered case.

9.1. Setup. Let T be an anisotropic F-torus; let O be the ring of integers of
F . Let us fix a finite set of places S such that T admits a smooth model over
Or 1

S s. We assume it contains all places ℘ above the rational prime p.
The associated symmetric space

S “ TpF b Rq{maximal compact

has q, δ invariants (see (18)):

q “ 0, δ “ dimpSq.

The arithmetic manifold Y pK q associated to a level structure K is a disjoint
union of copies of S{∆, where ∆ is a congruence subgroup of TpOq. Moreover
the quotient S{∆ is a union of compact tori, and thus the rank of ∆, that is,
dimQp∆bQq, equals δ. We suppose that K is chosen so small that ∆ is free of
p-torsion.

9.2. Galois cohomology. Let M be the motive associated to the first
homology group H1pTq of T.

Let X˚pTq be the cocharacter group of T. It carries an action of GalpF{Fq.
Coming from X˚ bZ Gm

„
Ñ T, we get an isomorphism of GalpF{Fq-modules

Mp :“ p-adic realization of M “ X˚pTq bZ Zpp1q » lim
ÐÝ

Trpns,
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the p-adic Tate module of T. Computing with the Kummer sequence,

H 1

ˆ

O
„

1
S



,Mp

˙

» T
ˆ

O
„

1
S

˙

b Zp. (171)

Inside the left-hand side, we can consider those classes that are crystalline at p
and unramified at all primes away from p, including primes in S. We denote this
subgroup by H 1

f,urpF,Mpq. (For a precise definition we refer to [2]: the group
we have called H 1

f,ur is the group denoted by H 1
f,U in [2, Definition 5.1] with U

taken to be all finite places. This group is often simply written H 1
f pF,´q in the

literature.)
The subgroup on the right-hand side corresponding to H 1

f,urpF,Mpq, call it

∆1 Ă T
ˆ

O
„

1
S

˙

b Zp,

is commensurable to the image of ∆ b Zp in the right-hand side of (171).
Indeed, the constraint that a point t P TpOr 1

S sq have cohomology class in H 1
f,ur

is equivalent to forcing t to belong to a suitable open compact subgroup of
TpFvq for each v P S; see [18, Theorem 2.3.1] for this statement in the trickier
case when v is above p. We suppose (shrinking ∆ a little if necessary) that
∆b Zp Ă ∆1.

Also, the motivic cohomology H 1
motpM,Qp1qq is identified with the TpQq b

Q, as we may see by first passing to an extension that trivializes the torus T.
Presumably the following is valid, but I did not try to check it:

Assumption: The subgroup of ‘integral classes’ H 1
motpMZ,Qp1qq (see

discussion after (7)) is identified with the image of ∆ b Q inside
TpQq bQ.

Now a cohomological automorphic form Π for T is trivial on the connected
component of TpFbRq, that is, they are the finite order idèle class characters of
T. However, the associated coadjoint motive (see Section 1.2) does not depend
on which idele class character: we have simply

pcoadjoint motive for Πq p1q » M,

the motive M described above. (Indeed, the Zp-linear dual of T̂ is identified with

LiepT_q_ » pLiepGmq b X˚pT_qq
_
» X˚pT_q b Zp » X˚pTq b Zp

where we have fixed an isomorphism Z » LiepGmq.)
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Now let us examine Conjecture 8.8 in this case. Put

V “ H 1
f,urpF,Mpq

_,

where Mp is the p-adic etale realization, and _ denotes Zp-linear dual; thus
V “ Homp∆1,Zpq. The notation H 1

f,ur was defined after (171).
There is a natural action of V on H˚pY,Zpq, obtained from the maps

V “ H 1p∆1,Zpq Ñ H 1p∆,Zpq. (172)

Moreover, motivic cohomology gives a lattice in V b Q “ H 1p∆1,Qpq (the
classes which are Q-valued on ∆ Ă ∆1) and obviously this lattice indeed
preserves H˚pY,Qq, in the Q-linear extension of the action of V.

The only point to be discussed is that the action (172) is indeed that resulting
from the same formalism as Section 8. We describe this only briefly. Let v be a
finite place not belonging to S, so that T extends to a smooth torus over Ov. As
usual we have an injection,

HompTpOvq,Z{pnq ãÑ derived Hecke algebra at v,

and thus an action of the left-hand group on the cohomology of H˚pY,Z{pnq;
explicitly, this action is obtained by pulling back cohomology classes via ∆ Ñ
TpOvq, and cup product. By just the same procedure as that described in (124),
we can construct a map

HompTpOvq,Z{pnq Ñ V{pn
loomoon

»Homp∆1,Z{pnq

,

and one verifies this is the map induced by ∆1 Ñ TpOvq b Zp. Then the
action of V{pn on H˚pY,Z{pnq is compatible with the ‘derived Hecke’ action
of HompTpOvq,Z{pnq for all v; and in fact this compatibility determines the
action of V{pn .
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Appendix A. Remedial algebra

In this section, we fill in some ‘intuitively obvious’ claims in the text in
grotesque detail, in particular, the identifications between various different
models of the derived Hecke algebra. (The word ‘remedial’ in the title of this
section refers to my own lack of fluency with homological algebra.)

An action of a topological group will be called smooth if the stabilizer of
every point is an open subgroup. We fix a finite ring S of cardinality prime
to p. A ‘smooth representation of G,’ in this section, will be a smooth action
of G on an S-module. We write SG (or occasionally SrGs when typography
requires) for the group algebra of G with coefficients in S. We write HomSG for
homomorphisms of SG-modules; in Section A.11 we abbreviate this to HomG

because other notation becomes very dense.
Note that the usage of U and K in this section do not precisely match their

usage in the main text.

A.1. Let K be a profinite group, which admits a pro-p open normal compact
subgroup U . Then the category C of smooth representations of K is an abelian
category with enough projectives. In fact, if Q is a projective K {U module, then
considering Q as a smooth K -module Q̃ it remains projective: HomSK pQ̃, V q “
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HomSrK{UspQ, V U q and V ÞÑ V U is exact by the hypothesis on U . (One can lift
U -invariants under a surjection V1 � V2 by averaging.)

In this situation, restriction to a finite index subgroup K 1 Ă K preserves
projectivity. Indeed HomSK 1pResK

K 1 A, Bq “ HomSK pA, IndK
K 1Bq and the

induction functor is exact.

A.2. Now let G “ Gv be the points of a reductive group over a p-adic field,
or any open subgroup thereof. Then the category of smooth representations of
Gv is an abelian category and it has enough projectives.

Indeed, consider W “ SrG{U s for an open pro-p compact U Ă G. Then

HomSGpW, V q » V U ,

which is obviously exact in V . So W is projective, and now given any other
V we choose generators vi for V , open pro-p compact subgroups Ui fixing vi ,
corresponding projectives Wi , and then get

À

Wi � V .
Throughout the remainder of this section, we suppose that G is as above, that

K is an open compact subgroup of G (in particular, K is profinite), and that
U Ă K is a pro-p open normal compact subgroup of K .

A.3. Fix a resolution of the trivial K -representation by projective smooth K -
modules:

Q : ¨ ¨ ¨ Ñ Qi Ñ ¨ ¨ ¨ Ñ Q1 Ñ S. (173)

(Here, and in what follows, we use boldface letters to denote complexes.) To be
explicit, let us take Q to be the standard ‘bar’ resolution of S by free SrK {U s-
modules, considered as a complex of smooth K -representations.

Then HompQ,Qq computes H˚pK , Sq, the continuous cohomology of the
profinite group K with S coefficients: indeed, the cohomology of HompQ,Qq is
identified with H˚pK {U, Sq, which is identified by pullback with the continuous
cohomology H˚pK , Sq.

The complex HompQ,Qq has the structure of differential graded algebra
arising from composition, and the resulting multiplication on H˚pK , Sq
coincides with the cup product (this reduces to a corresponding statement
for a finite group; for that see [37]).

If K 1 Ă K is a finite index subgroup, then HomSK 1pQ,Qq still computes
H˚pK 1, Sq (see remarks above). Moreover, the averaging operator

ř

K{K 1 – that
is to say, the map sending

f P HomSK 1pQ,Qq ÞÑ
ÿ

κ

κ f κ´1 P HomSK p. . . q
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realizes the corestriction map H˚pK 1, Sq Ñ H˚pK , Sq, where the κ sum is
taken over a set of coset representatives for K {K 1 in K .

A.4. Induction and Frobenius reciprocity. We use the word ‘induction’ for
the functor from K -modules to G modules

M ù SG bSK M. (174)

This is isomorphic to the usual ‘compact’ induction, namely space of functions

indG
K pMq :“ t f : G Ñ M : f pgkq “ k´1 f pgq, (175)

f is supported on finitely many left translates of Ku

where the action of h P G is by left translation, that is, lh f pxq “ f ph´1xq. We
drop the word ‘compact’ and simply refer to (175) or (174) as ‘induction’; we
refer to the model (175) for induction as the ‘function model.’

We can define inverse isomorphisms between (175) and (174) as follows:
define indG

K pMq Ñ SG bSK M via

f ÞÑ
ÿ

xPpG{Kq

gx b f pgxq,

where gx P G is a representative for x P G{K ; in the other direction, we send
g b m to the function supported on gK whose value on g equals m.

A.5. Frobenius reciprocity. We have Frobenius reciprocity

HomSGpindG
K M, Nq » HomSK pM, Nq

and therefore induction carries projective K -modules to projective G-modules.
Explicitly an SK -homomorphism f : M Ñ N is sent to its obvious G-linear
extension SG bSK M Ñ N .

If G Ą K has finite index, we also have the reverse adjointness (since ‘compact
induction’ and ‘induction’ coincide): to give a K -map f : M Ñ M 1 is the same
as giving a map F f : M Ñ indG

K M 1. Explicitly, in the function model for the
induced representation, F f is characterized by the property F f pmqpeq “ f pmq,
and so

F f pmqpgq “ lg´1 F f pmqpeq “ F f pg´1mqpeq “ f pg´1mq

and thus in the tensor product model

F f pmq “
ÿ

xPpG{Kq

gx b f pg´1
x mq. (176)
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A.6. Restriction of induced representations. Let Q be a smooth
representation of K . The restriction of indG

K Q to K is isomorphic to
à

xPKzG{K

SrK gx K s bSK Q »
à

K

SrK s bSKx Qx »
à

x

indK
Kx

Qx (177)

where x “ gx K runs through a set of representatives for K -orbits on G{K , and
we write Kx “ K X gx K g´1

x ; moreover for a K -module Q, we denote by Qx the
Kx -module whose underlying space is Q, but for which the action ˚ of Kx on Q
is defined thus:

κ ˚ q “
`

Adpg´1
x qκ

˘

q. (178)

The first map of (177) is given explicitly by

k1gx k2 b q “ k1gx b k2q ÞÑ k1 b k2q (179)

and the inverse map sends

k b q ÞÑ kgx b q. (180)

In the function model of the induced representations, the composite map of
(177) sends F : K gx K Ñ Q to the function F 1 : k ÞÑ Fpkgxq. In the reverse
direction, given a function F 1 in the function model of indK

Kx
Qx , the inverse of

(177) sends it to
ÿ

kPK{Kx

kgx b f pkq P SrK gx K s bSK Q. (181)

A.7. Derived Hecke algebra. The derived Hecke algebra for the pair pG, K q
with coefficients in S is defined as

à

i

Exti
SGpSrG{K s, SrG{K sq

where the Ext-groups are taken in the category of smooth S-representations.
We can construct an explicit model as follows. Let Q be as in (173). Then P “

indQ is a projective resolution of SrG{K s. In particular, HomSGpP,Pq has the
structure of a differential graded algebra and its cohomology gives the derived
Hecke algebra.

A.8. We now explicitly describe the isomorphism (25) between the derived
Hecke algebra and its ‘double coset model.’
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Let P,Q be as in Section A.7.
We have

HomSGpP,Pq “ HomSK pQ, indG
K Qq p177q

ÐÝ
à

xPKzG{K

HomSK pQ, indK
Kx

Qxq

loooooooooooooooomoooooooooooooooon

“HomSKx pQ,Qx q

, (182)

where x varies now through K zG{K , again gx K is a representative for x and
Kx “ K X AdpgxqK , and the twist operation Qx is as described in (178).

Note that the last map induces a cohomology isomorphism. We must see
that H˚pHomSK pQ,´qq commutes with the infinite direct sum

À

x indK
Kx

Qx .
However, Qx is cohomologically concentrated in degree 0, and so the same is
true for indK

Kx
Qx ; it is enough to show, then, for any K -modules Mi , the obvious

map
à

i

HomSK pQ,Miq ÝÑ HomSK

ˆ

Q,
à

i

Mi

˙

is a quasi-isomorphism. But this follows from the fact that taking U -invariants
commutes with infinite direct sum, as does the functor H˚pK {U,´q.

Note that the cohomology of HomSKx pQ,Qxq is identified with H˚pKx , Sq,
because Q and Qx are resolutions of S, and moreover Q is a complex of
projective Kx -modules. Thus, (182) gives rise to an isomorphism:

H˚ pHomSGpP,Pqq »
à

x

H˚pKx , Sq. (183)

For later use, we explicate the map of (182), going from right to left: An
element f P HomSKx pQ,Qxq must satisfy f pκqq “ pg´1

x κgxq f pqq for κ P Kx ;
the associated element of HomSK pQ, indG

K Qq is given in the tensor product
model of the induced representation by the formula of (176):

q P Q ÞÑ
ÿ

kPK{Kx

kgx b f pk´1qq

which is well defined.

A.9. Action of derived Hecke algebra on derived invariants. Now suppose
that M is a complex of smooth G-representations. There is a natural action
of EndSGpPq on HomSGpP,Mq. Moreover, the latter complex computes the
hypercohomology H˚pK ,Mq of K with coefficients in the complex M.

Thus, because of (183), we get an action of H˚pKx , Sq on H˚pK ,Mq. Let us
describe the action of hx P H˚pKx , Sq on H˚pK ,Mq as explicitly as possible, in
particular, justifying the claims of Section 2.10:
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LEMMA A.10. With notation as above, the action of hx is given by the following
composite:

H˚pK ,Mq Adpg´1
x q˚

ÝÑ H˚pKx ,Mxq
m ÞÑgx m
ÝÑ H˚pKx ,Mq

Yhx
ÝÑ H˚pKx ,Mq Cores

ÝÑ H˚pK ,Mq.

Here the first map is the pullback induced by Adpg´1
x q : Kx ãÑ K , which pulls

back M to Mx .

Proof. Choose h1x P HomSK pQ, indK
Kx

Qxq representing hx . For f P HomSGpP,
Mq we denote by fx P HomSK pindK

Kx
Qx ,Mq the restriction. We denote by rh1xs P

HomSKx pQ,Qxq and r fxs P HomSKx pQx ,Mq the elements obtained from h1x , fx

using Frobenius reciprocity (but using the two different versions of Frobenius
reciprocity).

We want to compare the composition fx ˝ h1x and r fxs ˝ rh1xs that is,

(184)
We compute

fx ˝ h1xpqq
p176q
“ fx

ˆ

ÿ

kiPK{Kx

ki b rh1xspk
´1
i qq

˙

“
ÿ

ki

ki r fxs ˝ rh1xspk
´1
i qq

that is, this is what we get by averaging r fxs ˝ rh1xs over the action of K {Kx .
The cohomology class of the composition r fxs ˝ rh1xs simply amounts (at
the level of cohomology) to the cup product of the class r fxs P H˚pKx ,Mq
(hypercohomology) with the class rh1xs P H˚pKx , Sq. So to prove the lemma it
remains to show:

Subclaim: The class r fxs P H˚pKx ,Mq is obtained from r f s P H˚pK ,Mq via

H˚pK ,Mq Adpg´1
x q˚

ÝÑ H˚pKx ,Mxq
m ÞÑgx m
ÝÑ H˚pKx ,Mq.

At the chain level this map is given by the composite

HomSK pQ,Mq Ñ HomSKx pQx ,Mxq Ñ HomSKx pQx ,Mq

where the first map is the trivial map, just considering maps of K modules as
Kx -modules via Adpg´1

x q : Kx Ñ K ; and the second map Mx Ñ M is given
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by m ÞÑ gx m. To check the subclaim, note that r fxs P HomSKx pQx ,Mq sends
q P Qx to the value of fx on the element 1b q P indK

Kx
Q, which is carried by the

isomorphism inverse to (177) to gx b q P indG
K Q; thus,

r fxs : q ÞÑ gx f pqq

where here, on the right-hand side, we regard f as a map Q Ñ M by Frobenius
reciprocity (that is, we pull it back via the obvious embedding Q ãÑ P, q ÞÑ
1b q). This concludes the justification of the subclaim.

A.11. Multiplication in the derived Hecke algebra. We finally analyze
composition (that is, multiplication) in the derived Hecke algebra, explicating it
with respect to the isomorphism (183), and thus justifying the description given
in Section 2.3.

Let α, β, γ P G{K with representatives gα, gβ, gγ P G. Suppose given
hα P H˚pKgαq and similarly for β. We compute the product hβhα considered
as elements of the derived Hecke algebra—or more precisely the H˚pKgγ q

component of their product.
As in (182) we represent hα by an element h1α P HomK pQ, indG

K Qq, and denote
by rh1αs the corresponding element of HomKgα

pQ,Qgαq and similarly for hβ . By
(176) we have the explicit formula

h1α : q P Q ÞÑ
ÿ

kPK{Kα

kgα b rh1αspk
´1qq P SrK gαK s bSK Q,

where we make a modest abuse of notation by identifying K {Kα to a set of
representatives for it in K . Now apply h1β to the right-hand side, regarding
h1β P HomSGpP,Pq. The result is:

ÿ

kPK{Kα

ÿ

k1PK{Kβ

kgαk1gβ b rh1βsk
1´1rh1αsk

´1 P HomK pQ, SG bSK Qq. (185)

The desired H˚pKgγ q component of the product hβ ¨ hα is given by considering
all k, k1 for which kgαk1gβ P K gγ K , that is, it is represented by

ÿ

kgαk1gβPK gγ K

kgαk1gβ b rh1βsk
1´1rh1αsk

´1 P HomK pQ, SrK gγ K s bSK Qq. (186)

By ‘dual’ Frobenius reciprocity (see before (176)) the right-hand side can
be identified with HomK pQ, indK

Kγ Qγ q » HomKγ pQ,Qγ q. If we write
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kgαk1gβ “ k1gγ k2, an explicit formula for the corresponding element of
HomK pQ, indK

Kγ Qγ q is given (179) by

q ÞÑ
ÿ

kgαk1gβ“k1gγ k2

k1 b k2rh1βsk
1´1rh1αsk

´1pqq
loooooooooooooomoooooooooooooon

PSKbSKγ Qγ

where the right-hand sum is over the same k, k1 as before, and we consider
only those k, k1 such that kgαk1gβ P K gγ K . Then the corresponding element
of HomKγ pQ,Qγ q is given (see (176)) by picking out those terms for which
k1 P Kγ ; in that case we can rewrite k1gγ k2 “ gγ pAdpgγ q´1k1qk2 and so we may
as well suppose that k1 “ 1. Thus, the desired result is

ÿ

k,k1:kgαk1gβ“gγ k2

k2 rh1βsk
1´1

loomoon

HomKAdpkgαqKk1gβ
pQkgα ,Qkgα k1gβ

q

rh1αsk
´1

loomoon

HomKkgα
pQ,Qkgα q

P HomKγ pQ,Qγ q.

(187)
Here we observed that

rh1αs ˝ k´1 P HomKkgα
pQ,Qkgαq, rh

1
βs ˝ k1´1

P HomKk1gβ
pQ,Qk1gβ q » HomAdpgqKk1gβ

pQg,Qgk1gβ q

(the last isomorphism is the obvious one and we apply it to g “ kgα). (For
example, to check the first, note that for z P Kkgα and q P Q we have

rh1αs ˝ k´1pzqq “ rh1αs
`

pk´1zkqpk´1qq
˘

“ pg´1
α k´1zkgαqrh1αs ˝ k´1pqq.

Indeed, rh1αs represents the class in H˚pKkgαq, obtained by applying Adpkq to
the class hα P H˚pKgαq.) Returning to (187), set

x “ kgαk1gβK “ gγ K , y “ kgαK , z “ eK , U “ stabilizerpx, y, zq.

Then x, y are in relative position β, and y, z are in relative position α, and x, z
are in relative position γ .

Note also that

U “ Kkgα X AdpkgαqKk1gβ “ K X AdpkgαqK X Adpkgαk1gβqK .

Therefore, the composite occurring in (187)

F “

HomKAdpkgαqKk1gβ
pQkgα ,Qkgα k1gβ

q

hkkikkj

rh1βsk
1´1 ˝ rh1αsk

´1
loomoon

HomKgα pQ,Qkgα q
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actually belongs to HomU pQ,Qkgαk1gβ q; as such F defines a cohomology class
for U . This cohomology class is given by taking the classes hα, hβ , transporting
them to classes in H˚pKkgαq and H˚pAdpkgαqK 1

k1gβ q, by means of Adpkq :

Kgα » Kkgα and Adpkgαk1q : Kβ » AdpkgαqK 1
k1gβ , restricting to U , and taking

the cup product.
Said differently, let us think of hα as a G-invariant association Hα from pairs

pu, vq P G{K ˆG{K to cohomology classes in H˚pGuvq – the one whose value
at pgαK , eq is given by the original cohomology class in H˚pKgαq. Similarly for
hβ . Then,

cohomology class of F “ Hβpx, yq Y Hαpy, zq P H˚pGxyzq.

Now Kγ “ Gxz acts on the set of pk, k1, k2q as above, that is, satisfying
kgαk1gβ “ gγ k2, via

κ : pk, k1, k2q ÞÑ pκk, k1,Adpg´1
γ qκk2q.

For fixed pk, k1, k2q the stabilizer of this Kγ -action is just U . The contribution of
a single Kγ -orbit is given by

ÿ

κPKγ {U

Adpg´1
γ qκ ˝ F ˝ κ´1

which is to say that it averages F , considered as an element of HompQ,Qγ q,
over the cosets of Kγ {U . (The Adg´1

γ accounts for the twisted action on Qγ .)
This precisely realizes the corestriction from U to Kγ .

In summary, we have recovered the description of multiplication in the derived
Hecke algebra given in Section 2.3.

Appendix B. Koszul algebra; other odds and ends

Let B be a commutative ring with 1. Let

Brrx1, . . . , xr ss “ S ι
ÝÑ R “ Brry1, . . . , yr´δss

where ι sends xi to yi for i ď r ´ δ, and xi to zero for i ą r ´ δ.
Let pS be the kernel of the natural augmentation S Ñ B, and similarly for R.

Write tS for the B-linear dual of for pS{p
2
S and similarly for tR . Just as in (88) we

have a canonical identification

Ext1
SpB, Bq » tS.

We prove:
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LEMMA B.1. Ext˚S pB, Bq is a free-exterior algebra over its degree 1 component;
thus we have Ext˚S pB, Bq » ^˚tS as graded B-algebra. Moreover, there is an
identification of Ext˚S pR, Bqwith^˚ptS{tRq in such a way that the natural action
of Ext˚S pB, Bq » ^˚tS is the natural one obtained from the algebra map^˚tS Ñ

^˚ptS{tRq.

This will follow from the computations of Section B.2 (more precisely, with
the precisely analogous computations wherein one replaces the role of symmetric
algebras by power series algebras).

B.2. Koszul algebra. Let W be a free module of rank e over a base ring B
and consider the ring R “ SymBpW q, that is, ‘the ring of functions on W_.’ In
what follows we omit the B subscript on SymB .

We have a resolution

¨ ¨ ¨ Ñ SympW q b ^2W Ñ SympW q bW Ñ SympW q
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

K

Ñ B,

where the differential sends

rbw1^¨ ¨ ¨^wr P SympW qb^i W ÞÑ
ÿ

i

p´1qi´1rwi bw1^ . . . pwi ^ . . . wr .

There is a corresponding resolution where we replace SympW q by its completion
with respect to the augmentation SympW q Ñ B, that is, when we replace a
symmetric algebra by a formal power series algebra.

In particular, we get

HomRpK, Bq »
`

^i W
˘_

with zero differentials

and thus an identification of Exti
RpB, Bq with p^i W q_.

In fact, Ext˚RpB, Bq is a free-exterior algebra, where the algebra structure
on the Ext-groups arising from their identification with the cohomology of the
differential graded algebra

HomRpK,Kq.

To see this, one verifies that each element of w P W_, considered as acting on K
by contractions, actually defines a degree ´1 endomorphism of K; the resulting
inclusion

ľ˚

pW_q ãÑ HomRpK,Kq

gives a quasi-isomorphism of differential graded algebras.

https://doi.org/10.1017/fmp.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.6


A. Venkatesh 114

Suppose now that U is a free submodule of W such that W{U is also free. In
this situation we have a quotient map

R “ SympW q Ñ SympW{Uq :“ R̄.

We have a resolution of R-modules (where the differential is given by the same
formula as before):

¨ ¨ ¨ Ñ SympW q b ^2U Ñ SympW q bU Ñ SympW q
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

Q

„
ÝÑ R̄,

and from this we identify Ext˚RpR̄, Bq with p^˚Uq_.

LEMMA B.3. The action of Ext˚RpB, Bq » p^˚W q_ on this is the natural one
that arises from the map W_ Ñ U_.

Proof. It is enough to check this for the action of Ext1
RpB, Bq. We have

identifications:

Ext˚RpR̄, Bq » H˚ pHomRpQ, Bqq “ H˚ pHomRpQ,Kqq .

Explicitly, a class in ω j P p^
jUq_ » Ext j

RpR̄, Bq is represented by a map of
complexes Q Ñ K as follows:

¨ ¨ ¨ // R b^ j`1U //

f

��

R b^ jU //

ω jP^
j U_

��

R b^ j´1U

¨ ¨ ¨ // K1 “ R bW // K0 “ R // 0

(188)

(since this lifts the map Q Ñ Br js associated to ω j ).
Fix a basis e1, . . . , er for U and extend it to a basis e1, . . . , ee for W . For

I Ă t1, . . . , eu with cardinality r , we define eI P ^
r W thus: write I “ ti1, . . . ,

iru with i1 ă ¨ ¨ ¨ ă ir and put eI “ ei1 ^ ei2 ^ ¨ ¨ ¨ ^ eir . We may choose f to be
given, explicitly, as

eJ P ^
j`1U ÞÑ

ÿ

kPJ

p´1qrks´1ω jpeJ´kq b ek P R bW,

where rksmeans the position of k in J (that is, if J is ordered in increasing order,
then 1 for the smallest element, two for the second smallest, and so forth).

To compute, now, the action of β P W_ “ Ext1
RpB, Bq on the class ω j , we

just regard β as an R-module map K1 “ R bW Ñ R, and then compose

β ˝ f P HomRp^
j`1U b R, Rq “

`

^ j`1U
˘_
.
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Explicitly,

β ˝ f : eJ ÞÑ
ÿ

kPJ

p´1qrks´1βpekqω jpeJ´kq “ pβ ^ ω j , eJ q

that is, β ^ ω j , where β is the image of β in U_. This concludes the proof.

B.4. A result in topology. Suppose that π : X Ñ Y is a covering of pointed
Hausdorff topological spaces, with Galois group ∆. This covering is classified
by a map Y Ñ B∆ from Y to the classifying space of ∆.

There are two natural actions of H˚p∆, Eq (with E a coefficient ring) on
H˚pY, Eq:

(a) The first arises from pullback of cohomology classes under Y Ñ B∆
together with cup product.

(b) The second arises from the identification of the cochain complex of Y , with
E coefficients, with

C˚pY ; Eq » HomE∆pC˚pX, Eq; Eq

where C˚pX; Eq is the chain complex of X (or for example, the complex
of a ∆-equivariant cell structure), thought of as a complex of E∆-modules.
Then one composes with self-maps of E in the derived category of E∆-
modules.

For lack of a reference, we prove the coincidence of these actions. For this we
use the following standard Lemma concerning the coincidence of singular and
sheaf cohomology (see [31] for a careful discussion; however this reference does
not discuss the product structures):

LEMMA B.5. For any locally contractible Hausdorff space M, and any E-
module A, let A be the constant sheaf on M with constant value A, considered
as an object of the category of sheaves S of E-modules on M.

Then the complex of local chains U ÞÑ C˚pU, Aq defines a presheaf on M;
let C˚A be its sheafification. Then A Ñ C˚A is a flasque resolution of A. Moreover,
the natural maps

C˚pM, Aq Ñ Γ pM, C˚Aq “ HomSpA, C˚Aq

induces, at the level of cohomology, an isomorphism

H˚pM, Aq » Ext˚SpA, Aq (189)

which carries the cup product on the left to the Ext-product to the right.
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Proof. (that (a) and (b) coincide). Observe, first of all, that every E∆-module
M gives a locally constant sheaf M on Y , namely, the one represented by
the covering pX ˆ Mq{∆ Ñ Y . The cochains C˚pY,Mq are then given by
HomE∆pC˚pX, Eq,Mq.

Fix α∆ P H mp∆, Eq. It gives rise to a homomorphism α : E Ñ Erms in
the derived category of E∆-modules, which can be represented by a diagram
E „
Ð P Ñ Erms where P is a complex of projective E∆-modules. Thus we get

a diagram of locally constant sheaves on Y :

α : E „
Ð P Ñ Erms.

This gives a map in the derived category of sheaves on Y , and thus an element
of Extm

SpE, Eq; this element represents the pullback αY of α∆ to Y . or rather its
image under (189).

By the final sentence of the Lemma, the cup product with αY is given, at the
level of cohomology, by the Ext-product, which is explicitly the composite:

H˚pY, Eq „Ð H˚pY, Pq Ñ H˚pY, Ermsq.

By the lemma, these groups are naturally identified with the cohomology of the
corresponding cochain groups; so the above composite coincides with

HomE∆pC˚pX, Eq, Eq „Ð HomE∆pC˚pX, Eq, Pq Ñ HomE∆pC˚pX, Eq, Eq

where the middle term is now the Hom-complex between two complexes.
But this composite is also given by the Ext-product, in the category of E∆-

modules, with the class of α. This concludes the proof of the coincidence of (a)
and (b).
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Index of symbols and important notation

Av , 29
B_, dual Borel, 14
Bv , 29
F , 13
Gv , 14, 29
H1

f , 76
K0, 53
Kv , 14
M˚, dual of a Galois module, 77
R, 54
Rn , 69
RQn , 69
S (set of ramified places), 55
Sn , 59
T , 29
T (set of places), 54
T_, dual torus, 14
Tn , 58
Tq , 78
Wn , 85
Ws , 58
X˚, 13, 29
Y p1q, 53
Y pK q, 14
Y0pQnq, 58
Y0pqq, 58
Y1pqq, 58
Y1pq, nq, 58
Y˚1 pQnq, 58
Ad˚, 76
q, minimal degree of tempered cohomology, 3
FrobT

q , 57
Π , 54
S, 59
V, 78
V-convergent, 96
χt , 63
χFrobT , 63
Rρ , 57
T̃, 25
T̃pV q, 27
T̃pV0q, 27

ιq,n , 78
H (hypercohomology), 108
ApFvq˝, 29
G, 13
A, 29
B, 29
G, 29
m, 55
tRn , 85
tSn , 85
tR, 84
HK , 36
HI I , 36
HI K , 36
HK I , 36
H pG,Uq, 16
H j , 16
H p jq, 16
HI , 75
HK , 75
Hv , 16
ρ, 57
ρ, 57
W̃ , 36
Rn , 72
ĂX˚, 64
fq,n , 78
s (size of Taylor–Wiles datum), 57

convergent (Taylor–Wiles data), 83

derived Hecke algebra, 16

global derived Hecke algebra, 25

inertial level, 68

level of K , 14

strict global Hecke, 27
strict Taylor–Wiles datum, 94
strongly regular element, 57

Taylor–Wiles prime, 57
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