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Abstract

An operator form of the Euler-Maclaurin sum formula is obtained, expressing the sum of the
Euler-Madaurin infinite series in a closed derivation, whose spectrum is compact, not equal to {0},
and does not have 0 as a dusterpoint, as the difference between a summation operator and an
antiderivation which is the local inverse of the derivation.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 47 B 47; secondary 41 A 58, 65 B
15, 39 B 70.
Keywords and phrases: Euler-Maclaurin formula, derivation, antiderivation, summation operator,
Baxter operator.

1. Introduction

We prove that to any closed derivation D o n a complex Banach algebra 21 there
corresponds, subject to certain conditions on the spectrum of D, an Euler-Mac-
laurin formula

on a closed vector subspace $s of 21; that is, D determines an antiderivation K and
a summation operator So such that (1) holds for x £ 3 and all sufficiently small
| a; | , w E C. Here Bk is the k th Bernoulli number. Moreover K | 3s is the inverse
of D | $5. The subspace $s does not contain the identity of 21.
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[2 ] The Euler-Maclaurin formula 129

The classes of operators involved here can be described as follows. By a
derivation on 91 we shall mean a closed linear operator D: ® -> 91 whose domain
£> is a subalgebra of 21, satisfying the identity

(2) D(xy) = Dx- y + x- Dy for all x, y £ 2).

The usual definitions of antiderivation and summation operator must be stretched
a little in order that the assertion in the first paragraph be true, because of the
possible failure of ^ to be a subalgebra of 91. Rather than adopt the stretched
definitions here, we shall instead adhere to the usual ones and make clear the
necessary modification in the statement of the main result, which is Theorem 3.2.
Therefore, if Tt denotes a subalgebra of 9t, by an antiderivation on 2ft we shall
mean a bounded linear operator K: 2ft -» 2ft satisfying

(3) Kx • Ky = K(Kx • y + x • Ky) for all x, y £ 2ft;

and by a summation operator on 2ft we shall mean a bounded linear operator S:
2ft -> 2ft satisfying

(4) Sx • Sy = S(Sx -y + x-Sy-xy) for all x, y £ 2ft.

Identities (3) and (4) are the particular cases of the Baxter identity

(5) Tx • Ty = T(Tx • y + x • Ty - dxy)

where the parameter 0 is 0 and 1. The structural consequences of these identities
have been discussed by several authors, including G. Baxter [2], F. V. Atkinson
[1], J. F. C. Kingman [5], G.-C. Rota [9], [10], N.-H. Bong [3] and the author [6],
[7]. In particular, the way in which K and 5 reproduce formally the properties of
integration and summation respectively is pointed out in [6]: it is best seen on the
subalgebras of 91 generated by e and Ke, or e and Se, where e is the identity of 91.
Since as we remarked e £ $S, the formulae in [7] for the resolvents of K and S are
not available in the present situation.

We also use the notion of an averaging operator, see Lemma 2.2.
Further notation: For any closed vector subspace 36 of 91, 93 (3E) denotes the

Banach algebra of all bounded linear operators on £ into X, with identity /; for
T G 93 (3E), Sp(T) and v(T) denote the spectrum and spectral radius of T, and
Kes(T) = C\Sp(r); R(X, T) denotes the resolvent (XI - Ty1 £ 93(3E), with
domain Res(r). For closed operator T with bounded spectrum, v(T) = sup{|X|:
X £ Sp(T)}.

91 need not have an identity element, though it is of interest to assume its
existence at one or two places, such as 2.3. If D is unbounded then oo is a
singularity of R(\, D). The conditions we assume on Sp(D) are: either

r -, Sp(£>) = {0} U a where a is nonempty and compact,
andO & a;
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or

[*]0 Sp(Z>) = a, nonempty compact, withOgo.

The case where D is a inner derivation on 31, and therefore is in 33(91), has
been discussed in Miller [8], and is recalled in Section 5 below; Theorem 3.2
extends the results in [8] to a larger class of inner derivations and to larger
domains for the formula (1). Unfortunately condition [*] seems to inhibit the
application of the theorem to the differentiation operator on algebras of func-
tions.

If e E 3) then De = 0 so D cannot have an inverse. A first step to establishing
an Euler-Maclaurin formula is therefore to find a restriction of D which is
one-one; that is, we need somehow to excise 0 from the spectrum of D, and
remove e from the domain. The excision of 0 in case [*] is readily done using the
functional calculus. Once a local inverse K of D has been found it is easy to see
that K must behave like an antiderivation. The results in case [*]0 come by
simplification of these for [*].

2. D and K on the subspace S

Assume for this section that derivation D is given, and [*] holds. There exist
positive numbers 8, p such that a lies in the annulus (A: S < | A |< p}. Let y and T
be the positively oriented circles | A |= 8 and | A |= p respectively, and write

these are the residue idempotents of D for the spectral sets {0}, a respectively. Jo

is of minor interest, but / is important for the theory. Now consider the defining
equation of the sequence of Bernoulli numbers (see for example [11], page 127),
which we write as

(7) - * = _!_ + ! + y ( _ i ) * - ' ^ tf*-i

The series here converges if |wA|<27r; therefore if p is chosen to satisfy
v(D) < p < 2TT I w I"1 the series can be integrated term by term around T — y. The
choice is possible if

<8> H < ^
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which we assume is the case. Multiplying (7) by R(\, D) and integrating with
respect to X gives

(9) ^ ^ i ' + j.Hi'-'
where

(10) S = SU = ̂ - f e»\e»k - iylR(X, D) dX,

(11) K = ^

(12) F, = ^ - ^ X'R(X,D)dX.

The general theory of the operational calculus for closed operators ([4], pages
190-193; 200; 208-209) shows that Jo, J, S, K and F, belong to 93(21), and

(13) DK = JDKD, tf(2t)c®, J(%) C H dom{D'),
i=\

(14) KJ = K = JK, SJ = S = JS,

(15) F, = D'JDJD' for /= 1,2,....

Introduce the closed vector subspace

(16) S = / ( 9 l ) = ran(/)

and let D, K,... denote the restrictions of D, K,... to $.

2.1 LEMMA. The range ofKis^. The restrictions D and K are one-one maps onto
$s and are inverses of each other. They belong t

The proof uses the techniques of the operational calculus, and does not depend
upon D being a derivation.

We should like $ also to be a subalgebra of 91, but unfortunately this is not the
case in general. A counterexample is mentioned in Section 5. As a device to get
past this difficulty, introduce the operator

(17) Jx=J + J0

for which Jf = / , and

(18) jjl=j = jxjt J0Jl=J0 = JiJ0, JJ0 = 0=J0J.
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2.2 LEMMA. Since D is a derivation, Jo andJx are averaging operators on 91, that
is, for all x, y E 21

(19) yo(Jox • y) = Jox • Joy = J0(x • Joy),

(20) / , ( / ,* • y) = / , * • Jxy = / ,(* • J,y).

Moreover

(21) Jx(Jox-y)=Jox-Jxy, • / , (* • Joy) = Jxx • Joy

and

(22) J0(J{x-y)=J0(xJxy).

PROOF. Let x, y G 91. Using (2) we note that

(23) R(X, D)x • R(fL, D)y = R(\ + M, D){R(X, D)x • y + x • R(p, D)y)

whenever A, /i, \ + (i G Res(Z>). With S, p as before introduce the circles, all with
positive orientation,

( 2 4 ) T,:|X| = i « , y 2 : H = l S ,

ri : |x | = 3P, r2:H = 2P.
For /, j = 0 , 1 , JjX • Jjy can be written using (23) as

d\R(\ + M, D)(x • R{fi, D)y)[ f
(25) ( 2 7 r 0

+ —l—i f d\f dixRiX + ,*, D)(R(\, D)x • y),
ilmif JBX

 JB2
f
JB2

by making appropriate choices of By = y, or Tu B2 = y2 or F2. This simphfies to
give the required equation among (19)—(21). A variant of this method proves (22).

Partly as a corollary of this lemma we have

23 LEMMA. / O ( ^ )
 and J\i%) ore closed subalgebras of 9t, containing e when 91

has identity e, and invariant under D. Also

(26) y o (9J)USC/ , (9 l )C®,

(27) 3 n/«,(*) = (0).

Ifx, y G 3 then xy £ /,(9t); e <2 3 .

We know that Z> is nearly a derivation on %; precisely,

(28) Dixy) = Dx • y + x • Dy for all x, y G 3 .
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The next result shows that its inverse K is nearly an antiderivation on £5.

2.4 LEMMA. For allx, y e 31,

(29) J(Kx • Ky) = K(Kx • Jy + Jx • Ky),

soforx,y eg,

(30) J(KX • Ky) = K(Kx -y + x- Ky).

If $j is a subalgebra of 31 then K is an antiderivation on £5. More generally, if ® is
any subalgebra of 31 contained in $s and invariant under K then K | ® is an
antiderivation.

PROOF. The elements Kx, Ky belong to 2) by (13), so Kx • Ky e 2) by assump-
tion on 2); apply KD, to get (29). If x, y e $ then (29) becomes (30). If 8 is a
subalgebra then

J(Kx • Ky) = J(JKx • JKy) by (14),
= JKx • JKy = Kx • Ky.

3. Sa and the Euler-Maclaurin formula

Equation (9), restricted to £5, can now be written

1 1 00 n ..2k-\

? K + F+ V ( \\k~x kK + 1 + i { l)
(2k)\ nlk~x

It remains to show that 5^, which belongs to 93(£s) when 0 < | « | < 2v/v(D),
satisfies the functional equation (4) or a closely similar equation. Since the
problem is essentially one in 33 ($s) we reduce it as far as possible to that algebra.
Let subscripts be used to denote the algebra with respect to which spectra and
resolvents are taken. It is not difficult to show that

(32)

and

(33)

therefore restricting to £5 in (10) gives

(34) S = 5|3 = &/|S = T U/ ' eu\euX-l)'lR(\,D)d\.
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Since the operator D is bounded and euX and (eaX — I)"1 are holomorphic and
nonvanishing on a we conclude that

(35) _ So = e"5(e"5-iy\

where eaD is the sum in 93(8) of the exponential series, and that So is a regular
element of

3.1 LEMMA. For all x, y £31 andO <\u \< 2n/v(D) the operator S = Su in (10)
satisfies

(36) J(Sx • Sy) = S(Sx • Jy + Jx • Sy - Jx • Jy),

so for x, y £ $,

(37) J(SX • Sy) = S(Sx -y + x- Sy - xy).

If S is any subalgebra of 3t which is contained in 8 and invariant under S then S \ ®
is a summation operator.

PROOF. It suffices to prove (37) since (36) then follows. The fact that 8 may not
be a subalgebra and euD is possibly undefined makes the proof slightly delicate.
First note that eaD is the restriction to 8 of euDJ< on 7,(31); here DJX £
and £>/, | /,(3t) is a derivation on the subalgebra/,(31), by (20). Therefore

euDJ'(xy) = eaDJix) • euDJ'(y) for all x, y £ / , (3i)

(the Leibnitz formula) and so

euDJ'(ab) = eu5{a) • eu5(b) for all a, b £ 8

(see 2.3). Also note from (14) that for any x £ 31,

Sx = SJx = (eu5~ iy{euDJx.

Let*, y 6 S . Write

so that a, b £ 8 and

eu5a = 5*, ea5b = Sy.

Let

z = J(SX • Sy) - S(Sx -y + x-Sy- xy),
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18] The Euler-Maclaurin formula 135

so that also z £ 3 - We have

(eo5-J)z = (euDJ> -J)j(eu5a • eu5b)

- (e"5-J)s{e«°a • (ea°b - b) + (ea5a - a) • e«5b

-{e«5a-a)-{e»h-b)}

= (euDJ< - J)Je»DJ>(ab) - e»DJ>J{euDJ>(ab) - ab) = 0,

and therefore z = 0.

We have now established the main result, assuming [*]. If instead [*]0 is the
case then the theory is the same except for the simplification that Jo — 0, / , = J
and therefore 3 is a subalgebra of 31. The results can be formulated as follows.

3.2 THEOREM. Let 21 be a complex Banach algebra, and let D be a closed
derivation on 21 whose domain 5) is a subalgebra and whose spectrum is compact, not
equal to {0}, and either does not contain 0 or else has 0 a? an isolated point. Let J be
the residue idempotent (6) for the spectral set Sp(£>)\{0}, assumed nonempty, and
let 3 = /(2l). Letu e C, 0 <| «|< 2-n/v{D).

Then % is a closed vector subspace of 21 not containing the identity of 91 (// 21 has
an identity), but ^ C ® , and there exist operators Kand Su in 93(31) such that

(i) D, K, Su restrict on % to regular elements o/93(^), and K \ % is the inverse of

(ii) For x, y £ 3s, operators K and Su satisfy respectively the identities

(38) J(Kx • Ky) = K(Kx -y + x- Ky),

(39) J(Sox • Say) = Su(Sox • y + x • Say - xy).

(iii) Let ^ be a subalgebra of 21 contained in %; if ® is invariant under K then
K | ® is an antiderivation, if U is invariant under Su then Su \® is a summation
operator.

(iv) For all x £ S and 0 < | « | < 2ir/v(D) the Euler-Maclaurin sum formula

(40) Sux = i*x + \x + J (-O'-'^^V\ J
holds. The series converges in the operator norm

(v) The operators Sa and K with these properties are given, on 3 , by (10) and (11)
respectively.

(vi) 7/0 £ Sp(D) then $s is a subalgebra of%, and K and Su are an antideriva-
tion and a summation operator respectively on !y.
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4. Remarks on the theorem

4.1 An example in which there exists a nontrivial subalgebra ® as in 3.2(iii),
invariant under both K and Sa, is given in [8], namely, the case when 31 is the
algebra 2ft p of all p X p matrices over C and D is an inner derivation determined
by a regular diagonalizable matrix.

4.2 The formal connection between D and Su, when they are restricted to the
closed subspace $s (which is invariant under them) is the simple relation (35)
between bounded operators,

(41) Su = (l-e-»5y\

If ^ is a subalgebra then (41) is an instance of the formula (remarked by F. V.
Atkinson [1], page 16)

(42) T=(I-H)1

relating a homomorphism H and a summation operator T, both bounded, on a
Banach algebra. When the algebra is unital then H must be nilpotent (Miller [7],
page 519); (41) is an example where the algebra is not unital and H is not
nilpotent.

As a statement about operators in 93 ($) , equation (41) can be written

(43) e"S(e~5- I )"' = ±D'1 + \ l + | (-i)*"1

thus it is the result simply of the formal substitution of D for X in (7).
4.3 Just as the Riemann integral of a function is the limit of a sequence of

approximating sums constructed using equally spaced partition points (see (46)
below), so too K results as a uniform limit from Su, namely

(44) K=KmaSa.
w->0

This follows from (9); the limit is in the norm of 93(91).
Similarly (41) gives

(45) 5=lim«- 'Sj1 ;

this time the limit is in 93 (S)-
4.4 It is clearly to be expected that an Euler-Maclaurin formula can be

generated starting from a given antiderivation or a given summation operator,
instead of from a derivation as we have done here. The latter will be the subject of
a later paper [12].
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4.5 It is not clear how the theorem can be applied to the differentiation
operator on algebras of function's. The appropriate operators are (Dx)(t) = x'(t),

[t/o>]

(46) (Kx)(t)= x(u)du, (Sax)(t)= 2 x(t-ra);

see [8], Section 1. However for the most natural algebras Sp(Z>) is either 0 , or is
unbounded: it is necessary to formulate the problem in a Banach algebra for
which Sp(Z>) satisfies [*] or [*]0. The classical formula can be obtained indirectly
by applying the theorem to the Banach algebra XB of generalized functions,
described in [14].

5. Inner derivations

In [8] the author has given an Euler-Maclaurin formula for an inner derivation
Dgx = gx — xg where g is a regular element of unital noncommutative 91, with a
finite spectrum consisting of simple poles of R(\, Dg). In this case the derivation
is of course bounded, and Jx = /. The present discussion and Theorem 3.2 cover
the more general case where Sp(g) is any finite set which may include 0. If Sp(g)
were infinite, its difference set Sp(g) — Sp(g) would have an accumulation point
at 0, and since Sp(Z)x) C Sp(g) — Sp(g), the premise in 3.2 that 0 be isolated in
Sp(£>) might not hold.

Suppose that Sp(g) is finite and equals {a,, o 2 , . . . ,af} say, where the a's are
distinct and one may be 0. From spectral theory ([4], page 179) it is known that

(47) g = a j x + a2j2 + ••• +afjf + c

where the j's are nonzero idempotents, 2/=, jr = e and jrjs = 0 for r ¥= s, and
jr, g, c all commute. Assume as in [8] that c = 0. Then

(48) R(\, Dg)=2 2 (X - («r - a,))-ljrxj,,
r-\ s=\

so from (6),

(49) Jox = ^jrxjr, Jx = 2 2 JrxJ*>
r r s

r¥^s

3= {x:j,xjr = 0forr= 1,2,...,/}.

Thus for any x, y G 21,

JxJy= 222 V^*'
q r s
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so 5̂ in this case can fail to be a subalgebra of 91. In [8] we introduced the vector
subspace

® = { x <E %: jrxjs = 0 if ( r , s ) £ S 2 } , w h e r e fi = { ( r , s ) : \ a r \ > \ a s \ ) ;

for ^ 6 8 it is possible to write

(50) K x = g ~ l x + g - 2 x g + g - 3 x g 2 + •••.

Here ® is a closed subalgebra of 91 contained in $ and invariant under Dg, K, Su.
It is also contained in the set of quasinilpotents of 21.

References

[1] F. V. Atkinson, 'Some aspects of Baxter's functional equation,' J. Math. Anal. Appl. 7 (1963),
1-30.

[2] G. Baxter, 'An analytic problem whose solution follows from a simple algebraic identity,'
Pacific J. Math. 10(1960), 731-742.

[3] N.-H. Bong, 'Some apparent connection between Baxter and averaging operators,' J. Math.
Anal. Appl. 56 (1976), 330-345.

[4] E. Hille and R. S. Phillips, Functional analysis and semi-groups (Amer. Math. Soc., Providence,
R. I., 1957).

[5] J. F. C. Kingman, 'Spitzer's identity and its use in probability theory,' J. London Math. Soc. 37
(1962), 309-316.

[6] J. B. Miller, 'Some properties of Baxter operators', Ada Math. Acad. Sci. Hungar. 17 (1966),
387-400.

[7] J. B. Miller, 'Baxter operators and endomorphisms on Banach algebras', J. Math. Anal. Appl. 25
(1969), 503-520.

[8] J. B. Miller, "The Euler-Maclaurin sum formula for an inner derivation', Aequationes Math. 25
(1982), 42-51.

[9] G.-C. Rota, 'Baxter operators and combinatorial identities I and IF, Bull. Amer. Math. Soc. 75
(1969), 325-329 and 330- 334.

[10] G.-C. Rota and D. A. Smith, 'Fluctuation theory and Baxter algebras', Symposia Mathematica,
Vol. 9, 179-201 (Academic Press, 1972).

[11] E. T. Whittaker and G. N. Watson, A course in modern analysis, Cambridge University Press,
1946.

[12] J. B. Miller, 'The Euler-Maclaurin formula generated by a summation operator', Proc. Royal
Soc. Edinburgh 95A (1983), 285-300.

[13] J. B. Miller, 'The operator remainder in the Euler-Maclaurin formula' (Analysis Paper 37,
Monash University, Melbourne, 1983).

[14] J. B. Miller, 'Series like Taylor's series', Aequationes Math, (to appear).

Department of Mathematics
Monash University
Clayton, Victoria 3168
Australia

https://doi.org/10.1017/S1446788700021819 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021819

