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ABSTRACT. A statistical analysis of the lengths of grain-boundaryand transgranular
cracks induced during the initial straining of columnar-grain ice by a compressive load
applied perpendicular to the long direction of the columns is presented. The analysis
shows that the crack lengths are randomly distributed and form distinct but correlated
populations.The lognormal distribution function is shown to be a good descriptor of the
populations for 5^90% of their range. Statistical models are presented for the lognormal
behaviour of the crack-length distribution and for the strain dependence of the crack den-
sity.The models assume that a change in the value of the randomvariable of the respective
population depends on the population value of the variable at the time of the change. It is
shown that the model for the strain dependence of the crack density is suitable for the
strain dependence of the acoustic emission, measured in both columnar-grain and granu-
lar ice subject to constant compressive loads. Evidence is also presented for a lognormal
dependence of the dislocation density on strain.The analysis demonstrates that the cracks
that form during the initial straining of polycrystalline ice are independent, random
events and that the resulting crack populations are precursors to failure by fracture.

1. INTRODUCTION

Yield and failure of polycrystalline ice have been important
research topics for several years. Much of this interest in the
past 30 years has been driven by practical problems such as
the determination of the forces that ice can apply to shore-
line and offshore structures and of the loads that can be
placed safely on ice covers.

Many measurements have been made of the strength of
ice and of ice covers and of the dependence of the strength
on variables such as ice type, strain rate, temperature and
grain-size (Sanderson, 1988). Models for the strength have
been developedbased principally on two approaches: exten-
sion of pre-existing cracks (Schulson, 1996) and collapse
caused by strain-dependent damage due to the formation of
cracks of the order of grain-size in length (Sinha,1991; Xiao
and Jordaan, 1996). These models have been shown to be
generally consistent with the deformation behaviour and
values of strength measured in the laboratory and under
larger-scale conditions when reasonable values are used for
the properties of the ice.

The macro-scale processes of yield and failure have their
beginning in inter- and intra-crystalline, microscale pro-
cesses. These processes depend on the structure of the ice
and determine the initial response to imposed boundary
conditions. Dislocation processes, in particular, play a
dominant role in the time-dependent response of ice to loads
(Weertman, 1973). The inability of grains in polycrystalline
ice to conform easily to the change in shape of neighbouring
grains is important, also, as it causes stress concentrations
that can initiate cracks and other modes of deformation
(Frost and Gupta , 1993). Petrenko and Whitworth (1999)

give a brief overview of some macro-scale manifestations of
microscale processes.

At the microscale level, the structure of polycrystalline ice
is quite variable due, for example, to variations in grain-size,
grain shape and crystallographic orientation. It would be
expected, therefore, that equations relating microscale
deformation processes to macro-scale yield and strength
measurements would be statistical in nature (Wu and Niu,
1995; Kim and Shyam Sunder, 1997). The development of
these statistical equations requires assumptions concerning
the spatial distribution of stress singularities and calculation
of the time-dependent stresses and strains they induce. Such
equations can give only the expected value, variance and
other statistical properties of a particular macro-scale prop-
erty. Conversely, for the same statistical reasons, macro-scale
measurements can give only the expected value and other
statistical properties of a relevant microscale population.

An example of the foregoing is the prediction of the ten-
sile strength of ice using a dislocation model for crack initi-
ation. Such models show that a stress equal to the tensile
strength can produce a crack of a size that would propagate
according to the Griffith theory of failure (Gold,1977). Know-
ing only the mean and standard deviation for the tensile
strength, however, although giving some indication of the
statistical nature of the causative events, provides no incon-
trovertible evidence of what those events might be. A second
example is the calculation of the elastic moduli of multigrain
ice from the elastic moduli of the single crystal grains. This
calculation, based on assumptions concerning the crystallo-
graphic orientations of the grains and interactions between
them, gives values for the moduli that are consistent with
measurements (Sinha,1989).
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Gold (1972a, b,1997,1999b) found that the development
of crack populations during the initial compressive strain-
ing of columnar-grain ice appeared to be a statistically
definable random process. If this is the case, then the mean,
standard deviation and other statistical characteristics of
the populations should provide useful information on the
corresponding characteristics of the microscale processes
causing the cracks. The purpose of this paper is to provide
additional evidence that the populations observed consist of
independent, random events and can be described by suit-
able probability functions.

This is a particularly interesting response of a material
to initial strain, and ice is very suitable for a study of this
behaviour. It is transparent and normally exists at a tem-
perature near to that at which it melts. Its thermal expan-
sion can be considered isotropic (Petrenko and Whitworth,
1999), so internal stresses due to cooling should have rela-
tively little effect on the initial dislocation density. In addi-
tion, ice single crystals have only one degree of freedom for
easy deformation, and it is in the basal plane perpendicular
to the axis of hexagonal symmetry (Glen and Perutz,1954).
This greatly constrains polycrystalline ice from conforming
to a constant volume change in shape, causing stress singu-
larities and a variable internal stress (Gold,1963).

The ice used in the experiments referenced above was
columnar-grain, with the axis of hexagonal crystallographic
symmetry of the grains randomly oriented. For this type of
ice and a load applied perpendicular to the long direction of
the grains, the strain-induced cracks are long and narrow,
with their long direction in the long direction of the grains.
The initial strain for this combination of ice structure, direc-
tion of applicationof load, and limited degrees of freedom for
deformation was found to be essentially two-dimensional.

The cracks were easily seen by the reflection of light from
a source on each side of the specimens. Their rate of forma-
tion was sufficiently low in the constant-load tests that they
could be countedas they formed. Avideo camerawas used to
record their formation in the constant-strain-rate tests. The

video record was synchronized to the record of the time
dependence of the strain, which allowed the time of formation
of each crack to be determined to one-thirtieth of a second.
The cracks formed abruptly and did not appear to increase
in size for strain up to about 60% of that for brittle failure
and for strain greater than that for ductile behaviour. This
suggests that a crack effectively removes a singularity and
most of the associated strain energy in its formation.

The specimens were sectioned at their mid-plane imme-
diately after each test, and the length of the cracks perpen-
dicular to their long direction was measured. To the extent
that crack length is a measure of that strain energy for two-
dimensional strain, the statistical distribution in the crack
lengths should be reasonably representative of the internal
strain-energy distribution. It would be expected, therefore,
that the statistical characteristics of compressive-strain
induced crack populations should reflect those of the
internal strain-energy distribution associated with stress
singularities.

It was found in the above studies that the lognormal dis-
tribution function provided a good description of the distri-
bution in crack lengths at a given strain, and of the strain
dependence of the crack density. In section 2 of this paper,
information is presented on the limitations of this function
for describing the crack-length populations, as shown by the
skewness and excess calculated for the crack population
induced in each test specimen. It is shown also that the
grain-boundary and transgranular cracks form separate
but correlated populations. Statistically based models for
the lognormal dependence of the crack-length distribution
and for the lognormal dependence of the crack density on
strain, are presented in section 3. This is followed by evi-
dence that acoustic emission measured during the compres-
sive straining of columnar and granular ice is consistent
with the model for the lognormal dependence of the crack
density on strain. Evidence is presented that the lognormal
distribution may also provide a good description of the
strain dependence of the dislocation density.

Table 1.The mean ln(crack length), ln…cl†; variance, s2; skewness, ®1; and excess, ®2, for the grain-boundary crack-length
distributions for specimens of average grain-size, d, and number of cracks, n, subject to a constant strain rate; T ˆ ^10³C

Strain rate 7.6610 4̂ s^1 Strain rate 7.6610^5s 1̂ Strain rate 7.8610^6s 1̂

d n ln…cl† s2 ®1 ®2 d n ln…cl† s2 ®1 ®2 d n ln…cl† s2 ®1 ®2

mm mm mm

2.4 28 ^0.53 0.35 ^0.55 ^0.44 2.4 39 ^0.38 0.25 ^0.41 1.14 2.5 21 ^0.21 0.69 ^0.25 ^1.40
2.4 38 ^0.46 0.43 ^0.79 0.25 2.5 19 ^0.70 0.21 ^0.37 ^0.56 2.8 22 0.07 0.49 ^0.14 ^1.30
2.8 35 ^0.38 0.40 0.08 ^1.14 2.6 28 ^0.48 0.36 ^0.50 0.11 2.8 39 0.10 0.26 ^0.12 0.15
3.3 39 ^0.21 0.37 ^0.20 0.30 2.6 38 ^0.01 0.43 ^0.56 ^0.38 3.5 36 0.20 0.42 ^0.22 ^0.16
3.4 33 ^0.33 0.58 ^0.26 ^0.67 2.6 44 ^0.23 0.41 ^0.09 ^0.71 3.9 26 ^0.10 0.55 ^0.08 ^0.24
3.6 28 ^0.28 0.37 0.05 ^1.06 3.9 32 0.00 0.43 ^0.08 ^0.43 4.5 36 ^0.04 0.73 0.11 ^0.98
3.9 33 ^0.29 0.51 0.11 ^1.20 3.9 22 ^0.19 0.39 0.24 ^0.92 4.7 23 0.32 0.42 ^0.14 ^0.89
4.3 41 ^0.50 0.45 ^0.21 ^0.58 4.6 19 0.12 0.82 0.12 ^1.18 4.7 27 0.12 0.62 0.19 ^1.25
4.6 37 ^0.41 0.35 0.18 ^0.82 6.2 13 0.38 0.82 ^0.98 ^0.09 5.2 16 0.41 0.24 ^0.57 ^0.71
5.1 29 ^0.42 0.41 0.14 0.29 6.3 25 0.01 1.29 0.95 ^ 0.25 5.2 11 0.79 0.84 0.00 ^1.67
5.2 34 ^0.42 0.50 ^0.09 ^1.42 6.4 34 ^0.01 0.99 ^0.32 ^0.84 5.5 23 0.33 0.54 ^0.67 0.03
5.7 32 ^0.07 0.53 0.24 ^0.23 6.7 26 0.07 0.44 ^0.53 ^0.77 5.7 23 0.38 0.60 0.15 ^0.91
5.9 12 ^0.34 0.58 ^0.42 ^1.20 7.9 17 0.15 0.45 0.30 ^0.71 7.5 21 0.50 0.53 0.27 ^0.48
6.2 25 ^0.01 0.51 ^0.24 ^0.56 8.5 21 0.69 0.56 ^0.09 ^1.11 7.7 21 1.20 0.70 ^0.78 ^0.02
7.0 31 ^0.01 0.63 ^0.10 0.17
7.1 12 ^0.23 0.46 ^0.34 ^0.58 Strain rate 6.7610^3 s^1

7.7 22 ^0.66 0.60 0.55 1.28 2.8 75 ^0.54 0.40 ^0.03 ^ 0.46
8.6 42 ^0.40 0.74 ^0.50 ^0.28 3.6 55 ^0.45 0.41 ^0.20 ^0.53
9.2 26 ^0.25 0.60 1.58 2.11

Journal of Glaciology

38
https://doi.org/10.3189/172756503781830935 Published online by Cambridge University Press

https://doi.org/10.3189/172756503781830935


2. STATISTICAL CHARACTERISTICS OF THE
CRACK-LENGTH POPULATIONS

The observations on crack populations given in Gold (1997,
1999b) were made for rectangular specimens of average
grain-size 2^9mm, subjected to constant nominal strain rates
of 10^2,10^3,10^4 and10^5 s^1 at temperatures of ^5³, ^10³, ^20³
and ^30³C. The corresponding actual strain rates were
6.7610^3 s^1, 7.6610^4 s^1, 7.6610^5 s^1 and 7.8610^6 s^1. Max-
imum applied stresses were 3^5MPa, dependingon the strain
rate and temperature. The maximum strains were between
4.1610^4 and 6.6610^4 for the nominal rates of 10^2,10^3 and
10^4 s^1, and between 4.2610^4 and 9.6610^4 for the nominal
rate of 10^5 s^1. Observations on crack populations induced in
specimens of grain-size about 3 mm and at various tempera-

tures under constant-load conditions were reported earlier
(Gold,1972a,b). Details concerning preparation of the speci-
mens, determination of the grain-size, application and meas-
urement of the strains or loads, observation of the cracks and
measurement of crack lengths are given in the cited papers.
Only those observations made at a temperature of ^10³C for
the constant-strain-rate tests and at ^9.5³C for the constant-
load tests are considered in this paper.

2.1. Grain-boundary cracks

A discrete statistical analysis was made of the grain-bound-
ary crack lengths for each specimen to bring out possible
limitations of the lognormal distribution as a descriptor of
the crack-length populations. The number of cracks, n,

Fig. 1. Grain-size dependence of statistical characteristics for the crack-length populations induced in each specimen; nominal strain
rate ˆ 10^3 s^1, T ˆ ^10³C.The line in each plot is the linear least-squares fit to the data points. (a) Grain-size dependence of the
mean of the logarithms of the crack lengths, ln…cl†. (b) Grain-size dependence of the variance, s2. (c) Grain-size dependence of the
skewness, ®1. (d) Grain-size dependence of the excess, ®2.
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Fig. 2. Grain-size dependence of the difference between the specimen value of the statistical characteristic ln…cl† or s2 and the
corresponding mean value for the specimen grain-size; nominal strain rate ˆ 10 4̂s 1̂, T ˆ ^10³C.The line in each plot is the
linear least-squares fit of the normal function to the difference. (a) ln…cl†i ¡ ln…cl†id for the ith specimen of grain-size d. (b)
s2

i ¡ s2
id for the ith specimen of grain-size d.

Fig. 3. Examples of crack-length distributions with a negative
or positive skewness. The solid line is the exponential least-
squares fit to the 90 percentile of the crack-length range; the
dashed line is from the discrete analysis. (a) Negative skewness
of ^0.5, d ˆ 2.6 mm, nominal strain rate ˆ 10^4 s^1, T ˆ
^10³C. (b) Positive skewness of 1.58, d ˆ 9.2 mm, nominal
strain rate ˆ 10^3 s^1, T ˆ ^10³C. (c) Negative skewness of
^0.14, stress ˆ1.2 MPa, d ¹ 3 mm, T ˆ ^9.5³C.
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mean of the natural logarithms of the crack lengths, ln…cl†,
variance, s2, skewness, ®1, and excess, ®2, of each population
are given inTable1 for the four strain rates.The skewness is a
measure of the asymmetry of a distribution relative to a
normal one and is given by:

®1 ˆ 1

n

P
i‰ln…cl†i

¡ ln…cl†Š3

s3
; …1†

where ln…cl†i is the natural logarithm of crack length i, and s
is the specimen standard deviation. The coefficient of excess
indicates whether a distribution is flatter or more peaked
than a normal one and is given by:

®2 ˆ 1

n

P
i‰ln…cl†i

¡ ln…cl†Š4

s4
¡ 3 : …2†

For the normal curve, the skewness and excess are zero. A
positive excess indicates a curve more peaked than the
normal one.

Figure 1a presents the grain-size dependence of ln…cl† for
the nominal strain rate of 10^3 s^1.The line is the linear least-
squares fit to the observations. It indicates a tendency for the
meanvalue to increase with increase in grain-size, but there is
appreciable scatter and the correlation is correspondingly
weak.The grain-size dependence for ln…cl† is more apparent
for the nominal rates of 10^4 and 10^5 s^1, and the scatter in
the data points appreciably smaller. The dependence for the
three rates is similar to that presented in Gold (1997) for the
dependence of ln…cl† on the natural logarithm of the grain-
size.

Figure 1b shows the grain-size dependence for the vari-
ance, s2, at the nominal strain rate of 10^3 s^1. The line in the
figure is the linear least-squares fit to the observations. The
analysis indicates that the variance increases with increasing
grain-size. The grain-size dependence for the skewness is
shown in Figure1c and for the excess in Figure1d, for the same
nominal strain rate. Figure 1c and d indicate that both these
statistical characteristics tend to increase from negative to
positive values with increasing grain-size andto have the value
associated with a normal population at the average grain-size
of about 6 mm. There were insufficient observations for large
grain-size specimens and too great a scatter in values to show
clearly the grain-size dependence of the variance, skewness
and excess for the nominal rates of 10^4 s^1 and10^5 s^1.

Assume that the parent population from which the speci-
mens were drawn hasa randomdistribution. If this is the case,
statistical theory shows that, for each distribution characteris-
tic given in Table 1, the population formed by the difference
between each specimen value andthe meanvalue for the same
grain-size will tend to have a normal distribution. These dif-
ferences were determined for each set of characteristics in
Table 1 and plotted on normal distribution coordinates. The
mean value for a given specimen grain-size was determined
from the linear least-squares fit for the plot of the characteris-
tic against grain-size, as presented in Figure1a^d.

Figure 2a presents the result for ln…cl† for the nominal
strain rate of 10^4 s^1, and Figure 2b for the variance, s2, for
the same rate. The line in each plot was determined from a
linear least-squares fit of the difference values to the corres-
ponding percentage values. It can be seen that the normal
distribution provides a good description for each of these
differences in spite of insufficient large grain-size specimens
and large scatter. In all cases, the correlation coefficient for
the linear least-squares fit of the differences to the normal
probability function was 40.95 (10 of the 12 were 40.97),

indicating that the logarithms of the crack lengths are ran-
dom variables.

Figure 3a is an example of a crack-length distribution with
a negative skewness of ^0.5, and Figure 3b of one with a posi-
tive skewness of 1.58. Figure 3a is for a specimen of mean
grain-size 2.6 mm, and Figure 3b for a specimen of mean
grain-size 9.2 mm. For the negative skewness, the observations
are above the line for the crack percentages of 510% and
495%. For the positive skewness example, they are below
the line for percentages 490%. Figure 3c presents the distri-
bution for 576 cracks that formed during the straining of 21
specimens of mean grain-size of about 3 mm under a constant
load of 1.2 MPa (strain rate about 3.5610^7 s^1).

The percentages associated with the first two or three
crack lengths can be quite variable.They are extreme values
for the specimen distribution and are subject to the random
variation expected for that situation. A similar argument
could be made for crack lengths above the 90% level, as they
also are extreme values for the distribution. The association
of negative skewness with small grain-size, and positive with
large grain-size, as shown in Figures 1c and 3a^c, suggests,
however, that the length of the grain-boundary facet, and
therefore the grain-size, may also affect crack length.

The exponential least-squares fit for the logarithm of the
crack length to the corresponding percentage value was
determined for the range 5^90% for the three examples
presented in Figure 3. The lower value of the range is the
percentage of cracks of length less than or equal to the crack
length at the 5% level, so these cracks are, in effect, included
in the calculation. Cracks of length greater than that associ-
ated with the 90% level are not included. Shown for each
plot are the lines determined from the exponential least-
squares fit and from the discrete analysis using all the crack
lengths. The correlation coefficient for the lognormal fit
over the 5^90% range for each of the specimens was
40.95. This analysis indicates that the distribution in the
crack lengths is not fully lognormal, but the lognormal dis-
tribution function is a satisfactory description over the
range of 5^90% of the population.

2.2. Strain dependence of the mean and variance for
the grain-boundary cracks

Gold (1972a) measured the length of the grain-boundary
cracks present at strains of 2, 4 and 7610^4 in a set of colum-
nar-grain specimens. The specimens, of average grain-size
2^4 mm, were strained at ^9.5³C by a constant uniaxial
compressive stress of 1.2 MPa applied perpendicular to the
long direction of the grains. Cracks that formed in the
ranges 0^2610^4, 2^4610^4 and 4^7610^4 were marked
with different colours during the tests so that they could be
identified for the length measurements. Length measure-
ments were also made on the cracks induced in a second set
of specimens strained to 15610^4 under the same conditions
of load and temperature. The results are presented on a log-
normal plot in Figure 4.The lines shown are the exponential
least squares fit of the crack lengths to the associated percen-
tages. All crack lengths were included in the calculation for
the specimens strained to 2610^4 and 4610^4, but only
those up to and including the 95% percentile level for the
other two strains.

Figure 5 shows the strain dependence of the logarithmic
mean crack length (LMCL) and standard deviation. The
mean increases almost linearly to the strain of 15610^4 for
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an imposed average strain rate of about 6.2610^7 s^1. This
amount of strain is more than double that imposed in the
constant-strain-rate tests. The standard deviation, assumed
to be given by the slope of the lines in Figure 4, appears to
tend to a limiting value with strain. Although these results
are for one strain rate only, they do give some indication of
the initial dependence on strain of two important statistical
characteristics of the crack-length distributions.

2.3.Transgranular cracks

There were not sufficient transgranular cracks for an
analysis as detailed as that for the grain-boundary cracks.
The specimens were grouped for each nominal strain rate
according to whether their mean grain-size was less than
or greater than 5 mm. Cracks with both a grain-boundary
and a transgranular component were not included and are
considered separately. The number of grain-boundary and
transgranular cracks was determined for each crack length.

The grain-boundarycrack population was compared to the
corresponding transgranular population for each strain rate
and grain-size range using the analysis of variance
(ANOVA) program in Microsoft Excel version 5. This pro-
gram tests the hypothesis that the means of the two popula-
tions are equal.The results are presented inTable 2.

The criterion used in the test is the F statistic. In its
application, a critical value is selected that depends on the
degrees of freedom for the calculation associated with each
population and the confidence level desired. The value of F
calculated for each condition is presented in Table 2 along
with the critical value of F at the 95% confidence level. It
can be seen that the value of F for each condition is greater
than the critical value, indicating that, at the 95% confi-
dence level, the hypothesis that the means of the two popu-
lations are equal must be rejected. This conclusion is
consistent with the two populations being associated with
different crack-forming processes.

The fact that the populations are different does not
mean that they are not correlated. The crack populations
for each grain-size range were divided into groups in steps
of ln…crl† ˆ 0.3 for the constant-strain-rate tests and 0.2 for
the tests carried out under a constant load of 1.2 MPa. Only
those crack size ranges that had both grain-boundary (gb)

Fig. 4. Lognormal plot of the crack-length distribution for the
shown amount of strain.The lines give the exponential least-
squares dependence of the per cent of cracks on the logarithm of
the crack length. All data points were used for the strains of
2610 4̂and 4610 4̂, and those up to and including the 95
percentile of the crack lengths for the strains of 7610 4̂and
15610 4̂; stress ˆ 1.2 MPa, 2 5 d 5 4 mm, T ˆ ^9.5³C.

Fig. 5. Strain dependence of the logarithmic mean crack length
(LMCL (mm)) and standard deviation, s, for the results
presented in Figure 4.

Table 2. Results of analysis of variation tests for the equality of the means of the grain-boundary and transgranular crack popula-
tions for the constant-strain-rate tests and constant-load tests for stress of 1.2 MPa; grain-size 55 mm and 45 mm

Strain rate Grain-size range 55 mm Grain-size range 45 mm
n gb n tr df F P Fcrit n gb n tr df F P Fcrit

s^1

7.6610^4 312 23 1,17 8.41 0.01 4.45 265 33 1,22 6.83 0.02 4.30
7.6 x10-5 244 33 1,21 9.45 0.01 4.32 136 33 1,22 6.28 0.02 4.30
7.8610^6 230 98 1,22 7.27 0.01 4.30 115 33 1,20 6.40 0.02 4.35
6.2 x10-7 144 68 1,24 7.54 0.01 4.26

Notes: F is the calculatedvalue for the F statistic, P is the corresponding probability that the means are equal, Fcrit is the F value for the 95% confidence level
that the means are not equal, df is the degrees of freedom for the calculation of F , and n is the number of cracks for each dataset.
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and transgranular (tr) cracks could be used in the analysis.
The correlation coefficient, r, for the grain boundary and
transgranular crack populations is given by:

r ˆ
P

i ngbi ¡ ngb

¡ ¢
ntri ¡ ntr… †

…n ¡ 1†sgbstr
; …3†

where ngbi is the number of grain-boundary cracks in crack
length range, i, ntri is the number of transgranular cracks,
the barred terms are the mean values based on the number

of groups, sgb and str are the corresponding standard devi-
ations and n is the number of groups.

The correlation coefficient for each grain-size range and
strain rate is given in Table 3a, along with the number of
grain-boundary cracks, transgranular cracks and crack
groups.There is a significantcorrelationbetween the number
of grain-boundary cracks in a crack length range and the
associated number of transgranular cracks, particularly for
the higher strain rate. This might be expected if the strain
energy for crack formation comes from two components of
the internal strain-energy distribution (e.g. one associated
with the relative movement between grains (grain-boundary
cracks) and the second associated with the change in shape of
the grains due to shear (transgranularcracks)).The tendency
for a decreasing correlation coefficient with decreasing strain
rate is associated with a corresponding increase in the relative
proportion of transgranular cracks from about zero for high
strain rates to about 25% for low strain rates (Gold,1997).

2.4. Combined grain-boundary and transgranular
cracks

There were not enoughcombined grain-boundaryand trans-
granular cracks for a statistical analysis using the same grain-
size grouping as that for the transgranular cracks. These
cracks were listed for all grain-sizes for each strain rate and
separated into their grain-boundary (gbc) andtransgranular
(trc) components. Table 3b presents the correlation coeffi-
cient for the crack pairs for each condition. It shows that the
two populations, gbc and trc, are only weakly correlated and
that the correlation decreases with decreasing strain rate.

The populations, gb, tr, gbc and trc, for each strain rate
and all crack lengths, were grouped in steps of ln…crl† ˆ 0.3;
gb and tr are the respective crack-length populations with-
out the combined cracks. An ANOVA calculation was car-
ried out on the six pairs gb; tr; gbc; trc; gbc; gb; gbc; tr;
trc; gb; trc; tr for each strain rate. The results are presented
inTable 4. They show that the assumption of equality of the
mean values for the populations in the pairs gbc; trc; gbc; tr;
and trc; tr, cannot be rejected at the 95% confidence level.

Table 3. Correlation between grain-boundary and transgranular
cracks; r is the correlation coefficient

(a)

Strain rate d 5 5 mm d 4 5 mm
#gb #tr #cg r #gb #tr #cg r

s^1

7.6610^4 221 22 6 0.84 230 33 9 0.90
7.6610^5 235 33 10 0.71 110 33 9 0.57
7.8610^6 224 96 10 0.88 102 33 9 0.69
6.2610^7 144 68 13 0.47

(b)

Strain rate #gbc #trc r

s^1

7.6610^4 25 25 0.30
7.6610^5 26 26 0.17
7.8610^6 54 54 0.13

Notes: (a) Correlation between fully grain-boundary and transgranular
cracks.The cracks are grouped in steps of ln…crl† of 0.3 for the constant-
strain-rate tests and 0.2 for the tests under a constant load of 1.2 MPa
(strain rate º 6.2610^7 s^1); #gb is the number of grain-boundary
cracks, #tr the number of transgranular cracks and #cg the number
of groups. (b) Correlation, for each constant-strain-rate condition, be-
tween the grain-boundary component and the associated transgranular
component, for the combined grain-boundary^transgranularcracks.

Table 4. Analysis of variation for the total of all grain-boundary, transgranular and combined grain-boundary/transgranular
cracks for all specimens for each of the constant-strain-rate conditions

Strain rate Number of cracks df F P Fcrit Strain rate Number of cracks df F P Fcrit

s^1 s^1

#gb #tr #gbc #tr
7.6610^4 577 56 1,23 7.91 0.010 4.28 7.6610^4 25 56 1,17 2.43 0.137 4.45
7.6610^5 380 66 1,23 7.15 0.014 4.28 7.6610^5 26 66 1,15 2.01 0.178 4.54
7.8610^6 345 131 1,25 6.91 0.014 4.24 7.8610^6 54 131 1,22 3.91 0.061 4.30

#gbc #trc #trc #gb
7.6610^4 25 25 1,16 0 1 4.49 7.6610^4 25 577 1,22 8.46 0.008 4.30
7.6610^5 26 26 1,13 0.12 0.73 4.67 7.6610^5 26 380 1,21 8.09 0.01 4.32
7.8610^6 54 54 1,19 0.18 0.68 4.38 7.8610^6 54 345 1,22 10.77 0.003 4.30

#gbc #gb #trc #tr
7.6610^4 25 577 1,22 8.46 0.008 4.30 7.6610^4 25 56 1,17 2.45 0.136 4.45
7.6610^5 26 380 1,20 6.75 0.017 4.35 7.6610^5 26 66 1,16 3.22 0.092 4.49
7.8610^6 54 345 1,23 12.38 0.002 4.28 7.8610^6 54 131 1,21 3.04 0.096 4.32

Notes: #gb is the number of grain-boundary cracks, #tr is the number of transgranular cracks, #gbc is the number of grain-boundary cracks for the com-
bined grain-boundary and transgranular cracks, #trc is the associated number of transgranular cracks, df is the degrees of freedom for the calculation of
the F statistic, P is the probability associated with F , and Fcrit is the value for F at the 95% confidence level.The cracks in each population were grouped
in steps of ln…crl† ˆ 0.3.
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At the same confidence level, the equality of the means for
the populations in the pairs gb; tr; gbc; gb; and trc; gb is
rejected. This indicates that the grain-boundary component
of the combined grain-boundary^transgranularcrack popu-
lations is associated primarily with the corresponding trans-
granular populations, and therefore with the component of
the internal strain energy that is associated with the forma-
tion of transgranular cracks.

The foregoing analyses supports the hypothesis that, for
the conditions of the experiments, the development of
grain-boundary and transgranular crack populations is a
random process for strains to at least 60% of that for brittle
failure and greater than that for ductile behaviour.They can
be thought of as the primary crack population, as they serve
as precursors to failure by fracture and the crack-extension
mechanisms associated with it. A statistical model for the
crack length for these populations is presented in the follow-
ing section, along with a statistical model for the strain
dependence of the crack density. Both models are based on
the assumption that a change in the random variable of a
population is proportional to the population value of the
variableat the time of the change. As the occurrence of each
random event canbe considered as an impulse change to the
population, this process will be referred to as `̀ impulse pro-
portionate change’’.

3. STATISTICAL MODELS OF BEHAVIOUR

For the columnar-grain ice and direction of application of
the loads used in the tests, it would be expected that local
stresses would be induced at grain boundaries and in the
grains, due, for example, to grain-boundary shear, grain
distortion and dislocation mechanisms. These stresses
would depend on the strain, strain rate, time, temperature
and the relative crystallographic orientation of adjacent
grains. It would be expected that they would be felt only to
distances of the scale of grain-size and would not be affected
significantly by the stress concentrations induced in more
distant grains. They would depend on the relative orienta-
tion of neighbouring grains, as the change in shape of a grain
must conform to the change in shape of all grains in contact
with its boundaries (Tvergaard and Hutchinson,1988).

Because the axis of symmetry of each grain is randomly
oriented in the plane perpendicular to the long direction of
the grains, there must be an equal probability for the occur-
rence of all possible combinations of crystallographic orien-
tation of adjacent grains. Singularities that induce local
stress fields can also be expected to be random in strength
and location. This randomness of crystallographic orienta-
tion and of existing and potential stress singularities is built
into the ice at the time it is made. It would seem reasonable
to assume that, during a test, the combination of random
crystallographic orientation and random stress singularities
would result in a statistically variable internal strain-energy
density.

The occurrence of a crack is a visible manifestation of the
conditions required for its initiation. It would remove the
initiating singularity, and a relatively large proportion of
the associated strain energy would be used for its formation.
From this point of view, the constant-load and constant-
strain-rate tests provide a means of sampling the distribution
in the internal strain energy available for crack formation, at
least to the extent that crack length is a reasonable measure

of the energy associated with a crack nucleating singularity.
Also, if the formation of a crack is an independent random
event, each test can be considered as a concurrent set of in-
dependent observations of these events for the same external
load conditions. This independence and randomness is
assumed for the theoretical basis for the statistical behaviour
of the crack length and for the strain dependence of the crack
density.

The formation of a crack can be considered as an impulse
decrease in the internal strain energy or impulse change in
the crack population. It would seem reasonable to assume
that the probability for its formation would depend on the
strain energy density induced by the singularity at the site
where it forms. Statistical models, based on impulse propor-
tionate change, have found significant application in biology,
small-particle statistics and other subject areas (Cramër,
1966; Aitchison and Brown, 1969). Such a model is the basis
for the derivations given below.

3.1. Crack length

Assume the long narrow cracks formed in a specimen during
a test are joined in sequence, edge to edge, in ascending order
of crack length. Let the total length of joined cracks be
divided into consecutive segments and the length up to and
including the ¸th segment be C¸. Consider the segment
C¸ ¡ C¸¡1. The number of cracks in it, n¸, is given by:

n¸ ˆ C¸ ¡ C¸¡1

c¸
ˆ ¢C¸

c¸
; …4†

where c¸ is the mean crack length for the interval.The prob-
ability, p¸, of n¸ cracks of mean length c¸ forming in the in-
terval is:

p¸ ˆ n¸

n"
ˆ 1

n"

¢C¸

c¸
; …5†

where n" is the total number of cracks that have formed in
strain ". Equation (5) has a one-to-one correspondence with
the frequency distribution curve giving the probability of n¸

cracks of mean length c¸ forming in the interval ¢C¸.
Let the crack-length change segments, ¢C¸, be random

variables and adjusted so that each contains only one crack,
and let ¢C¸=n" ˆ ¢c¸. Each segment is now divided into
n" sub-segments, each with the probability of 1=n" for a
crack to form in it. Substituting for ¢C¸=n" in Equation
(5), the probability of a crack of mean length c¸ forming in
one of the sub-segments of ¢C¸ is p¸ ˆ ¢c¸=c¸. Applying
this to the distribution curve presentation of crack length,
the probability that a crack will have a length equal to or
less than c¸ is given by:

p1 ‡ p2 ‡ . . . ‡ p¸ ˆ
X̧

¸ˆ1

¢c¸

c¸
: …6†

With increasing number of cracks, Equation (6) is given
approximately by:

p1 ‡ p2 ‡ . . . ‡ p¸ ˆ
Zc¸

c1

dc

c
: …7†

As the p¸ are independent random variables, Equation (7)
satisfies the conditions for the central limit theorem (Cramër,
1966, p.220), and the probability density function for pc (the
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probability that a crack will have a length c) is given by the
lognormal distribution function:

pc ˆ 1

¼…c ¡ c1†
������
2º

p e
‰ln…c¡c1 †¡mc Š2

2¼2 ; …8†

where mc is the mean ln…c†, ¼ the standard deviation and c1

the length of the first crack.

3.2. Strain dependence of the crack density

It was shown in Gold (1999) that the lognormal distribution
function was also a satisfactory description of the strain
dependence of the crack density.The crack density for colum-
nar-grain ice is defined as the number of cracks per unit area
passing through the mid-plane of a specimen. The formation
of a crack causes a step decrease in the total internal strain
energy and a step change in the statistical characteristics of
the crack population. Let the internal strain energy at strain
"¸ be U¸ ˆ k"¸

2, where k is a constant that depends on the
elastic moduli. The change in strain energy at strain "¸ due
to a change in strain of ¢"¸ is given by:

¢U¸ ˆ 2k"¸¢"¸ : …9†
Let the probable change in strain energy due to a crack
formed at strain "¸ be pu¸U¸, where pu¸ is an independent
random variable.

pu¸U¸ ˆ pu¸k"¸
2 ˆ 2k"¸¢"¸ ; …10†

where ¢"¸ is now the probable change in strain due to the
formation of the crack. From Equation (10):

pu¸ ˆ 2¢"¸

"¸
: …11†

As each impulse change of strain energy is associated with
the formation of a crack, ¢"¸="¸ must be the probability,
pc¸ , for a crack to form at strain "¸. The change in strain,
¢"¸, is an independent random variable.

Let the strain be divided into consecutive segments such

that one crack is formed in each segment and let N0 be the
maximum crack density for the distribution. The propor-
tion of the maximum crack density,n"=N0, formed in strain
"¸, is given by:

pc1 ‡ pc2 ‡ . . . ‡ pcn ˆ
Xn

¸ˆ1

¢"¸

"¸
: …12†

With increasing number of cracks, Equation (12) is given
approximately by:

pc1 ‡ pc2 ‡ . . . ‡ pcn ˆ
Z"n

"1

d"

"
: …13†

As the pcn are independent random variables, Equation (13)
satisfies the conditions for the central limit theorem, andthe
probability density function for pc" (the probability that a
crack will form at strain ") is given by:

pc" ˆ 1

¼…" ¡ "1†
������
2º

p e
‰ln…"¡"1†¡m" Š2

2¼2 ; …14†

where "1 is the strain at which the first crack forms, m" is the
mean ln…"† for the crack population, and ¼ the standard
deviation (a measure of the total strain over which the popu-
lation forms).

Figure 6 presents the strain dependence of the normal-
ized crack density, n"=N0 in per cent, for two crack popula-
tions, plotted on lognormal probability coordinates. One of
the examples is from the constant-load test series (Gold
1972b), for which the rate at which cracks formed, after a
maximum, tended to zero with strain and N0 could be easily
determined from the observations. For the constant-strain-
rate experiments (Gold 1999b), the rate of strain was suffi-
ciently high that the specimens would have failed in a brittle
manner after a relatively small strain. To prevent this, the
maximum stress was limited to about 60% of the stress to
cause failure for the conditions of the test. For these experi-
ments, N0 is the maximum number of cracks that would
have formed if the ice could have been strained without fail-
ing. It was assumed to be the value that gave the maximum
correlation coefficient for an exponential curve fit of the per-
centage number of cracks to the logarithm of the strain. It
can be seen in Figure 6 that the lognormal probability func-
tion provides a good description of the strain dependence of
the crack density. The correlation coefficient was 40.99 for
all the 15 datasets in Gold (1999b), and the maximum crack
densities and logarithmic mean strains were found to depend
in a consistent way on strain rate and grain-size.

4. OTHER APPLICATIONS OF THE STRAIN-
DEPENDENT MODEL

4.1. Acoustic emission

Acoustic emission can be expected if impulse changes in
structure generate elastic waves. Assuming the probability
for this is proportional to the internal strain energy at an
initiating singularity would result in the same statistical
model as obtained for the strain dependence of the crack
density. Gold (1960) measured the time and strain depen-
dence of the acoustic emission for rectangular, columnar-
grain, specimens, 5061006200 mm3, when subjected to a
constant uniaxial compressive stress of 0.9^1.7 MPa at a tem-
perature of ^10³C. The specimens were made from ice of
average grain-size 54.7 mm. St. Lawrence and Cole (1982)

Fig. 6. Lognormal plot of the strain dependence of the normalized
crack density, n"=N0%. The solid symbols are for specimens
strained at the nominal rate of 10^4 s^1, 2 5 d 54 mm, T ˆ
^10³C, m" ˆ 9.07610^4, s ˆ 0.46; the open symbols are for
specimens subjected to a constant load of 1.2 MPa, d ¹ 3 mm,
T ˆ ^9.5³C, m" ˆ 55.7610^4, s ˆ 1.17.
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carried out similar measurements at ^5³C on cylindrical
granular ice specimens, with 25.4 mm radius and 127 mm
long, of average grain-size 1.2 mm. In the case of Gold (1960),
the strain dependence of the emission for constant stress was
obtained from the original data. For St. Lawrence and Cole
(1982), it was obtained from their figure 7 for stresses of 0.8,
1.54,1.84, 2.00, 2.35, 3.26 and 3.67 MPa.

The emission density at given strains (number of counts
per m2 for Gold (1960) and per m3 for St. Lawrence and
Cole (1982)) was divided by the estimated maximum den-
sity, N0, and plotted as a percentage against strain on log-
normal coordinates. N0 was varied until the correlation
coefficient for a least-squares exponential fit of per cent of
total emission to the corresponding logarithm of the strain
was a maximum. Figure 7 gives an example of a lognormal
fit from St. Lawrence and Cole (1982) and from Gold (1960).

The logarithmic mean strain, standard deviation, cor-
relationcoefficient and value of N0 for each test are presented
in Table 5. The analysis indicates that the lognormal distri-
bution provides a satisfactory description of the strain
dependence of the acoustic emission density. Figure 8 gives
the stress dependence of the estimated values for N0. The
values of N0 obtained for the granular ice were raised to
the power of 2/3 to make them comparable with the values
obtained for the columnar-grain ice.

The stress dependence for the maximum crack densities
determined for the same range of stress, given in table 1 of
Gold (1999b), are also shown in Figure 8. It is of interest that
the maximum densities for the acoustic emission for stress
greater than about 1.4 MPa are about the same as those for
the crack densities and less for stress less than that value.
The densities from St. Lawrence and Cole (1982) are gener-
ally lower and this could be due, in part, to the higher tem-
perature for their work and the smaller specimen grain-size.
It has been observed for the constant-load tests at low stress
(Gold, unpublished information) that cracks sometimes

formed slowly by the coalescence of voids and so would not
be expected to emit an acoustic wave.This would also con-
tribute to lowering the average emission density at the lower
strain rates.

One of the difficulties in measuring the acoustic emission
density is recording only emissions from a volume in which it
is uniform. Gold (1972a) showed that edge and end effects
had to be taken into consideration when determining the
average crack density. Similar edge and end effects would
be expected for acoustic emission. The sensors used by Gold
(1960) and by St. Lawrence and Cole (1982) detected all the
acoustic events for each specimen.This would cause the aver-
age to be lower than if it were calculated for a region free of
these effects, but the form of the dependence of the acoustic
emission on strain should not be affected.

Another difficulty is choosing the proper sensitivity and
frequency range for the sensors to detect only the acoustic
emission from the formation of cracks and not from non-
crack-forming processes that emit elastic waves.The sensors
used by Gold (1960) and St. Lawrence and Cole (1982) were
probably not sufficiently sensitive to have been affected by
this difficulty.

4.2. Dislocation density

Some models for crack initiation assume it is caused by dis-
location processes either in the grain boundaries (grain-
boundary cracks) or within the grains (transgranular
cracks). As the formation of a crack and the associated

Fig. 7. Lognormal plot of the strain dependence of the acoustic
emission density distribution (% of the estimated maximum
value). St. Lawrence and Cole (1982): granular ice; constant
stress ˆ 2.0 MPa, d ˆ 1.2 mm, T ˆ ^5³C. Gold (1960):
columnar-grain ice; constant stress ˆ 1.0 MPa, d 5 4.7 mm,
T ˆ ^10³C.

Table 5. Defining characteristics for the strain dependence of
the total number of acoustic emission events for ice subject to a
constant compressive stress

Columnar-grain, d ˆ 4.7 mm, T ˆ -10³C
¼ me6104 sd N0610 4̂ R

MPa m^2

1.0 39.9 0.55 0.33 0.994
1.2 136.2 1.18 0.17 0.999
1.3 62.2 0.91 1.4 0.999
1.4 39.1 0.86 4.8 0.999
1.4 63.4 0.82 3.6 0.998
1.5 38.4 0.81 3.5 0.998
1.5 20.6 0.73 3.9 0.999
1.6 57.8 1.79 12.5 0.999
1.6 74.8 0.95 6.2 0.999
1.7 137.9 1.05 8.7 0.999

Granular, d ˆ 1.2 mm, T ˆ ^5³C
¼ me6104 sd N0610^4 N0610^4 R

MPa m^3 m^2

0.8 4.81 1.61 51.8 0.65 0.988
1.54 13.2 0.50 810 4.0 0.996
1.84 9.96 1.03 1176 5.2 0.998
2.0 18.2 0.89 3600 10.9 0.999
2.35 23.21 0.87 9100 20.3 0.998
3.26 1239 2.51 105 100 0.999
3.67 411.9 2.00 1.056105 103.6 0.999

Notes: The characteristics were obtained from the least-squares exponential
fit for a lognormal normal display of per cent of maximum number of
events against strain. ¼ is the stress, N0 the maximum number of events
(m^2 for columnar-grain ice and m^3 for granular ice), me the logarith-
mic mean strain, sd the standard deviation, d the averagegrain-size and
R the correlation coefficient.
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dislocation density depend on the local strain, it might be
expected that the dependence of the dislocation density on
strain would have the same analytical form as that for the
strain dependence of the crack density. Furthermore, the
addition or removal of a dislocation is an impulse change of
1 in the dislocation density, and therefore the statistical
model for an impulse proportionate change should apply to
the strain dependence of the dislocation density.

The lognormal distribution has been found to be a useful
descriptor for relaxation spectra measured in the anelastic
range of strain for metals and alloys. Dislocation generation
and relaxation are assumed to control these times for some
mechanical behaviour observed in these materials (Nowick
and Berry,1972). Gold (in press) showsmost of the initial crack
populations develop within the same range of strain for
columnar-grain ice. Considering the association of disloca-
tions with the formation of cracks and with relaxation times
for metals and alloys, it would be of interest to investigate
whether the evolution of the dislocation density during the
initial straining of ice has a lognormal dependence on strain.

Cole and Durell (2001) present a model for the strain
dependence of the dislocation density. The parameters
required for the model are obtained by a combination of
incremental constant-load creep tests and cyclical anelastic
straining between increments. The dislocation density for
each amount of total creep strain is estimated from the loss
compliance determined from the area of the hysteresis loop.

Cole (2001) presented an example of the strain depen-
dence of the dislocation density for a sea-ice specimen sub-
jected to a creep stress of 0.5 MPa. It is based on several
strain increments covering the range 0 to 6610^3. His
observed strain dependence of the dislocation density, based
on several values taken from his figure 14, is shown for log-
normal coordinates in Figure 9.The density is given as % of
an apparent maximum value of N0 ˆ 1.36109 m^2. This is

the value associated with the maximum correlation coeffi-
cient (ˆ 0.9974) for a least-squares exponential fit of the per
cent of the maximum density to the logarithm of the strain.
It is very close to the value that would be estimated from
figure 14 in Cole (2001). The standard deviation of 0.59 is
comparable to the value of 0.62 found for the strain depen-
dence of the crack density for a creep stress of 0.6 MPa. The
logarithmic mean strain of 11610^4 is appreciably smaller
than the value of 30.4610^4 found for the crack density, as
would be expected. Although the evidence is scanty, it does
indicate one possible analytically based statistical connec-
tion between a crack-causing deformation process at the
microscale and its manifestation at the macro-scale.

5. DISCUSSION

This study has providedadditional support for the hypothesis
that, for the conditions of the experiments, the development
of the crack populations that precede failure in columnar-
grain ice is a random process. Statistical models, based on
the assumptions of independence, randomness and impulse
proportionate change, show that the lognormal distribution
function should be a good descriptor of the crack-length dis-
tribution and of the strain dependence of the crack density.

The derivationof the models does not depend on material
type or whether the material is columnar-grain or granular.
They could apply, therefore, to any process in a multigrain
material that satisfies the conditions of independence,
randomness and impulse proportionate change. This was
demonstrated through the application of the model for the
strain dependence of the crack density to the strain depen-
dence of acoustic emission in both columnar-grain and gran-
ular fresh-water ice, and to the strain dependence of the
dislocation density for sea ice. Furthermore, it was shown in
Gold (1997) that the lognormal distribution function pro-
vided a satisfactory description for the distribution in crack

Fig. 9. Lognormal plot of the strain dependence of the dislocation
density distribution (% of estimated maximum value). The
strain dependence of the dislocation density was obtained from
Cole (2001): sea ice; constant stress ˆ 0.5 MPa, strain ˆ
5.5610^3, T ˆ ^10³C.

Fig. 8. Stress dependence of the maximum acoustic emission
density. Open circles: St. Lawrence and Cole (1982) (granular
ice; d ˆ 1.2 mm, T ˆ ^5³C); solid squares: Gold (1960)
(columnar-grain ice; d 54.7 mm, T ˆ ^10³C); open tri-
angles: Gold (1960) (maximum crack density; columnar-grain
ice; d ¹3 mm, T ˆ ^10³C).
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lengths measured by Cole (1986) in granular fresh-water ice.
The agreement between the observations and the models
provides strong evidence that the processes responsible for
the formation of the primary crack populations involve ran-
dom, impulse proportionate change.

The fact that the lognormal distribution function gives a
useful description of the crack-length distribution and the
strain dependence of the crack density for about 90% of their
respective ranges does not prove that these two distributions
actually have that statistical form. What has been shown is
that the standard variable zi ˆ ‰ln…cl†i ¡ ln…cl†Š=s, for the
crack-length distribution, and zi ˆ ‰ln…"†i ¡ ln…"†Š=s, for
the strain dependence of the crack density, can be assumed
normal, or nearly so, for about 90% of their range. In fact,
Gold (1972a,b) showed that the probability distribution for
the strain dependence of the crack density could be described
by: P ˆ ¬P1 ‡ …1 ¡ ¬†P2 where P1 ˆ 1 ¡ exp…A¬†, P2 ˆ
1 ¡ exp…B"2†, and ¬, A and B are empirically determined
constants. These expressions were based on a distribution
function shown byWeibull (1951) to give a satisfactory statis-
tical description for strength and yield.

Althoughthe analysis has shown that cracks that formed
under the conditions of the tests were random events, it was
observed for some specimens that the shear stress affected
their spatial distribution (Gold, 1999b). This indicates the
sensitivity of the development of the primary crack popula-
tion to boundary conditions. It was also found that the ratio
of the number of grain-boundary cracks to the number of
transcrystalline cracks depended on grain-size, strain rate
and temperature (Gold, 1997). This is consistent with the
observed correlationbetween the grain-boundaryand trans-
crystalline crack populations. If the cracks that formed are
considered as one population, not discriminating between
grain-boundary or transcrystalline, as was necessarily the
case for the analysis of the strain dependence of the crack
density, they appeared to be truly independent, random
events. The analysis, however, indicates a degree of correla-
tion between the grain-boundary and transgranular popu-
lations that depends on structure and test conditions.

An important benefit of having a valid statistical descrip-
tor for deformation-inducedevents, such as cracks and acous-
tic emission, is that it can provide a consistent method for the
determination of a mean and standard deviation that are
representative of the population. These characteristics can
be used to study the dependence of the population on vari-
ables such as strain, strain rate, stress, temperature and struc-
ture, as shown by Gold (1972b, 1977, 1999b, in press). As the
primary crack population is a random sample of the micro-
scale causative processes, the distribution of those processes
should have the same statistical form. That is, the character-
istics of the macro-scale distribution give some indication of
the statistical characteristics of the corresponding microscale
population. In addition, the deviation of the assumed distri-
bution from the observed one may yield useful information.
For example, the difference at the high end between the
actual crack-length distribution and the lognormal approxi-
mation suggests that the skewness andexcess of the actual dis-
tribution may contain information on the effects of structure
on the induced behaviour. For the strain dependence of the
crack density it may indicate a change in behaviour, such as
the initiation of failure or yield. One of the difficulties in
establishing the stress, strain, strain rate and temperature
dependence of the statistical characteristics of the primary
crack population for a given type of ice, however, is their

potential variability. Part of this may be due to variability in
the structure of the ice and, if so, indicates the care that must
be taken in making the ice and ice specimens and in deter-
mining their defining structural properties.

Knowledge of the stress, strain, strain rate, grain-size and
temperature dependence of the statistical characteristics of
the primary crack population for a given type of ice would
be very relevant for the development of mathematical models
of the mechanical response of damaged ice to uniaxial and
multiaxial loads.This could be of some interest for exploring
the boundariesbetween yield without failure by fracture and
fracture by the extension of existing cracks, as studied by
Schulson (1996) forboth uniaxialand multiaxial stress condi-
tions; cataclastic fracture that can occur under uniaxial stress
conditions (Weiss and others,1999); and the multiaxial stress
conditions associated with the indentation of an ice coverby a
structure (Jordaan and Xiao,1999).

A difficulty in linking the statistically describable crack
populations to failure by fracture, however, is that fracture
is a unique, situation-dependent instability. It is a random
variable and requires several observations to establish its
nature under given conditions and the criteria for its occur-
rence. As stated earlier, the development of the primary
crack population is a precursor to that instability. Predicting
failure by fracture involves the same challenge, in principle,
as determining when, where and how the causative micro-
scale processes will initiate the first crack in the primary
population.Wu and Niu (1995) and Kim and Shyam Sunder
(1997) give an appreciation of that challenge in their respec-
tive development of an analytical description of the pro-
cesses linking the primary crack population to the final
failure event. Gold (1999a) suggested a crack-density-based
criterion for failure of columnar-grain ice subjected to a uni-
axial compressive stress, from his observations on the strain
dependence of the crack density and published information
on the strength of ice. Sinha (1991) determined crack densi-
ties of the same order for a crack-enhanced rheological
model for yield based on grain-boundary sliding. Once the
primary crack population begins to experience instability,
the development of the failure process becomes increasingly
determined by the interaction between cracks and crack
surfaces, as shown by Schulson (1996), Jordaan and Xiao
(1999) and Weiss and others (1999). The deformation beha-
viour of the ice tends to that of a Coulomb solid and can be
described by the equations of classical mechanics.

Exploring the dependence of the characteristics of crack
populationson the stress distribution may notbe too difficult.
For example,Weiss and Schulson (1995) andWeiss and others
(1996) give information on the nature of the crack popu-
lations formed under multiaxial compression. In particular,
it was observed that a uniform population of small grain-
boundary cracks was induced in randomly oriented granular
ice by a hydrostatic compressive stress of about 11.5 MPa
applied at a strain rate of 10^3 s^1. Gold (1997) found that
practically all the cracks formed in columnar-grain ice by a
uniaxial stress applied at strain rates 410^3 s^1 were in the
grain boundary with at least one edge at a triple point. In
his case, the plane of the cracks tended to be parallel to the
applied compressive stress, whereas for Weiss and others
(1996) they were randomly oriented. In both cases it was con-
cluded that the cracks were due to the elastic anisotropyof the
ice crystal, as indicated by the strength of the stress singular-
ity induced at grain-boundary triple points. Schulson and
Gratz (1999) observed three distinct regimes of Coulomb-like
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behaviour determined by the relative values of the principal
compressive stresses applied to cube-shaped columnar-grain
ice specimens. These examples and others that have been pub-
lished provide useful guidance for the development of a stress-,
strain-, time-, temperature-and structure-dependent statistical
descriptor of the primary crack population and its incorpora-
tion into a mathematical model of mechanical behaviour.

6. CONCLUSIONS

The study has demonstrated that, for the conditions of the
experiments, the formation of cracks during the initial
straining of columnar-grain ice by a compressive stress
applied perpendicular to the long direction of the grains is
a random process. Statistical models, based on indepen-
dence, randomness and change proportional to the popula-
tion value at the time of the change, confirm that the
lognormal distribution function is a good descriptor for the
crack-length distribution and for the strain dependence of
the crack density. The models do not depend on material or
whether it is columnar-grain or granular and so would
apply to any process in a multigrain solid that satisfies the
conditions of independence, randomness and impulse pro-
portionate change. As each crack is a random sample of
the causative microscale processes, the statistical character-
istics of the crack distributions should mirror the statistical
characteristics of the causative microscale populations.The
random, primary crack population that forms during the
initial straining serves as the precursor to fracture, the con-
ditions for which are normally determined empirically
within the framework of classical mechanics. The strain-
dependent model appears to be consistent with the strain
dependence of the acoustic emission for polycrystalline ice
subject to compressive stress, and may be consistent with
the strain dependence of the dislocation density.
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