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CHARACTERISATION OF NILPOTENT-BY-FINITE GROUPS

NADIR TRABELSI

Let G be a finitely generated soluble group. The main result of this note is to prove
that G is nilpotent-by-finite if, and only if, for every pair X, Y of infinite subsets
of G, there exist an x in X, y in Y and two positive integers m = m(x,y),
n = n(x, y) satisfying [x, nym] = 1. We prove also that if G is infinite and if TO is
a positive integer, then G is nilpotent-by-(finite of exponent dividing m) if, and
only if, for every pair X, Y of infinite subsets of G, there exist an x in X, y in
Y and a positive integer n = n(x,y) satisfying [i,n»m] = 1.

INTRODUCTION AND RESULTS

Following questions of Erdos, B.H. Neumann proved in [9] that a group is centre-
by-finite if, and only if, every infinite subset contains a commuting pair of distinct
elements. From this, as was observed in [7], it is easy to show that if G is an infinite
group such that for every pair X, Y of infinite subsets of G, there exist an x in X

and y in Y that commute, then G is Abelian. Endimioni [2, Theorem 2] extended this
result, by proving that if G is an infinite finitely generated soluble group such that for
every pair X, Y of infinite subsets of G, there exist an x in X, y in Y and a positive
integer n = n(x, y) satisfying [x, ny] — 1, then G is nilpotent. The main purpose of
this note is to improve this last result. We shall prove:

THEOREM 1 . Let G be a finitely generated soluble group. Then the following
properties are equivalent:

(i) G is nilpotent-by-Snite.

(ii) For every pair X, Y of infinite subsets of G, there exist an x in X,

y in Y and two positive integers m — m{x,y), n = n(x,y) satisfying
f~. , . m ] _ -I

From a result of Lennox [4], a finitely generated soluble group all of whose two-
generator subgroups are nilpotent-by-finite, is itself nilpotent-by-finite. As an immedi-
ate consequence of Theorem 1, we have the following generalisation of Lennos's result:
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COROLLARY 1. A finitely generated soluble group G is nilpotent-by-finite if,

and only if, for every pair X, Y of infinite subsets of G, there exist an x in X and y

in Y generating a nilpotent-by-Bnite group.

As a consequence of Theorem 1, we shall prove the result:

COROLLARY 2 . Let G be a finitely generated soluble group such that for every

pair X, Y of infinite subsets of G, there exist an x in X, y in Y and a positive

integer m = m(x, y) satisfying [x, ym] = 1. Then G is Abelian-by-finite.

Corollary 2 leads us to consider the following question: if the integers n(x, y) of
Theorem 1 are bounded by an integer fc, then is G a finite extension of a nilpotent
group of class at most an integer depending only on fc? We are unable to answer this
in the general case. However, we shall prove:

THEOREM 2 . Let G be a finitely generated metabelian group satisfying the con-
dition (ii) of Theorem 1, and suppose that the integers n(x, y) are bounded by a positive
integer k. Then there is a function c(fc) of k only, such that G is a finite extension of
a nilpotent group of class at most c(k).

Note that these results are not true for arbitrary groups. Indeed, Golod [3] showed
that for each integer d > 1 and each prime p, there are infinte d -generator groups
all of whose (d— 1)-generator subgroups are finite p-groups. For d = 3, we obtain
groups which satisfy the combinatorial conditions of the theorems and the corollaries,
but which are not nilpotent-by-finite.

Now we turn our attention to the integers m(x, y). We shall prove:

THEOREM 3 . Let m be a positive integer and let G be an infinite finitely gen-

erated soluble group. Then the following properties are equivalent:

(i) G is nilpotent-by-(finite of exponent dividing m).

(ii) For every pair X, Y of infinite subsets of G, there exist an x in X, y in

Y and a positive integer n = n(x, y) such that [x, ny
m] = 1 •

If we take m = 1, then we find again [2, Theorem 2].

Our notation and terminology are the usual ones, and can be found in [10]. In

particular, [x,ny] is defined for each integer n > 0 by [x,oy] = x and [x, n+1t/] =

[[x, „!/],{/]. We shall denote by fi* the class of groups satisfying the condition (ii) of

Theorem 1.

2. SOME PRELIMINARY LEMMAS

LEMMA 1. Let G be a finitely generated metabelian group in the class 0*. Then

G is nilpotent-by-finite.
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PROOF: Let G be a finitely generated metabel ian group in the class O*. Suppose

that G is not nilpotent-by-finite. Since fl* is a quotient closed class of groups, and

since finitely generated nilpotent-by-finite groups are finitely presented, it follows, by

[10, Lemma 6.17], t h a t we may assume t h a t every proper homomorphic image of G is

nilpotent-by-finite. Since G is metabelian, i ts Hirsch-Plotkin radical H is non trivial;

hence, G/H is nilpotent-by-finite. I t follows tha t G contains a normal subgroup K of

finite index such tha t K/H is nilpotent. If K/H is infinite, then it contains an element

yH of infinite order [10, Theorem 2.24]. Thus , for any integer k, yk £ H; furthermore,

for any x e G, the subsets {y%x : i positive integer} and {yl : i positive integer} are

infinite. Hence, there exist positive integers r, k, m = m(x, y) and n = n(x, y) such

that [yrx, ny
km] = 1; so we get t h a t [x, ny

km] = 1 • Since G is a finitely generated

metabelian group, it is eremitic [5, Theorem B]. This means tha t there is a positive

integer d, depending only on G, such t h a t [a, bd] = 1 whenever [a, b%] = 1, for any

a, b in G and any positive integer i. Therefore, we deduce tha t [[x, n-iy
km], Vd] = 1-

The group G being metabelian, it is easy to see t h a t [a, 6, c] = [a, c, 6] for all elements

a, b, c of G such tha t bc = cb. Thus , we get t ha t [[x, yd], n - i y f c m ] = 1; and by induction

on n , we obtain tha t [x,nyd] = 1. Therefore, yd is a left Engel element of G. Since

G is metabelian, the set of left Engel elements of G coincides with its Hirsch-Plotkin

radical [10, Theorem 7.34]. So yd e H, and this contradicts the choice of y. It

follows tha t K/H is finite, so G/H is finite. Since G is finitely generated, H is also

finitely generated. Hence, H is nilpotent; and G is, therefore, nilpotent-by-finite, a

contradiction which completes the proof. D

We shall use the following lemma which is due to Lennox [6].

LEMMA 2. Let G be a finitely generated soluble group and A a normal Abelian
subgroup such that G/A is polycyclic and (a, g) is polycyclic whenever a e A and
g € G. Then G is polycyclic.

LEMMA 3 . Let G be a Bnitely generated soluble group in fi*. Then G is poly-
cyclic.

PROOF: Since polycyclic groups are finitely presented, and since Q* is a quotient
closed class of groups, by [10, Lemma 6.17], we may assume that every proper homo-
morphic image of G is polycyclic, but G itself is not polycyclic. Since G is soluble, it
has a non trivial normal Abelian subgroup A; so G/A is polycyclic. Let g € G and
a € A; (a,g) is, therefore, a finitely generated metabelian group in the class fl*. It
follows, from Lemma 1, that (a, g) is nilpotent-by-finite. Thus, (a, g) is polycyclic.
Prom Lemma 2, we can deduce that G is polycyclic, which is a contradiction.

3. PROOFS OF THE RESULTS

PROOF OF THEOREM 1: Clearly we have only to show that (ii) implies (i). Suppose
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that G is a finitely generated soluble group in the class fi*; from Lemma 3, G is
polycyclic. The group G contains, therefore, a normal subgroup H of finite index,
whose derived subgroup H' is nilpotent [11, 15.1.6]. Since G is polycyclic, it satisfies
the maximal condition on normal subgroups; and since Q* is a quotient closed class,
we may, therefore, assume that G is not nilpotent-by-finite, but that every proper
homomorphic image of G is nilpotent-by-finite. If H^, the third term of the derived
series of H, is non trivial, then G/H^ is nilpotent-by-finite. Hence, G contains a
normal subgroup K of finite index such that K/H^ is nilpotent. Now K/H^ and
H'/HW are two normal nilpotent subgroups of G/H^, so their product KH'/H^
is nilpotent [10, Theorem 2.18]. Also H' and KH'/H^ are nilpotent; by a result
of Hall [10, Theorem 2.27], KH', and so K, is nilpotent. Thus, G is nilpotent-by-
finite, which is a contradiction. So H^ = 1 and H is, therefore, a finitely generated
metabelian group. It follows, from Lemma 1, that H is nilpotent-by-finite. So G is
nilpotent-by-finite, a contradiction which completes the proof. U

PROOF OF COROLLARY 2: Let G be a finitely generated soluble group such that,
for every pair X, Y of infinite subsets of G, there exist an x in X, y in Y and a
positive integer m = m(x, y) satisfying [x, ym] = 1. Clearly, we may assume that G

is infinite. It follows, from Theorem 1, that G is nilpotent-by-finite. Thus, G has an
infinite finitely generated nilpotent subgroup of finite index so, without loss of generality,
we may suppose G is finitely generated and nilpotent. Since finitely generated nilpotent
groups are (torsion-free)-by-finite [11, 5.4.15(i)], we may assume also that G is torsion-
free. The group G, being nilpotent and finitely generated, contains a maximal normal
Abelian subgroup A. We know that CG(A) = A [11, 5.2.3]. Let o be a non trivial
element of A, and let g 6 G; since G is torsion-free, the subsets {a* : i integer} and
{a'g : i integer} are infinite. There exist, therefore, integers i,j and m = m(a,g)

such that [a*, (a-'g)"1] = 1. Since A is a normal Abelian subgroup of G, we get
that [a, (aJg)m]* = 1. Thus, we obtain that [a, (aJ</)"*] = 1, because G is torsion-
free; hence, it is easy to deduce that [a, gm] = 1. The group G, being nilpotent and
finitely generated, is eremitic [5, Theorem B]. There is, therefore, a positive integer
d, depending only on G, such that [a,gd] = 1; so gd € CG(A). NOW A = CG(A),

thus gd € A. It follows, that GjA is a periodic group. Therefore, GjA being a
periodic finitely generated nilpotent group, is finite. Hence, G is Abelian-by-finite, as
required. D

PROOF OF THEOREM 2: Let G be a finitely generated metabelian group in the
class fi*, such that the integers n(x, y) are bounded by a positive integer k. Clearly,
we may assume that G is infinite. It follows, from Theorem 1, that G is nilpotent-
by-finite. Hence, G contains a normal nilpotent subgroup H of finite index. Since
finitely generated nilpotent groups are (torsion-free)-by-finite [11, 5.4.15 (i)], there is
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no loss of generality if we assume that H is torsion-free. Since G is infinite, H is an
infinite finitely generated nilpotent group. Hence, C(H), the centre of H, is infinite
[10, Theorem 2.24]. Thus, for any x,y in H, the subsets x(,(H) and yC(H) are
infinite. There exist, therefore, a, b in C(H) and integers n = n(x,y), m = m(x,y)

such that [xa,n(yb)m] = 1; so [x,ny
m] = 1. Now n ^ k, so [x,ky

m] = 1. Since G is
a finitely generated metabelian group, it is eremitic [5, Theorem B]. We proceed then
as in Lemma 1; there is, therefore, a positive integer d, depending only on H, such
that for any x, y in H, we have [x,kVd] = 1. So yd is a left fe-Engel element of H.

Since H is a finitely generated nilpotent group, then, according to a result of Mal'cev
[8], the set {hd : h e H} contains a normal subgroup K of H, of finite index in H.

Since for any x, y in H we have [xd,kyd] = 1 then K is a fc-Engel group. By a result
of Zelmanov [12], there is an integer c = c(k), depending only on k, such that K is
nilpotent of class at most c(k). Hence, H, and therefore G, is a finite extension of a
nilpotent group of class at most c(fc) as required. D

P R O O F OF T H E O R E M 3: Clearly, every nilpotent-by-(finite of exponent dividing
m) group satisfies the condition (ii). Now suppose that G is an infinite finitely generated
soluble group in the class fl*, such that the integer m is the same for any pair of infinite
subsets X, Y of G. We have to show that G is an extension of a nilpotent group by
a finite group of exponent dividing m. Since G is a finitely generated soluble group,
G/Gm is a finite group of exponent dividing m [11, 5.4.11]. It suffices, therefore, to
show that Gm is nilpotent; and from a result of Robinson and Wehrfritz [11, 15.5.3],
it suffices to show that any finite homomorphic image of Gm is nilpotent. Let N be a
normal subgroup of Gm, of finite index. Since G/Gm is finite, N is of finite index in
G. Hence, there is a G-admissible subgroup M of N, of finite index in G. So, if T is
a left transversal of M in G, then T is finite; and since G is infinite, M is also infinite.
Thus, for any x,y in T, the subsets xM and yM are infinite. There exist, therefore,
a, 6 in M and an integer n = n(x, y, M ) , such that [xa,n(yb)m] = 1; so [x, nym] € M.

Since T is finite, it follows that there is a positive integer n, depending only on M,

such that for any x, y in T , we have [x, ny
m] 6 M . This means that G/M satisfies the

identity [x,nj/m] = 1, and from the corollary of [1], (G/M)m is, therefore, nilpotent.
Now (G/M)m = Gm/M, so Gm/M is nilpotent. Hence, Gm/N, as a homomorphic
image of a nilpotent group, is nilpotent. 0
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