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Introduction

The occurrence of quadratic L-functions in the Fourier coefficients of Eisenstein ser-

ies of half-integral weight was first discovered in 1937 by Maass [M]. His result is an

analog for Eisenstein series of a phenomenon later discovered by Waldspurger [Wa],

who showed that the Fourier coefficients of holomorphic cusp forms of half-integral

weight are (essentially) square roots of quadratic twists of L-functions attached to

cusp forms on GLð2Þ. The Maass phenomenon was further investigated by Siegel

[S], by Goldfeld and Hoffstein [GH], and by Goldfeld, Hoffstein, and Patterson

[GHP].

In particular, the paper of Siegel foreshadowed more recent work that studies

(double) Dirichlet series formed with the quadratic twists of certain L-functions

(cf. the survey article of Bump, Friedberg and Hoffstein [BFH]). From this point

of view, the paper of Goldfeld and Hoffstein gave applications of the Maass phe-

nomenon to analytic number theory by providing new estimates for the mean

values of Dirichlet L-functions summed over quadratic twists. Specifically, they

estimatedX
jnj<x

n squarefree

Lðs; wnÞ; ReðsÞ5 1=2;
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and obtained results including:

X
jnj<x

n squarefree

Lð1; wnÞ ¼ c1xþOðx
1
2þEÞ;

X
jnj<x

n squarefree

Lð1=2; wnÞ ¼ c2x log xþ c3xþOðx
19
32þEÞ;

where c1, c2 and c3 are certain (computable) constants.

The possibility of a generalization to higher order twists was demonstrated by

Bump and Hoffstein [BH1], who (following the related work of Proskurin [P]) estab-

lished that on the 3-fold metaplectic cover of GLð3Þ, the Whittaker–Fourier coeffi-

cients of a certain Eisenstein series contain cubic L-functions. The Eisenstein series

they considered are those induced from the generalized theta series on the 3-fold

cover of GLð2Þ. Lieman [L], and also Farmer, Hoffstein, and Lieman [FHL], have

given applications of this phenomenon to analytic number theory similar to those

obtained in the quadratic setting.

Once this result for the cubic case is known, it becomes natural to conjecture that

a similar phenomenon occurs for every n5 2. That is, one expects that nth order

Hecke L-functions will be contained in the Whittaker–Fourier coefficients of an

Eisenstein series on the n-fold cover of GLðnÞ induced from the generalized theta ser-

ies on the n-fold cover of GLðn� 1Þ. We will refer to this as the L-function conjecture.

This conjecture will undoubtedly have many applications in analytic number theory

and is the subject of our paper.

Kazhdan and Patterson [KP] showed that the ‘exceptional’ representations corre-

sponding to the generalized theta series on the n-fold metaplectic covers of GLðnÞ

and of GLðn� 1Þ (taking c ¼ �1 in their notation in the latter case) are special in

that they have unique Whittaker models. This remarkable fact helps explain why

we consider Eisenstein series on the n-fold cover of GLðnÞ constructed with the theta

function on the n-fold cover of GLðn� 1Þ. There seems to exist a peculiar ‘resonance’

between the rank of the group and the degree of its cover.

One aspect of this resonance is the uniqueness of Whittaker models for the

induced representations corresponding to these Eisenstein series. These are not

exactly Whittaker models in the usual sense but are models for the subgroup

obtained by extending the maximal unipotent in the n-fold cover of GLðnÞ by the full

preimage in the metaplectic group of the center of GLðnÞ, which is abelian but not

central. The uniqueness of these models was proved by Gelbart, Howe and Pia-

tetski-Shapiro [GHP-S] when n ¼ 2 and by Bump and Lieman [BL] in general. See

also Theorem 3.1 below.

This uniqueness, which is a purely local result, underlies the L-function conjecture,

for it implies that the Whittaker integrals of the Eisenstein series are Euler products,

just as the uniqueness of Whittaker models for (nonmetaplectic) GLðnÞ implies
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that the global Whittaker model is Eulerian. See Proposition 9.2 of Jacquet and

Langlands [JL] or Theorem 3.5.4 of Bump [B] for this standard argument.

Evaluation of these Euler products is therefore an essentially local matter. Results

of Kazhdan and Patterson reduce the proof of the L-function conjecture to a com-

binatorial problem involving identities among nth order Gauss sums. Nevertheless,

the combinatorial difficulties involved are quite substantial.

In this paper, we prove local results leading to a proof of the L-function conjecture

over any global field that contains the nth roots of unity. We also prove in this paper

a generalization of the L-function conjecture that includes twists of these L-series by

arbitrary Hecke characters.

Another proof of the L-function conjecture can also be found in the important

and difficult paper of T. Suzuki [Su], whose work we now discuss.

Bump and Hoffstein [BH2] also made a more general conjecture concerning Four-

ier coefficients of Eisenstein series on the metaplectic group. If f is an automorphic

form on the n-fold cover of GLðrÞ, and if k < n, then GLðnþ r� kÞ has a parabolic

subgroup whose Levi factor is GLðrÞ �GLðn� kÞ, and one may form an Eisenstein

series induced from f and the theta function on the n-fold cover of GLðn� kÞ. Bump

and Hoffstein conjectured that a Whittaker–Fourier coefficient of this Eisenstein

series is equal to a Rankin–Selberg integral involving f and a theta function on

the n-fold cover of GLðkÞ. In the special case where r ¼ k ¼ 1, the corresponding

L-function is simply an nth order Hecke L-function; the L-function conjecture

described above is therefore a special case of the general conjectures of Bump and

Hoffstein.

The difficulty in establishing the Bump–Hoffstein conjectures in full generality is

more than combinatorial, since the methods of Kazhdan and Patterson [KP] yield

only partial information about the Whittaker–Fourier coefficients on the n-fold

cover of GLðkÞ if k 6¼ n; n� 1. The most that can be said is that the information

one is able to obtain is compatible with the conjectures.

Suzuki [Su] managed to overcome these obstacles and prove the general conjec-

tures of Bump and Hoffstein over a function field in which �1 is an nth power.

To do this, he had the insight to use the Rankin–Selberg method in a novel way

in order to overcome the apparent incompleteness of the information available on

the Whittaker models. For technical reasons, most of his results are stated only in

the function field case. An exception, which he states in the case of an arbitrary glo-

bal field, is his result of Section 7.5 (not in Section 6.4 as stated in his introduction)

which is essentially the L-function conjecture.

Because Suzuki relies on the Kazhdan–Patterson cocycle, which is incorrect if �1

is not an nth power (see [BLS]), the reader approaching his paper should assume that

the ground field contains the 2nth roots of unity.

In view of the importance of the conjecture, we feel that an independent treatment

of the theorem is not superfluous. Our proof relies on a correct cocycle and we do

not need to assume that �1 is an nth power. Interestingly, in the case where �1 is

not an nth power in the underlying field, we observe a surprising dichotomy: the
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L-functions that arise in the Whittaker–Fourier coefficients of the Eisenstein series

are either twisted by a certain quadratic Hecke character or they are untwisted,

depending only on the residue class of n mod 8. This result is new.

We now turn to a more precise description of our results. Fix once and for all an

integer n5 2, and let k be a global field in which the group mn of nth roots of unity in
k� has cardinality n. Let A be the ring of adeles of k. For every r5 1 and c 2 Z=nZ,

the n-fold c-twisted metaplectic group gGLðcÞ
r ðAÞ is a nontrivial central extension of

GLrðAÞ by mn that is constructed by means of the nth order (global) Hilbert symbol
ð
; 
ÞA: A

�
� A

�
! mn (cf. [We2]). For any Hecke character w: A

�=k� ! C
�, one

constructs a theta representation yw of the group eG0ðAÞ :¼ gGLð�1Þ
n�1 ðAÞ as in [KP].

Let P be the standard (maximal) parabolic subgroup in GLn of type ðn� 1; 1Þ,

and let ePðAÞ be the preimage of PðAÞ in eGðAÞ :¼ gGLð0Þ
n ðAÞ. By means of the embed-

ding:

i: eG0ðAÞ ,! eGðAÞ; ðg; xÞ 7!
g
det g�1

� �
; x

� �
;

the representation yw can be extended to a representation of ePnðAÞ, the metaplectic

preimage of the subgroup PnðAÞ consisting of elements of PðAÞ whose determinants

are nth powers in A
�. Since yw is automorphic, there exists a nonzero GðkÞ-invariant

linear functional L on the space of yw. Taking fs to lie in the induced series

Ind
eGðAÞePnðAÞ

ðyw � dsPÞ, where dP: ePðAÞ ! C
� is the modular character of PðAÞ, we form

the metaplectic Eisenstein series

Eðg; fsÞ :¼
X

g2PnðkÞnGðkÞ

LfsðggÞ; for all g 2 eGðAÞ:

Here GðkÞ :¼ GLnðkÞ is embedded in eGðAÞ under the canonical splitting [KP]. Let

c: A=k ! C
� be a fixed nontrivial additive character. For any a 2 k�, the ‘ath

Whittaker–Fourier coefficient’ Ws;aðgÞ of Eðfs; gÞ is defined by

Ws;aðgÞ :¼

Z
NðkÞnNðAÞ

Eðfs; ngÞ �caðnÞ dn

Here N is the standard unipotent subgroup of GLn, and ca: NðAÞ=NðkÞ ! C
� is

the character given by:

caðnÞ ¼ cðan1;2Þcðn2;3Þ 
 
 
cðnn�2;n�1Þ; for all n 2 NðAÞ:

THEOREM. If n is odd, or n � 2 or 4 ðmod 8Þ, then the ath Whittaker–Fourier

coefficient of the metaplectic Eisenstein series Eð fs; gÞ can be expressed as a Euler

product:

Ws;aðgÞ ¼
Y
v2S

Wv
s;aðgvÞ

Y
v=2S

Lvðns; wv ð
; aÞvÞ
Lvðn2s; wnvÞ

:
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If n � 0 or 6 ðmod 8Þ, then

Ws;aðgÞ ¼
Y
v2S

Wv
s;aðgvÞ

Y
v=2S

Lvðns; wvð
;�aÞvÞ

Lvðn2s; wnvÞ
:

The notation may be explained as follows. The set S is any finite collection of pla-

ces of the global field k that contains every Archimedian place and all non–Archi-

median places v for which vð2nÞ 6¼ 0. If v =2 S, the local nth order Hilbert symbol

ð
; 
Þv: k�v � k�v ! mn is unramified, as is the quadratic Hilbert symbol

ð
; 
Þ2;v : k
�
v � k�v ! f�1g. If g ¼ ðgvÞ, we also include in S those places such that

the local component gv does not lie in the canonical lift K
�
v of the standard maximal

compact subgroup Kv of GLnðkvÞ. We may assume that fs has the form of a metaplec-

tic tensor product e�fs;v, where each fs;v lies in a local induced representation

Ind
eGðkvÞePnðkvÞ

ðyw;v � dsP;vÞ, and we include in S those places for which fs;v is not the normal-

ized K�
v -fixed vector fs;v (cf. Section 3). For each place v 2 S, Wv

s;a is a Whittaker

function for the local induced representation. Finally, the local L-functions occur-

ring in the product over v =2 S are defined in the usual way (cf. Theorem 3.2 for a pre-

cise definition).

To prove this theorem, one unfolds the integral to write Ws;aðgÞ asX
g2PðkÞnGðkÞ=NðkÞ

Z
NgðkÞnNðAÞ

LfsðgngÞ �caðnÞ dn;

where Ng ¼ N \ g�1Pg. There are n double cosets in PnG=N with representatives

g ¼
In�r

Ir

� �
:

Only r ¼ 1 contributes since otherwise g conjugates a simple root into the unipo-
tent radical of P and the term vanishes. When r ¼ 1 the resulting global integral fac-

torizes into local integrals (3.1) computed in Theorem 3.2. More precisely, one splits

the integration into
R
NgðkÞnNgðAÞ

and
R
NgðAÞnNðAÞ

. The first integral produces the Whit-

taker functional on the theta representation of gGLðn� 1Þ, and the second gives the
integral (3.1) at every place.

Our theorem asserts that the Whittaker–Fourier coefficients of metaplectic Eisen-

stein series are essentially quotients of standard (completed) Hecke L-functions:

Lðns; wð
;�aÞAÞ

Lðn2s; wnÞ
¼
Y
v

Lvðns; wvð
;�aÞvÞ

Lvðn2s; wnvÞ
:

Though we have not attempted to do so here, a more thorough analysis would

entail a proof of the nonvanishing of the local Whittaker functions Wv
s;a for an

appropriately chosen fs ¼ e�fs;v. When n5 3, this can certainly be accomplished

using standard techniques, since the n-fold metaplectic cover splits over GLnðCÞ in

this case. For non-Archimedian v, the nonvanishing of Wv
s;a can certainly be shown

if fs;v has sufficiently small support.
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As alluded to earlier, the proof of our theorem rests primarily on the calculation of

local Euler factors for the metaplectic Eisenstein series at ‘good’ places; the bulk of

our work is devoted to this calculation. The paper is organized as follows. In

Section 1, we recall the construction of local metaplectic groups and describe the

metaplectic cocycles from [BLS] in a form suitable for calculations. In Section 2,

we review the construction of the (local) exceptional representations on the n-fold

�1-twisted cover of GLðn� 1Þ; these were first considered in [KP]. The main result

in this section (Theorem 2.1) gives an explicit evaluation of the normalized Whit-

taker function Wy on certain diagonal elements sð$fðkÞ Þ in the local metaplectic

group. We remark that these are essentially the only elements for which Wy can

be easily evaluated, and it is a fortunate circumstance that we do not need to know

the other values ofWy. In Section 3, we review the construction of the induced series

corresponding to y, which live on the n-fold 0-twisted cover of GLðnÞ; these are the
local representations corresponding to our metaplectic Eisenstein series. The main

result in this section (Theorem 3.2) gives an explicit evaluation of the normalized

Whittaker function Ws;a at the identity; the theorem stated above follows from this

result in the manner previously described.

1. Preliminary Notation

Let n be a fixed positive integer, and let F be a non-Archimedean local field such that

the group mn of nth roots of unity in F� has cardinality n. Once and for all, we will fix

an embedding mn,!C
� and identify mn with the group of nth roots of unity in C

�.

Let O denote the ring of integers in F, } the unique maximal ideal in O, and q the

cardinality of the residue field O=}. Let j 
 jF denote the absolute value symbol on F,

and let v: F ! Z [ f1g be the corresponding normalized discrete valuation. Then

jxjF ¼ q�vðxÞ for all x 2 F. We fix a prime element $ 2 F with vð$Þ ¼ 1.

Let ð
; 
ÞF: F�
� F�

! mn be the nth order Hilbert symbol on F (cf. [We2] XIII-5);

it is a map that satisfies

ðxx0; yÞF ¼ ðx; yÞF ðx0; yÞF; ðx; yy0ÞF ¼ ðx; yÞF ðx; y0ÞF;

ðx; yÞ�1F ¼ ðy; xÞF; ðx;�xÞF ¼ 1;

for all x; x0; y; y0 2 F�. Also

fx 2 F�
jðx; yÞF ¼ 1 for all y 2 F�

g ¼ F�n;

where

F
�n :¼ fx 2 F

�
jx ¼ yn for some y 2 F

�
g:

In the sequel, we will often assume that the Hilbert symbol is unramified, i.e., that

ðx; yÞF ¼ 1 for all x; y 2 O�. This is equivalent to the condition that jnjF ¼ 1.

For every positive integer r and every c 2 Z=nZ, let gGLðcÞ
r ðFÞ denote the n-fold c-

twisted metaplectic cover of GLrðFÞ; it is a central extension of GLrðFÞ by mn:

1! mn ! gGLðcÞ
r ðFÞ �!

P
GLrðFÞ ! 1:
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With r and c fixed for the moment, put G :¼ GLrðFÞ and eG :¼ gGLðcÞ
r ðFÞ. Then we

may regard eG as the set G� mn equipped with a multiplication law given by

ðg; xÞðg0; x0Þ ¼ ðgg0; xx0sðg; g0ÞÞ; for all g; g0 2 G; x; x0 2 mn:

Here s: G� G ! mn is a certain 2-cocycle in Z2ðG; mnÞ whose properties are descri-
bed below. The natural projection p: eG ! G is defined by ðg; xÞ 7! g, and we identify

mn with the subgroup kerðpÞ of eG via the map x 7! ðI; xÞ, where I denotes the identity
matrix in G. Since sðg; IÞ ¼ sðI; gÞ ¼ 1 for all g 2 G (see below), it follows that mn is
contained in the center of eG. Let s: G ! eG be the p-section given by g 7! ðg; 1Þ, then

sðgÞsðg0Þ ¼ sðgg0Þsðg; g0Þ; sðgÞx ¼ xsðgÞ;

for all g; g0 2 G, x 2 mn.
We will now summarize the properties of s ¼ sðcÞr that are needed for our calcula-

tions. First of all, the c-twisted cocycle sðcÞr is obtained from the untwisted (i.e., 0-twis-

ted) cocycle sr :¼ sð0Þr by the relation:

sðcÞr ðg; g0Þ ¼ srðg; g0Þðdet g; det g0Þ
c
F; for all g; g0 2 G: ð1:1Þ

The particular cocycle sr 2 Z2ðG;mnÞ that is used in this paper was constructed in
[BLS] from the (bilinear) Steinberg symbol ð
; 
Þ�1F ; for proofs of the basic properties

of sr, we refer the reader to [BLS].
If r ¼ 1, then G ¼ GL1ðFÞ ¼ F�, and s1 is trivial, i.e., s1ðg; g0Þ ¼ 1 for all g; g0 2 G

(cf. [BLS] x3 Corollary 8). Note that sðcÞ1 ¼ ð
; 
ÞcF for all c 2 Z=nZ.

If r ¼ 2, then G ¼ GL2ðFÞ, and s2 is the Kubota cocycle in Z2ðG;mnÞ that is defined
by:

s2ðg; g0Þ :¼
xðgg0Þ

xðgÞ
;

xðgg0Þ

xðg0Þdet g

� �
F

; for all g; g0 2 G;

where for every g ¼
a b
c d

� �
2 G:

xðgÞ :¼
c; if c 6¼ 0,
d; if c ¼ 0:

�
Almost all of the cocycle calculations of this paper can be performed using only

the properties of s1 and s2 stated above, together with the fact that the system of
cocycles fsrjr5 1g is block-compatible in the following sense.

THEOREM 1.1. For every standard Levi subgroup of GLrðFÞ, the following block

formula holds:

sr

g1

. .
.

gk

0B@
1CA; g01

. .
.

g0k

0B@
1CA

0B@
1CA ¼

Yk
i¼1

sriðgi; g
0
iÞ

Y
14 i<j4 k

ðdet gi; det g
0
jÞF;

where r ¼ r1 þ 
 
 
 þ rk with every ri 5 1, and gi; g
0
i 2 GLriðFÞ for 14 i4 k.
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This is [BLS], x3 Theorem 11. In particular, if T is the subgroup of diagonal matri-

ces in G :¼ GLrðFÞ, then the restriction of sr to T� T is given by

srðt; t0Þ ¼
Y

14 i<j4 r

ðti; t
0
jÞF; for all t ¼ diagðtiÞ; t0 ¼ diagðt0iÞ 2 T: ð1:2Þ

For the remainder of this section, we will assume that r5 2. We now introduce

some notation to be used throughout the sequel. Consider the ðr� 1Þ embeddings

fiij14 i4 r� 1g of GL2ðFÞ along the diagonal in G:

ii: GL2ðFÞ ,! G; g 7!
Ii�1

g
Ir�1�i

0@ 1A; for all g 2 GL2ðFÞ;

where Ik denotes the ðk� kÞ identity matrix. For each i, let Gi denote the image of ii,
and observe that the subgroups fGij14 i4 r� 1g generate the group G. As genera-

tors for the subgroup iiðSL2ðFÞÞ of Gi, we take:

hiðxÞ :¼ ii
x

x�1

� �
; for all x 2 F

�;

niðxÞ :¼ ii
1 x
1

� �
; for all x 2 F;

wi :¼ ii
�1

1

� �
:

These elements, together with

tiðx; yÞ :¼ ii
x

y

� �
; for all x; y 2 F�;

si :¼ ii
1

1

� �
;

clearly generate the group Gi. By Theorem 1.1 above, it follows that there are ðr� 1Þ

canonical embeddings feiij14 i4 r� 1g of gGLð0Þ
2 ðFÞ into eG :¼ gGLð0Þ

r ðFÞ given by:eii : gGLð0Þ
2 ðFÞ ,! eG; ðg; xÞ 7! ðiiðgÞ; xÞ; for all g 2 GL2ðFÞ; x 2 mn:

Let eGi denote the image of eii, and note that eGi is generated by mn together with the
elements:ehiðxÞ :¼ sðhiðxÞÞ; for all x 2 F

�;eniðxÞ :¼ sðniðxÞÞ; for all x 2 F;ewi :¼ sðwiÞ;etiðx; yÞ :¼ sðtiðx; yÞÞ; for all x; y 2 F�;esi :¼ sðsiÞ:

In order to describe the cocycle sr in a form suitable for calculations, we next

recall the characterization of sr given in [BLS].
Let N be the standard maximal unipotent subgroup of G, i.e., the set of all upper

triangular matrices with 1’s along the diagonal. The group N is generated by the
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collection fniðxÞjx 2 F; 14 i4 r� 1g. The metaplectic group eG splits canonically

over N via the section s, hence N� :¼ sðNÞ is isomorphic to N. This follows immedi-

ately from the fact that sr is trivial on N�N. Moreover,

srðg; nÞ ¼ srðn; gÞ ¼ 1; srðng; g0n0Þ ¼ srðg; g0Þ; srðgn; g0Þ ¼ srðg; ng0Þ;
ð1:3Þ

for all n; n0 2 N, g; g0 2 G.

Next, letW be the Weyl group of permutation matrices in G, i.e., the collection of

matrices with a single 1 in every row and column, and 0’s elsewhere. The groupW is

generated by the simple reflections fsij14 i4 r� 1g. For any w 2 W, the length of w

is the smallest integer ‘ ¼ ‘ðwÞ such that w can be expressed as a product of ‘ simple

reflections: w ¼ si1 . . . si‘ . For any such reduced expression, we form the element

ZðwÞ :¼ wi1 . . .wi‘ (by [Ma] Lemme 6.2, the map w 7! ZðwÞ is well-defined). Then
our cocycle sr satisfies:

srðt; ZðwÞÞ ¼ 1; for all t 2 T; w 2 W;

srðZðwÞ; Zðw0ÞÞ ¼ 1; for all w;w0 2 W with ‘ðww0Þ ¼ ‘ðwÞ þ ‘ðw0Þ:
ð1:4Þ

Now let F be the set of roots of G relative to T, which can be identified with the

collection of ordered pairs fði; jÞj14 i; j4 r; i 6¼ jg:

ta :¼ ti=tj; for all t ¼ diagðtiÞ 2 T; a ¼ ði; jÞ 2 F:

A root a ¼ ði; jÞ is positive [resp. negative] if i < j [resp. i > j ]. The groupW acts on T

by conjugation:

tw :¼ w�1tw; for all t 2 T; w 2 W;

hence W also acts on F:

tðwaÞ :¼ ðtwÞa; for all t 2 T; w 2 W; a 2 F:

The cocycle sr satisfies:

sr ZðwÞ; tð Þ ¼
Y

a¼ði;jÞ>0
wa<0

ð�tj; tiÞF; for all w 2 W; t ¼ diagðtiÞ 2 T: ð1:5Þ

Finally, for all x 2 F and 14 i4 r� 1, we have that:

srðwi; niðxÞwiÞ ¼
ðx; xÞF; if x 6¼ 0;
ð�1;�1ÞF; if x ¼ 0;

�
ð1:6Þ

as is easily verified using Theorem 1.1 and the definition of the Kubota cocycle. The

following characterization of sr is proved in [BLS], Section 3 Theorem 7.

THEOREM 1.2. The cocycle sr is the unique element of Z2ðG;mnÞ that satisfies all of
the properties in ð1:2Þ through ð1:6Þ above.

For the remainder of this section, we assume that ð
; 
ÞF is unramified. In this situa-

tion, the metaplectic group eG splits canonically over the maximal compact subgroup
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K :¼ GLrðOÞ of G (cf. [KP], Proposition 0.1.2). Let k : K ! eG denote the splitting.
By [KP], Proposition 0.1.3, the map k satisfies:

kjT\K ¼ sjT\K; kjW ¼ sjW; kjN\K ¼ sjN\K;

and these relations determine k uniquely. Let K� :¼ kðKÞ, and for every m5 0, let

K�
m :¼ kðKmÞ, where Km :¼ fk 2 K j k� I ðmod }mÞg. Then the collection fK�

m jm5
0g is a basis of open compact neighborhoods of the identity element eI :¼ sðIÞ of eG.
This completes our review of the metaplectic groups fgGLðcÞ

r ðFÞg and their associ-

ated cocycles fsðcÞr g.

To conclude this section, we recall the definition and some elementary properties

of Gauss sums. Let ð
; 
Þ2;F : F�
� F�

! f�1g be the quadratic Hilbert symbol on F.

We will assume that ð
; 
Þ2;F is also unramified, i.e., that ðx; yÞ2;F ¼ 1 for all x; y 2 O�.

This is equivalent to the assertion that q is odd. Let c : F ! C
� be a nontrivial addi-

tive character whose conductor is O, and for every i 2 Z=nZ, let gðiÞc denote the

unnormalized nth order Gauss sum:

gðiÞc :¼ q

Z
x2O�

ð$; xÞiF cðx=$Þ dx: ð1:7Þ

Here dx is the unique additive Haar measure on F such that VolðO; dxÞ ¼ 1. It is

well known that

gðiÞc gð�iÞ
c ¼ q ð$;$Þ

i
F and jgðiÞc j ¼

ffiffiffi
q

p
if i 6� 0 ðmod nÞ:

Now let ĝc denote the normalized quadratic Gauss sum:

ĝc :¼
ffiffiffi
q

p
Z

x2O�

ð$;xÞ2;F cðx=$Þ dx: ð1:8Þ

Then jĝcj ¼ 1. Since g
ðn=2Þ
c ¼ q1=2 ĝc if n is even, and ð$;$ÞF ¼ 1 if n is odd, it fol-

lows thatYn�1
i¼1

gðiÞc ¼
qðn�1Þ=2ð$;$Þ

nðn�2Þ=8
F

ĝc; if n is even,

qðn�1Þ=2; if n is odd.

�
ð1:9Þ

This relation will be used in Section 2.

2. The Whittaker Function for the Theta Representation

We continue to use the notation of Section 1. Throughout this section, we will

assume that n5 2; jnjF ¼ 1, and q is odd. Let

F� :¼ fx 2 F�
jvðxÞ � 0 ðmod nÞg ¼ $nZO�:

Since jnjF ¼ 1; ð
; 
ÞF is unramified, and it follows that

fx 2 F�
j ðx; yÞF ¼ 1; for all y 2 F�g ¼ F�: ð2:1Þ

In other words, F� is maximal isotropic with respect to pairing determined by the

Hilbert symbol.
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Now let G :¼ GLn�1ðFÞ, let eG :¼ gGLð�1Þ
n�1 ðFÞ, and let s :¼ sð�1Þn�1 (cf. x1). Let T be the

subgroup of diagonal matrices in G. For any t 2 T and 14 i4 n� 1, we denote by ti
the ith entry of t along the diagonal. Then, by (1.1) and (1.2),

sðtÞ sðt0Þ ¼ sðt t0Þ
Y
i<j

ðti; t
0
jÞF 
 ðdet t; det t0Þ�1F ; for all t; t0 2 T: ð2:2Þ

Consequently,

sðtÞ sðt0Þ sðtÞ�1sðt0Þ�1 ¼
Y
i

ðti; t
0
iÞ
�1
F 
 ðdet t; det t0Þ�1F : ð2:3Þ

We define

Tn :¼ ft 2 T j ti=tj 2 F
�n for all i; jg;

T� :¼ ft 2 T j ti=tj 2 F� for all i; jg:

By (2.3), it follows that eTn :¼ p�1ðTnÞ is the center of eT, and eT� :¼ p�1ðT�Þ is a max-

imal Abelian subgroup of eT. Note that if Z is the center of G (i.e., the scalar matri-
ces), then eZ :¼ p�1ðZÞ is the center of eG.
Recall that if H � G, eH :¼ p�1ðHÞ, and X is any set on which mn acts, then a func-

tion f : eH ! X is said to be genuine if fðxhÞ ¼ xfðhÞ for all x 2 mn, h 2 eH.
For the remainder of this section, let c : F ! C

� be a fixed nontrivial additive

character whose conductor is O, and let w : F�
! C

� be an unramified quasicharac-

ter. Using c and w, we will next construct a certain exceptional representation of the

metaplectic group eG (cf. [KP], x I.2). To do this, we first define a genuine quasichar-
acter oy : eT� ! C

� as follows. Let:

T 0
� :¼ ft 2 T j ti 2 F� for all i, and tn�1 ¼ 1g:

By (2.1) and (2.2), it follows that s is trivial on T 0
� � T 0

�, hence sðT 0
�Þ ffi T 0

�. SinceeT� ¼ eZ 
 sðT 0
�Þ with

eZ \ sðT 0
�Þ ¼ feIg, the group eT� is the direct product of eZ and

sðT 0
�Þ. On sðT 0

�Þ, we define oy by

oy sðtÞð Þ :¼ wðdet tÞ dBðtÞ
1=2n; for all t 2 T 0

�: ð2:4Þ

Here dB denotes the modular character of the Borel subgroup B :¼ TN in G. To

define oy on eZ, we first observe that by (2.2),
sðx
IÞ sðy
IÞ ¼ sðx y
IÞðx; yÞnðn�3Þ=2

F
; for all x; y 2 F

�:

As in Section 1, let ð
; 
Þ2;F : F
�
� F

�
! f�1g denote the quadratic Hilbert symbol

on F. Note that ð
; 
Þ2;F is unramified since q is odd. Let

e2 :¼
1; if n is even,
0; if n is odd.

�
Then

sðx
IÞsðy
IÞ ¼ sðxy
IÞðx; yÞe22;F; for all x; y 2 F�: ð2:5Þ
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Following the ideas of Weil (cf. [We1]), we define gc : F�
! f�1;�ig to be the map

given by

gcð$
kxÞ :¼ ð$; xÞk2;Fð$;$Þ

kðk�1Þ=2
2;F ĝ k

c; for all k 2 Z; x 2 O�; ð2:6Þ

Then it is easily verified that

gcðxÞgcðyÞ ¼ gcðxyÞ ðx; yÞ2;F; for all x; y 2 F�: ð2:7Þ

Now let:

oy x sðx
IÞð Þ :¼ x wðxÞn�1gcðxÞ
e2 ; for all x 2 mn; x 2 F

�: ð2:8Þ

By (2.5) and (2.7), it follows that oy : eZ ! C
� is a genuine quasicharacter. Clearly,

there exists a unique genuine quasicharacter oy : eT� ! C
� that satisfies both (2.4)

and (2.8), and after a brief calculation, we obtain the explicit formula:

oy x sðtÞð Þ ¼ x wðdet tÞ dBðtÞ
1=2ngcðtn�1Þ

e2ðtn�1; tn�1Þ
e4
F

Yn�2
i¼1

ðti; tn�1Þ
i
F; ð2:9Þ

which is valid for all x 2 mn, t 2 T�. Here

e4 :¼
1; if 4 j n,
0; otherwise.

�
To establish (2.9), we have used the fact that if n is odd, ðx; xÞF ¼ 1 for all x 2 F�.

Note that oy is unramified, i.e., oy is trivial on sðT \ KÞ. Moreover, oy is exceptional

in the sense of [KP], Section I.2:

oyð
ehiðxnÞÞ ¼ jxjF; for all x 2 F�; 14 i4 n� 2:

Now for any genuine quasicharacter o : eT� ! C
�, we extend o to a quasicharac-

ter of eB� :¼ eT�N
� that is trivial on N�, and let VðoÞ denote the space of the (normal-

ized) induced representation Ind
eGeB�

ðoÞ (cf. [KP], xI.2):

VðoÞ :¼ ff 2 C1ðeGÞ j fðbgÞ ¼ ðd1=2B oÞðbÞfðgÞ for all b 2 eB�; g 2 eGg:
Here dB is regarded as a quasicharacter of eB :¼ eTN� that is trivial on mn, and
ðd1=2B oÞðbÞ :¼ dBðbÞ

1=2oðbÞ for all b 2 eB�. The group eG acts on VðoÞ by right transla-
tion.

Let ðy;VyÞ be the exceptional representation defined as follows. Let w0 denote the

long element of the Weyl groupW, let ew0 :¼ sðw0Þ, and let o0
y :

eT� ! C
� be the gen-

uine quasicharacter given by:

o0
yðtÞ :¼ oyðew�1

0 tew0Þ; for all t 2 eT�:

Since oy is dominant (cf. [KP], xI.1), we can define the standard intertwining operator

Iw0 : VðoyÞ ! Vðo0
yÞ by the absolutely convergent integrals:

Iw0fðgÞ :¼

Z
n2N�

fðew�1
0 ngÞ dn; for all f 2 VðoyÞ; g 2 eG:
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Here dn is the unique Haar measure for N� such that VolðN� \ K�; dnÞ ¼ 1. By [KP],

Theorem I.2.9, the image Vy of Iw0 is the unique irreducible subrepresentation of

Vðo0
yÞ, and Vy is isomorphic to the unique irreducible subquotient of VðoyÞ. Let y

denote the action of eG on Vy by right translation: yðgÞfðg0Þ :¼ fðg0gÞ for all

g; g0 2 eG; f 2 Vy.

The main goal of this section is to calculate special values of the normalized Whit-

taker function Wy for use in Section 3. To define Wy, first observe that since oy is

unramified, Vy contains a unique normalized K�-fixed vector. That is, there exists a

unique vector fy 2 Vy such that yðkÞfy ¼ fy for all k 2 K�, and fyð
eIÞ ¼ 1 (cf.

[KP], Lemma I.1.3). Next, given the character c on F, let c also denote the unique
character on N� that satisfies:

c eniðxÞð Þ :¼ cðxÞ; for all x 2 F; 14 i4 n� 2:

A c-Whittaker functional for y is a linear functional l : Vy ! C such that

l yðnÞfð Þ ¼ cðnÞlð f Þ for all n 2 N�; f 2 Vy. By [KP], Corollary I.3.6, the space of such

functionals is one-dimensional, hence there exists a unique c-Whittaker functional
ly such that lyðfyÞ ¼ 1. The normalized Whittaker function is then defined by

WyðgÞ :¼ ly yðgÞfy

� �
; for all g 2 eG:

Note that WyðeIÞ ¼ 1, and for all x 2 mn; z 2 eZ; n 2 N�; g 2 eG; k 2 K�:

WyðxzngkÞ ¼ xoyðzÞcðnÞWyðgÞ:

Consequently, Wy is determined by its values on elements of the form sð$fÞ, where

$f :¼ diagð$fiÞ; for all f ¼ ðf1; . . . ; fn�1Þ 2 Zn�1:

The main result of this section is the following theorem.

THEOREM 2.1. For all 04 k4 n� 1, let fðkÞ ¼ fðkÞ1 ; . . . ; fðkÞn�1

� �
2 Zn�1, where

fðkÞi :¼
1; if i4 k,
0; if i > k:

�
Then Wy sð$fðkÞ Þ

� �
is equal to

wð$Þ
kq�kðn�k�2Þ=2ð$;$Þ

kðkþ1Þ=2
F

ð$;$Þ
e2knðn�2Þ=8
F

ð$;$Þ
e2k
2;F

Yk
i¼1

gð�iÞ
�c

� ��1
;

where gð�iÞ
�c

is the complex conjugate of the Gauss sum gðiÞc defined by ð1:7Þ:

Proof. Let Wh VðoyÞð Þ denote the space of c-Whittaker functionals for VðoyÞ.

For every t 2 eT, let lt 2Wh VðoyÞð Þ be defined by the absolutely convergent integrals

ltð f Þ :¼
Z
N�

fðtew0nÞ �cðnÞ dn; for all f 2 VðoyÞ:
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Note that

lt0tð f Þ ¼ ðd1=2B oyÞðt
0Þlt; for all t0 2 eT�; t 2 eT:

Since flt j t 2 eT�n eTg is a basis for Wh VðoyÞð Þ (cf. [KP] Lemma I.3.2), and the com-

position ly Iw0 lies in Wh VðoyÞð Þ, we have

ly Iw0 ¼
X

t2eT�neT cðtÞlt;
where c : eT ! C is a uniquely determined function that satisfies

cðt0tÞ ¼ ðd1=2B oyÞðt
0Þ
�1cðtÞ; for all t0 2 eT�; t 2 eT: ð2:10Þ

According to [KP], Theorem I.4.2,

Wy sð$fðkÞ Þ

� �
¼ dBð$fðkÞ Þc ew�1

0 sð$fðkÞ Þ
�1ew0� �

: ð2:11Þ

By a straightforward (though tedious) calculation, we have that

ew�1
0 sð$fðkÞ Þ

�1ew0 ¼ sð$�1
I Þsð$fðn�k�1Þ

Þð$;$Þ
ðn�kÞðkþ1Þ=2
F

: ð2:12Þ

Using (2.6), (2.8), (2.10), (2.11) and (2.12), we obtain the following relation:

Wy sð$fðkÞ Þ

� �
¼ wð$Þ

n�1q�kðn�k�1Þð$;$Þ
kðkþ1Þ=2
F

ð$;$Þ
e2k
2;F ĝ e2

c c sð$fðn�k�1Þ

Þ

� �
: ð2:13Þ

Thus, to prove the theorem, it will suffice to compute c sð$fðn�k�1Þ

Þ

� �
. &

For the moment, we will turn to the study of c sð$fÞ
� 	

for arbitrary f 2 Zn�1.

LEMMA 2.2. For all f 2 Zn�1 such that fi � fj ðmod nÞ for all i; j:

c sð$fÞ

� �
¼ ðd1=2B oyÞ sð$fÞ

� ��1
:

Proof. By the relation (2.10),

c sð$fÞ

� �
¼ ðd1=2B oyÞ sð$fÞ

� ��1
cðeIÞ:

On the other hand, if we take k ¼ 0 in (2.13), then:

1 ¼ WyðeIÞ ¼ wð$Þ
n�1 ĝ e2

c c sð$
IÞð Þ ¼ cðeIÞ:
These statements imply the lemma. &

To describe the next result, we study the local coefficients ftwðo; f; f
0
Þg that are

defined as follows. For any genuine unramified quasicharacter o : eT� ! C
�, let

VðoÞ be the induced representation constructed earlier, and let Wh VðoÞð Þ be the

space of c-Whittaker functionals for VðoÞ. As before, we can define lt 2
Wh VðoÞð Þ by
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ltð f Þ :¼

Z
N�

fðtew0nÞ �cðnÞ dn; for all t 2 eT; f 2 VðoÞ:

Here the integrals are understood to be ‘regularized’ if o is not dominant in the sense
of [KP], Section I.1. For any w 2 W, let wo : eT� ! C

� be the genuine unramified

quasicharacter given by woðtÞ :¼ oðew�1tewÞ; for all t 2 eT�, where ew :¼ sðwÞ. If

Iw : VðoÞ ! VðwoÞ is the standard (regularized) intertwining operator, then the local
coefficients are defined by the relation:

lsð$fÞIw ¼
X

f02ðZ=nZÞ
n�1

twðo; f; f
0
Þlsð$f0 Þ:

Note that, for all w1;w2 2 W, such that ‘ðw1w2Þ ¼ ‘ðw1Þ þ ‘ðw2Þ,

tw1w2ðo; f; f
0
Þ ¼

X
f002ðZ=nZÞ

n�1

tw1ð
w2o; f; f00Þtw2 ðo; f

00; f0Þ:

Hence, in studying the local coefficients, we can reduce to the case where w is a sim-

ple reflection si with 14 i4 n� 2.

Now consider the action ofW on Zn�1 that is defined as follows. Let fd denote the
special element ð0; 1; 2; . . . ; n� 2Þ in Z

n�1. For any w 2 W, f 2 Z
n�1, we define w½f�

to be the unique element of Zn�1 such that $w½f� ¼ w$f�fdw�1$fd .

PROPOSITION 2.3. Let o : eT� ! C
� be a genuine unramified quasicharacter. Then

for all f 2 Zn�1 and every simple reflection si:

tsiðo; f; fÞ ¼ 1� o ehið$nÞ

� �� ��1
ð1� q�1Þo ehi $�n½ðfi�fiþ1Þ=n�

� �� �
;

tsi o; f; si½f�ð Þ ¼ qfiþ1�fi�2g
ðfi�fiþ1þ1Þ
�c

ð$;$Þ
fifiþ1
F

:

Moreover, tsiðo; f; f
0
Þ ¼ 0 if f0 6� f or si½f� in ðZ=nZÞ

n�1.

Proof. This is essentially the content of [KP], Lemma I.3.3. To verify this result,

we have corrected some minor typographical errors that occurred in the original

proof (cf. [KP] pp. 80–85). Moreover, our calculations were performed using the

cocycle s :¼ sð�1Þn�1 described in Section 1, which differs slightly from the cocycle used

by Kazhdan and Patterson. We omit the details of the calculation. &

COROLLARY 2.4. For all f 2 Zn�1 and every simple reflection si, we have

c sð$fÞ

� �
¼ qfi�fiþ1þ1þ½ðfi�fiþ1Þ=n�g

ðfiþ1�fi�1Þ
�c

ð$;$Þ
ðfiþ1Þðfiþ1�1Þ
F

c sð$si½f�Þ

� �
:

Proof. Applying Proposition 2.3 to the exceptional quasicharacter oy, we obtain

tsið
sioy; f; fÞ ¼ �q�1�½ðfi�fiþ1Þ=n�;

tsi
sioy; si½f�; fð Þ ¼ qfi�fiþ1g

ðfiþ1�fi�1Þ
�c

ð$;$Þ
ðfiþ1Þðfiþ1�1Þ
F

;
ð2:14Þ
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since sioy
ehiðxnÞ� �

¼ jxj�1F , for all x 2 F�,

si½f�ð Þi¼ fiþ1 � 1 and si½f�ð Þiþ1¼ fi þ 1:

Again, since oy is exceptional, we have for every f0 2 Z
n�1 (cf. [KP] Section I.3):X

f2ðZ=nZÞ
n�1

c sð$fÞ

� �
tsið

sioy; f; f
0
Þ ¼ 0:

If we set f0 :¼ f, then by (2.14) and the last statement of Proposition 2.3:

qfi�fiþ1g
ðfiþ1�fi�1Þ
�c

ð$;$Þ
ðfiþ1Þðfiþ1�1Þ
F

c sð$si½f�Þ

� �
� q�1�½ðfi�fiþ1Þ=n�c sð$fÞ

� �
¼0:

The corollary follows immediately. &

We are now in a position to complete the proof of Theorem 2.1. The cases k ¼ 0

and k ¼ n� 1 are easy since s $fðn�k�1Þ
� �

2 eZ, hence we may assume that n5 3, and

14 k4 n� 2. To simplify the notation, let cðfÞ :¼ c sð$fÞ
� 	

for all f 2 Zn�1. Our

goal is to compute cðfðn�k�1Þ
Þ.

For every m 2 Z and every nonnegative integer i, let ðmÞi denote a string of i copies

of m, and consider the set of elements in Zn�1 defined by

fði; jÞ :¼ ð1Þn�k�i�2; ð�i� 1Þj; jþ 1; ð�iÞk�j; ðkþ 1Þi
� �

;

for all 04 i4 n� k� 2, 04 j4 k. Observe that

fð0; 0Þ ¼ ð1Þn�k�1; ð0Þk
� �

¼ fðn�k�1Þ:

Also, the fði; jÞ’s are related by the action of simple reflections

sn�k�iþj�1

�
fði; jÞ

�
¼ fði; jþ 1Þ; for all 04 i4 n� k� 2; 04 j4 k� 1:

Applying Corollary 2.4 to this identity, it follows that

c fði; jÞð Þ ¼ qiþjþ2gð�i�j�2Þ
�c

ð$;$Þ
jðiþ1Þ
F

c fði; jþ 1Þð Þ;

Consequently,

c fði; 0Þð Þ ¼
Yk�1
j¼0

qiþjþ2gð�i�j�2Þ
�c

ð$;$Þ
jðiþ1Þ
F


 c fði; kÞð Þ:

Now if 04 i4 n� k� 3, we have

fði; kÞ :¼ ð1Þn�k�i�2; ð�i� 1Þk; ðkþ 1Þiþ1
� �

¼ fðiþ 1; 0Þ;

thus we obtain

c fðn�k�1Þ
� �

¼
Yn�k�2

i¼0

Yk�1
j¼0

qiþjþ2gð�i�j�2Þ
�c

ð$;$Þ
jðiþ1Þ
F


 c fðn� k� 2; kÞð Þ: ð2:15Þ
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To evaluate the right side of Equation (2.15), we first observe that

fðn� k� 2; kÞ ¼ ð�nþ kþ 1Þk; ðkþ 1Þn�k�1

� �
;

so we can apply Lemma 2.2. We find that

c fðn� k� 2; kÞð Þ ¼ wð$Þ
k�nþ1q�kðn�k�1Þðnþ1Þ=2ð$;$Þ

e2kðkþ1Þ=2
2;F ĝ�e2ðkþ1Þ

c : ð2:16Þ

Also Yn�k�2

i¼0

Yk�1
j¼0

qiþjþ2 ¼ qkðn�k�1Þðnþ1Þ=2: ð2:17Þ

Hence, it remains only to evaluate

FðkÞ :¼
Yn�k�2

i¼0

Qk�1
j¼0

gð�i�j�2Þ
�c

ð$;$Þ
jðiþ1Þ
F

¼
Yn�k�1

i¼1

Yk
j¼1

gð�i�jÞ
�c

ð$;$Þ
iðjþ1Þ
F

: ð2:18Þ

For k ¼ 1, we have

Fð1Þ ¼ gð�1Þ�c

� ��1


Yn�1
i¼1

gðiÞ�c

¼ qðn�1Þ=2ð$;$Þ
e2nðn�2Þ=8
F

ĝ e2
�c

gð�1Þ�c

� ��1
;

the second equality following from (1.9). Now for all 14 k4 n� 3, the relation

Fðkþ 1Þ=FðkÞ

¼
Yn�k�2

i¼1

gð�i�k�1Þ
�c

ð$;$Þ
ik
F

Yk
j¼1

gð�jþkþ1Þ
�c

� ��1
ð$;$Þ

ðjþ1Þðkþ1Þ
F

follows easily from (2.18). Applying (2.8) and (2.9) again, this equation can be

simplified to

Fðkþ 1Þ=FðkÞ ¼ q�kþðn�1Þ=2ð$;$Þ
e2nðn�2Þ=8
F

ð$;$Þ
e2k
2;F ĝ e2

�c
gð�k�1Þ
�c

� ��1
:

By induction, it follows that

FðkÞ ¼ qkðn�kÞ=2ð$;$Þ
e2knðn�2Þ=8
F

ð$;$Þ
e2kðk�1Þ=2
2;F ĝ e2k

�c

Yk
i¼1

gð�iÞ
�c

� ��1
: ð2:19Þ

Substituting (2.16), (2.17) and (2.19) into equation (2.15), we find that c fðn�k�1Þ
� �

equals

wð$Þ
k�nþ1qkðn�kÞ=2ð$;$Þ

e2knðn�2Þ=8
F

ĝ�e2
c

Yk
i¼1

gð�iÞ
�c

� ��1
:

WHITTAKER–FOURIER COEFFICIENTS OF METAPLECTIC EISENSTEIN SERIES 169

https://doi.org/10.1023/A:1021763918640 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021763918640


Here we have used the fact that ĝc 
 ĝ �c ¼ 1, thus ĝ�1
c 
 ĝ �c ¼ ĝ 2�c ¼ ð$;$Þ2;F.

Theorem 2.1 follows at once by substituting this expression into (2.13). &

3. The Whittaker Function for the Induced Series

In this section, we will slightly modify the notation of Section 2 by appending the

superscript prime ð0Þ to the various symbols introduced there. Thus, we now write

G0 :¼ GLn�1ðFÞ, eG0 :¼ gGLð�1Þ
n�1 ðFÞ, s

0 :¼ sð�1Þn�1 , s
0 : G0 ! eG0, c0 : N0� ! C

�, and so

on. We continue to assume that n5 2, jnjF ¼ 1, and q is odd.

Now let G :¼ GLnðFÞ, let eG :¼ gGLð0Þ
n ðFÞ, and let s :¼ sn (cf. Section 1). Let T be

the subgroup of diagonal matrices in G. Then by (1.2):

sðtÞ sðt0Þ ¼ sðtt0Þ
Y
i<j

ðti; t
0
jÞF; for all t; t0 2 T;

and therefore:

sðtÞ sðt0Þ sðtÞ�1sðt0Þ�1 ¼
Y
i

ðti; t
0
iÞ
�1
F ðdet t; det t0ÞF:

Let Z be the center of G and eZ :¼ p�1ðZÞ. Although eZ is not the center of eG, this
relation implies that eZ is Abelian.
Using the representation ðy;VyÞ introduced in Section 2, we will next construct a

certain series of induced representations of the metaplectic group eG. Consider the
embedding of G0 into G given by

i : G0,!G; g 7!
g
det g�1

� �
; for all g 2 G0:

By Theorem 1.1, it follows that the map i gives rise to an embedding of eG0 into eG:
ei : eG0,!eG; ðg; xÞ 7!

�
iðgÞ; x

�
; for all g 2 G0; x 2 mn:

In other words,ei�s0ðgÞx� ¼ s
�
iðgÞ

�
x; for all g 2 G0; x 2 mn:

Now let P be the standard parabolic subgroup of type ðn� 1; 1Þ in G, M its Levi

component, and U its unipotent radical. Then M ffi G0 � F�, and U is isomorphic

to ðn� 1Þ copies of the additive group F. Let eP :¼ p�1ðPÞ, eM :¼ p�1ðMÞ, and

U� :¼ sðUÞ. We define:

Pn :¼ fp 2 Pjdet p 2 F�n
g; ePn :¼ p�1ðPnÞ:

Observe that ePn is the semidirect product of the groups eið eG0Þ, e|ðF�n
Þ, and U�, where:

e| : F�
! eG; x7!s

I0

x

� �
; for all x 2 F�:

Here I0 denotes the identity matrix in G0. Since the groupseið eG0Þ and e|ðF�n
Þ commute,

it follows that the representation ðy;VyÞ can be extended to a genuine representation

yP : ePn ! AutðVyÞ by the formula
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yP
�eiðgÞe|ðxÞu�f :¼ yðgÞf; for all g 2 G0; x 2 F�n; u 2 U�; f 2 Vy:

Now let dP be the modular character of P. We will regard dP as a character of eP that
is trivial on mn. For every s 2 C, let ðps;VsÞ be the (normalized) induced representa-

tion Ind
eGePn

ðd
s� 1
2n

P yPÞ. Here

Vs :¼ f f 2 C1ðeG;VyÞ j fðpgÞ ¼ dPðpÞ
sþn�1

2n yPðpÞfðgÞ for all p 2 ePn; g 2 eGg;
where C1ð eG;VyÞ is the space of locally-constant functions f : eG ! Vy. The group eG
acts on Vs by right translation: psðgÞfðg0Þ :¼ fðg0gÞ, for all g; g0 2 eG; f 2 Vs.

For the remainder of this section, we fix an element a 2 O�. We will next construct

a certain Whittaker function Ws;a : eG ! C associated to the representation ps, and
the goal of this section is to calculate the special value Ws;aðeIÞ. To define Ws;a, we

first observe that the space Vs contains a unique normalized K�-fixed vector. That

is, there exists a unique vector fs 2 Vs such that psðkÞfs ¼ fs for all k 2 K�, and

fsð
eIÞ ¼ fy, where fy is the normalized K0�-fixed vector in the space of y (cf. Section

2). More precisely,

fsðgÞ ¼
dPðpÞ

sþn�1
2n yPðpÞfy; if g ¼ pk for some p 2 ePn; k 2 K�;

0; otherwise;

�
for all g 2 eG. Next, let c : F ! C

� be the nontrivial additive character chosen in Sec-

tion 2, and let c0 be the corresponding character of N0�. Let ca be the unique char-

acter of N� that satisfies for all x 2 F:

ca

�eniðxÞ� ¼ cðaxÞ; if i ¼ 1;
cðxÞ; if 24 i4 n� 1:

�
Finally, let ls;a : Vs ! C be the linear functional defined by

ls;að f Þ :¼
Z

Fn�1

lyf s
I0

1 x1 . . . xn�1

� �� �
�cðax1Þ dx; for all f 2 Vs: ð3:1Þ

Here dx :¼ dx1 . . . dxn�1, where each dxi is the unique Haar measure for F such that

VolðO; dxiÞ ¼ 1. Note that if ReðsÞ is sufficiently large, the integrals defining ls;a con-
verge absolutely; otherwise, the integrals are understood to represent their regular-

ized values. The functional ls;a is clearly a ca-Whittaker functional for ps.
Although the space of all such functionals has dimension n2, the following theorem

uniquely characterizes ls;a.

THEOREM 3.1. Up to multiplication by a scalar, ls;a is the only linear functional

l : Vs ! C that satisfies the properties:

l
�
psðnÞf

�
¼ caðnÞlð f Þ; for all n 2 N�; f 2 Vs; ð3:2Þ

and

l
�
ps
�
sðx 
 IÞ

�
f
�
¼ wðxÞn�1gcðxÞ

e2lð f Þ; for all x 2 F�; f 2 Vs: ð3:3Þ
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Proof. The uniqueness assertion was proved by Bump and Lieman [BL]. The fact

that ls;a satisfies (3.2) and (3.3) is an immediate consequence of definition (3.1). To

see that ls;a 6¼ 0, let w :¼
�

I 0
1

�
, and let ew :¼ sðwÞ. Choosing m � 0, let f0

s be the

element of Vs defined by

f0
sðgÞ ¼

dPðpÞ
sþn�1

2n yPðpÞfy; if g ¼ pewk for some p 2 ePn; k 2 K�
m;

0; otherwise,

�
for all g 2 eG. Then it is easily seen that ls;aðf0

sÞ ¼ q�mðn�1Þ 6¼ 0. &

The Whittaker function Ws;a : eG ! C can now be defined as follows:

Ws;aðgÞ :¼ ls;a
�
psðgÞfs

�
; for all g 2 eG:

Note that for all x 2 mn, x 2 Fx, n 2 N�, g 2 eG, k 2 K�:

Ws;a

�
xsðx
IÞngk

�
¼ xwðxÞn�1gcðxÞ

e2caðnÞWs;aðgÞ:

The main result of this section is the following theorem:

THEOREM 3.2. Let Ws;a be the Whittaker function defined above. If n is odd, or

n � 2 or 4 ðmod 8Þ, then

Ws;aðeIÞ ¼ L
�
ns; w ð
; aÞF

�
Lðn2s; wnÞ

:

If n is odd, or n � 0 or 6 ðmod 8Þ, then

Ws;aðeIÞ ¼ L
�
ns; w ð
;�aÞF

�
Lðn2s; wnÞ

:

Here ð
;�aÞF denotes the ðunramifiedÞ quasicharacter given by x 7! ðx;�aÞF for all

x 2 F�, and for any unramified quasicharacter w� : F�
! C

�, Lðs; w�Þ is the standard
local L-function given by Lðs; w�Þ :¼

�
1� w�ð$Þq�s

	�1
.

Proof. By definition,

Ws;aðeIÞ ¼ ls;aðfsÞ ¼

Z
Fn�1

lyfs s
I0

1 x1 . . . xn�1

� �� �
�cðax1Þ dx:

Since:

s
I0

1 x1 . . . xn�1

� �
¼esn�1enn�1ðxn�1Þ . . .es1en1ðx1Þ ¼ Y1

i¼n�1

esieniðxiÞ;
we have that

Ws;aðeIÞ ¼ Z
Fn�1

lyfs

Y2
i¼n�1

esieniðxiÞ 
es1en1ðx1Þ !
cðax1Þ dx: ð3:4Þ
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Now for all x 2 F, we introduce the notation

_x ¼
1; if x 2 O,
x; if x 62 O,

�
and:

�x ¼
0; if x 2 O,
x�1; if x 62 O.

�
Then it is easily shown that

esieniðxÞ ¼enið �xÞehið _x�1ÞekiðxÞ; for all x 2 F; 14 i4 n� 1; ð3:5Þ

where ekiðxÞ is an element of K�. Applying this relation with i ¼ 1, and using the fact

that fs is K
�-fixed, the integral in (3.4) becomesZ

Fn�1

lyfs

Y2
i¼n�1

esieniðxiÞ 
en1ð �x1Þeh1ð _x�11 Þ

 !
�cðax1Þ dx: ð3:6Þ

Next, we observe that

Y2
i¼n�1

esieniðxiÞ 
en1ð �x1Þ ¼ s
1 � �x1x2 . . .� �x1xn�1 �x1

I0

� � Y2
i¼n�1

esieniðxiÞ;
and

Y2
i¼n�1

esieniðxiÞ 
 eh1ð _x�11 Þ ¼ eh1;nð _x�11 Þð _x1; _x1Þ
n�2
F

Y2
i¼n�1

esieniðxi= _x1Þ:
Here we use the notation ehi;jðxÞ :¼ s

�
hi;jðxÞ

	
, where hi;jðxÞ is the diagonal matrix with

x in the ith position, x�1 in the jth position, and 1’s elsewhere along the diagonal.

After substituting the preceding identities into (3.6), we obtain

Z
Fn�1

lyfs s
1 � �x1x2 . . .� �x1xn�1 �x1

I0

� �eh1;nð _x�11 Þ
Y2

i¼n�1

esieniðxi= _x1Þ !
�

� ð _x1; _x1Þ
n�2
F

�cðax1Þ dx

¼

Z
Fn�1

lyfs
eh1;nð _x�11 Þ

Y2
i¼n�1

esieniðxi= _x1Þ !
ð _x1; _x1Þ

n�2
F

�cðax1Þ �cð �x1x2Þ dx

¼

Z
Fn�1

lyfs
eh1;nð _x�11 Þ

Y2
i¼n�1

esieniðxiÞ !
j _x1j

n�2
F ð _x1; _x1Þ

n�2
F

�cðax1Þ �cð _x1 �x1x2Þ dx:
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Here we have made the change of variables fxi 7! _x1xij24 i4 n� 1g. Similarly,

using relation (3.5) with i ¼ 2, it follows that Ws;aðeIÞ equalsZ
Fn�1

lyfs
eh1;nð _x�11 Þeh2;nð _x�12 Þ 


Y3
i¼n�1

esieniðxiÞ !
�

� j _x1j
n�2
F j _x2j

n�3
F ð _x1; _x1Þ

n�2
F ð _x2; _x2Þ

n�3
F

�cðax1Þ �cð _x1 �x1x2Þ �cð _x2 �x2x3Þ dx:

Continuing inductively in this manner, we find that Ws;aðeIÞ is equal toZ
Fn�1

lyfs

Yn�1
i¼1

ehi;nð _x�1i Þ

 !Yn�1
i¼1

j _xij
n�i�1
F ð _xi; _xiÞ

n�i�1
F

�cðax1Þ
Yn�1
j¼2

�cð _xj�1 �xj�1xjÞ dx:

ð3:7Þ

To evaluate the integral (3.7), note that we can restrict the domain of integration

to ðF � f0gÞn�1 without affecting the result. We regard this new domain as a disjoint

union

ðF � f0gÞn�1 ¼
[

f2Zn�1

RðfÞ;

Where, for all f ¼ ðf1; . . . ; fn�1Þ 2 Zn�1,

RðfÞ :¼ fðx1; . . . ; xn�1Þ 2 F
n�1

jvðxiÞ ¼ fi for all ig:

For fixed f 2 Zn�1, the contribution of region RðfÞ to the integral (3.7) can be eval-
uated as follows. For 14 i4 n� 1, let

di :¼
0; if fi 5 0,
1; if fi < 0.

�
Then for all ðx1; . . . ; xn�1Þ 2 RðfÞ, we have _xi ¼ xdii , �xi ¼ dix�1i , and _xi �xi ¼ di, and
our goal is therefore to compute:

Z
RðfÞ

lyfs

Yn�1
i¼1

ehi;nðx�di
i Þ

 !Yn�1
i¼1

jxij
diðn�i�1Þ
F

ðxi; xiÞ
diðn�i�1Þ
F

�cðax1Þ
Yn�1
j¼2

�cðdj�1xjÞ dx:

ð3:8Þ

After the change of variables fxi 7!$fixij14 i4 n� 1g, we obtain

Yn�1
i¼1

q�difiðn�i�1Þ�fi ð$;$Þ
difiðn�i�1Þ
F

�

�

Z
x1;...;xn�12Ox

lyfs

Yn�1
i¼1

ehi;nð$�difix�di
i Þ

 !
�cða$f1x1Þ

Yn�1
j¼2

�cð$dj�1fj xjÞ dx:
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By a straightforward cocycle calculation,

Yn�1
i¼1

ehi;nð$�difi x�di
i Þ ¼ei�s0ð$�dfÞ

�Yn�1
i¼1

ehi;nðx�di
i Þ

Yn�1
j¼1

Yn�1
i¼j

ð$difi ; x
dj
j ÞF;

where df 2 Zn�1 is defined by ðdfÞi :¼ difi ¼ minðfi; 0Þ for all i. Since ehi;nðx�di
i Þ lies in

K� for all xi 2 O�, it follows from the definition of fs that (3.8) is equal to

Wy
�
s0ð$�dfÞ

�Yn�1
i¼1

q�difið�nsþn�1
2 �iÞ�fi ð$;$Þ

difiðn�i�1Þ
F

�

�

Z
x1;...;xn�12Ox

Yn�1
j¼1

Yn�1
i¼j

ð$difi ; x
dj
j ÞF

�cða$f1x1Þ
Yn�1
j¼2

�cð$dj�1fj xjÞ dx:

ð3:9Þ

Now we define

Gði ; jÞ :¼

Z
x2Ox

ð$; xÞiF
�cð$ jxÞ dx; for all i; j 2 Z

It is easy to verify that

Gði; jÞ ¼

1� q�1; if i � 0 ðmod nÞ and j5 0;
q�1gðiÞ�c ; if j ¼ �1;

0; otherwise:

8<: ð3:10Þ

By Fubini’s theorem, the integral in (3.9) is the product ofZ
x12Ox

Yn�1
i¼1

ð$difi ; xd11 ÞF
�cða$f1x1Þ dx1 ¼

Yn�1
i¼1

ð$difi ; a�d1ÞF G
�
d1
Xn�1
i¼1

difi ; f1
�
;

ð3:11Þ

and: Z
xj2Ox

Yn�1
i¼j

ð$difi ; x
dj
j ÞF

�cð$dj�1fi xjÞ dxj ¼ G
�
dj
Xn�1
i¼j

difi ; dj�1fj
�

ð3:12Þ

for all 24 j4 n� 1.

Now according to [KP] Theorem I.4.2,Wy
�
s0ð�df

Þ
	
¼ 0, unless d1f14d2f24 
 
 
 4

dn�1fn�1: This implies that (3.9) vanishes unless f14 
 
 
 4 fk < 0 and

fkþ1; . . . ; fn�150 for some k with 04k4n� 1. On the other hand, it follows from

(3.10) that right side of (3.11) vanishes unless f15 � 1. Hence, we may assume that f
has the form

�
ð�1Þk; fkþ1; . . . ; fn�1

	
with fkþ1; . . . ; fn�150. In this case, di ¼ 1 if

14 i4k, and di ¼ 0 otherwise. Consequently Wy
�
s0ð$�dfÞ

	
¼Wy

�
s0ð$fðkÞ Þ

	
; where
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fðkÞ is the special element ðð1Þk; ð0Þn�k�1Þ 2 Zn�1 considered in Section 2. When f has
the special form above, the first product in (3.9) simplifies to

q�kð2ns�nþkÞ=2ð$;$Þ
kðk�1Þ=2
F

Yn�1
i¼kþ1

q�fi :

Using (3.10), we also find that (3.11) equals

Yn�1
i¼1

ð$difi ; a�d1ÞF 
 G
�
d1
Xn�1
i¼1

difi ; f1
�
¼

1� q�1; if k ¼ 0;
q�1ð$; aÞkFg

ð�kÞ
�c

if k5 1;

(
and for all 24 j4 n� 1, (3.12) is equal to

G

�
dj
Xn�1
i¼j

difi ; dj�1fj

�
¼

q�1gðj�k�1Þ
�c

; if 24 j4 k;

1� q�1; if kþ 14 j4 n� 1:

(

Combining all of these results, it follows that (3.9) is equal to

Wyðs
0ð$fðkÞ ÞÞq�kð2ns�nþkþ2Þ=2ð$; aÞkFð$;$Þ

kðk�1Þ=2
F

Yk
i¼1

gð�iÞ
�c

Yn�1
i¼kþ1

q�fi ð1� q�1Þ

Now to compute the integral (3.7), we apply the preceding result, summing the

contributions from all regions RðfÞ such that f has the form ðð�1Þk; fkþ1; . . . ; fn�1Þ,
fkþ1; . . . ; fn�15 0, with 04 k4 n� 1. If we collect together the contributions for

each fixed value of k and use the fact that

X
fkþ1;...;fn�15 0

Yn�1
i¼kþ1

q�fi ð1� q�1Þ ¼ 1;

it follows that

Ws;aðeIÞ ¼Xn�1
k¼0

Wyðs
0ð$fðkÞ ÞÞq�kð2ns�nþkþ2Þ=2ð$; aÞkFð$;$Þ

kðk�1Þ=2
F

Yk
i¼1

gð�iÞ
�c

:

Finally, we substitute the explicit value of Wy
�
s0ð$fðkÞ Þ

	
given by Theorem 2.1, and

we obtain

Ws;aðeIÞ ¼Xn�1
k¼0

wð$Þ
k
ð$; aÞkFð$;$Þ

e2kðn
2þ2nþ8Þ=8

F
q�kns

¼
1� wð$Þ

nq�n2s

1� wð$Þð$; aÞFð$;�1Þe2ðn
2þ2nþ8Þ=8

F
q�ns

¼
Lðns; w ð 
 ; aÞF ð 
 ;�1Þe2ðn

2þ2nþ8Þ=8
F

Þ

Lðn2s; wnÞ
:

This completes the proof. &
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