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We have studied relationships between almost relative projectivity and Nakayama
rings [8]. In this paper we shall further investigate certain characterizations of right
Nakayama rings in terms of almost relative projectives (or injectives). We shall consider
three conditions (A), (B) and (C) (see Section 1), which are always satisfied for the
relative projective modules, but not for almost relative projectives in general. As an
application of [9, Theorem] and [10, Theorem 2], we shall show that a right artinian ring
is right Nakayama if and only if one of the above three conditions holds true for almost
relative projectives (Corollary to Theorem 1). Moreover we shall give a characterization
of two-sided Nakayama rings related to (C) and the dual (C*) (Theorem 2). Finally we
shall investigate the transitivity of almost relative projectives, which is the converse of (B),
and give some characterizations of right Nakayama rings related to the transitivity.

1. Preliminaries. In this paper we always assume that R is an associative ring with
identity and every module M is a unitary right /?-module. We shall denote the length, the
socle and the Jacobson radical of M by \M\, Soc(A/) and J(M), respectively. In particular
we denote J(R) by J. We follow [8] and [11] for other terminology. We recall here the
definition of almost relative projectivity [8]. Let M and N be i?-modules. For any diagram
with K a submodule of M:

Mi ---"-> N
in *;.-'' L
* s' I

M - ^ M/K • 0 (exact),

if either there exists h : N-* M with vh = h or there exist a non-zero direct summand M,
of M and h : M^—*N with hh = v | Mu then N is called almost M-projective [8] (if we
always obtain the first case, we say that N is M-projective [2]).

Let {M,, Nj}^Li"=i be any set of finitely generated i?-modules such that M, is almost
A(,-projective for any pair i and /. We consider the following property:

(A) S®A/, is always almost SffiNj-projective for any set {Mi, Nj} as above.
• i

As is easily seen, the above property is equivalent to Af, being almost E®N;-

projective for all i (cf. [5, Lemma 2]). We note that E e M, is E® Ny-projective if M, is
A/,-projective for all i and j [2].

Let R be a perfect ring. Let Mo, M\ and M2 be finitely generated /^-modules and M,
indecomposable. Assume that Mo is almost A^-projective but not M,-projective. Then M,
is A/2-projective by [9, Proposition 1], if A/o is M2-projective. However if Mo is almost
M2-projective, then A/, is not almost A/2-projective in general.

By (B) we shall denote the above property:

(B) For any indecomposable R-module Mx and any finitely generated R-modules Mo
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92 MANABU HARADA

and M2, if Mo is almost Mx-pro\ective but not Mrprojective, and A/,, is almost
M2-projective, then Mt is always almost M2-projective.

Finally we shall give one more property of relative projectives which is not satisfied
for almost relative projectives. Let M and N be /^-modules. Assume that M is
A'-projective. Then it is well known that M is W-projective and AVW-projective for any
submodule N' of N. We study the same properties for almost relative projectives. We
assume that M is almost A'-projective. Take a diagram for a submodule K oi N':

M

From the above we can derive the diagram:

M

N' *N'/K >0
n n
N - ^ NIK * 0.

Assume that there exist a non-zero direct summand N{ of N and h : A7, —> M such that
hh = v\N]. Then v(N,) = (A7, + K)/K c hh^) <= h(M) c N'lK. Hence A7, c A", because
v is the canonical epimorphism. Accordingly Nx is also a direct summand of A7', and
hh = v' \ Ny. If there exists h : A/—> N with vh = h, then /z(A/) c A'' as above. Therefore
M is almost A^'-projective. However M is not almost AVN'-projective in general. Hence
we consider the following property:

(C) If M is almost N-projective, then M is also almost N/N'-projective for any
submodule N' of N.

Related to (C) we can consider the following condition: If M is almost A'-projective,
then A/' (or M/M') is also almost A'-projective, where A/' is any submodule of M. We
shall study this property in the forthcoming paper [12].

2. Right Nakayama rings. We assume that R is right artinian. If eR is a uniserial
module for each primitive idempotent e, we call R a right Nakayama ring. We shall give
several characterizations of right Nakayama rings with respect to the above properties
(A), (B) and (C). We recall here the definitions of LPSM and lifting modules ([9] and
[13]). Let {e,-}JL, be a set of primitive idempotents and A( a submodule of e,7? for each i.
If every element / in HomK(e,^/e,J,e;/?/eyJ) for any pair (/,/) (or / " ' ) is lifted to an
element in HomR(ejR/AhejR/Aj) (or in HomR(ejR/Aj, e,7?//4,)), then we say that
Eee,/?M, has the lifting property of simple modules, briefly LPSM. Next, let M be an

/^-module. If, for any submodule NoiM, there exists a direct decomposition M = M, 0 M2

such that JVDM, and ND M2 is a small submodule of M2, then we call M a lifting module.
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We note that if exR/Ax is almost e2/?A42-projective or exR =f e2R, then exR/Ax ®ezR/A2

has LPSM by definition.
We frequently use the following.

LEMMA 1([6, Theorem 5]). Assume that R is a semi-perfect ring. Let Ax and A2 be
submodules of eR such that eJi+'c^cef for j = 1,2. / /eR/A , ©eR/A2 has LPSM, then
/4,<=/42 or A2czAx. In particular R is a right Nakayama ring if and only if R is right
artinian and every (two) finite direct sum of local modules eR/Aj has LPSM for each
primitive idempotent e.

Let Mx be indecomposable. If Mo is almost A/,-projective and Mx is not a local
module, then Mo is M,-projective by [11, Theorem 1]. Furthermore if a local module
eR/A is almost //?/fi-projective (eR ^fR), then eR/A is /fi/B-projective by definition.
On the other hand (A), (B) and (C) always hold for relative projectives. From this
observation we may study essentially (A), (B) and (C) on local modules eR/A for a fixed
primitive idempotent e.

THEOREM 1. Let R be a perfect ring and e a fixed primitive idempotent. Then the
following conditions are equivalent:

(1) eR is a uniserial module (and hence \eR\ <°°),
(2) (A) holds on local modules eR/A,
(3) (B) holds whenever Mo, Mx and M2 are local modules of the form eR/A,
(4) (C) holds on local modules of the form eR/A.

Proof. We first remark that |e/?|<°° if eR is uniserial. Since R is perfect,
eR => eJ r> eJ2 D • • • is a composition series of eR. Then eJ' = atR for some a, in eJ' — eJ'+1

and ai+xR = eJ'+l = a,J, i.e., ai+x = a,/, for some/', eJ. Therefore eJ" = 0 for some n.
(1)=>(2). Assume that eR/A0 is almost e/?A4,-projective for 1^ /^m. Since

eR/AjQeR/A, has LPSM for i*j by (1) and Lemma 1, eR/Aa is almost £®efl/,4,-
projective by [9, Theorem ].

(2)=J>(1). Let Ax and A2 be the modules in Lemma 1 and eJ'=£0. Since eJ' is
characteristic and eJeeJ' a eJ'+l cAj <=• eJ', eR/ef and eR/Ak are mutually almost relative
projective for it = 1,2 by [5, Proposition 2], but eR/eJ' is neither eR/Ax nor eR/A2-
projective by [1, p. 22, Exercise 4]. Then eR/eJ' being almost eR/Ax © e/?//42-projective by
(2), eR/Ai@eR/A2 has LPSM by [9, Theorem]. Hence At<=A2 or A2cAx by Lemma 1.
As a consequence eJ'/eJi+1 is simple, and so eR is uniserial.

(3)^>(1). Let Aj be as above. Then eR/eJ' is almost e/?A4y-projective, but not
e/?A4;-projective as in (2)=>(1) for/ = 1,2. Hence eR/Ax is almost e#A42-projective by
(3), and so eR/Ax@eR/A2 has LPSM from the remark after the definition of LPSM.
Therefore eR is uniserial as above.

(1)^(3). Let Bo, Bx and B2 be submodules of eR. Assume that eR/B0 is almost
e/?/B,-projective, but not e/?/Brprojective. Then BO=>BX by (1). If eR/B0 is almost
e/?/B2-projective, then eJeB0<zB2 by [11, Proposition 2], and hence eJeBxceJeB0<zB2.
Therefore eR/Bx is almost e/?/B2-projective by [11, Proposition 2].

(1)^(4). Assume that eR is uniserial and M(=eR/A) is almost N (=eR/B)-
projective. Then eJeA cz B. Let N' be a submodule of N and N/N' = eR/C. Since C o B ,
C^eJeA. Further eR/C®eR/A has LPSM by assumption. Therefore M is almost
N/N '-projective by [11, Proposition 2].
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Let Aj be as in (2)=>(1). Then as is shown in (2)^(1) , eR/Ai is almost
e/?/e/'+1-projective. Hence eR/Ax is almost eR/A2-pro]ecti\e by (4). Accordingly eR is
uniserial as before.

COROLLARY. Let R be a right artinian ring. Then the following are equivalent:
(1) R is right Nakayama,
(2) (A) holds,
(3) (B) holds,
(4) (C) holds for local modules M and N.

Proof. (1)=^>(2). Let R be right Nakayama. Let Mo, Mx and M2 be finitely generated
7?-modules. Assume that A/o is almost M,-projective for i = l,2. We take a direct
decomposition of M, into indecomposable modules 7]y (i = 1,2; / = 1,. . . , «(/)). Then Mo

is clearly almost 7),-projective for all /,/. We may assume that there exists an integer m(i)
such that Mo is almost 7^.-projective but not 7^-projective for all k^m(i) and Mo is
7^.-projective for all k' <m(i) {i = 1, 2). Then Tik is a local module by [11, Theorem 1]
for k^m(i). Further, T.mTik has LPSM by Lemma 1 and the remark after the

1 = 1,2
tgm(i)

definition of LPSM. Hence Mo is almost Mx © M2-projective by [9, Theorem].
(2) =^(3). We may assume by [11, Theorem 1] that Mx is a local module. Let

M2 = E®72, be the direct decomposition of M2 as in (1) => (2). Then there exists an integer
m such that Mo is 7^-projective for all j<m and Mo is almost r2y-projective but not
7^;-projective for ally' ^ m. Further since Mo is almost Mx © £® r2;-projective by (2) and

Mo is not A/,-projective, Mt(B EffiT2y. is a lifting module by [9, Theorem]. Hence M, is

almost Se72/'-projective by [10, Theorem 1]. Moreover M, is 7iy-projective for j <m by

[9, Proposition 1]. Hence Mx is almost M2-projective by (2).
The remaining implications are clear from Theorem 1 and the observation before

Theorem 1.

From the above we know that (A) is equivalent to

(A') (A) holds for local modules Af, and Nt

and (B) is equivalent to

(B') (B) holds for local modules Mo, M, and M2.

However we do not have the same result for (C) (see Theorem 2 below).
Next we shall study a dual result to Theorem 1. If every indecomposable injective

module is uniserial, we say that R is right co-Nakayama ([3] and [6]). We shall give some
characterizations of right co-Nakayama rings, which are dual to the Corollary. We refer
to [4] for the definition of almost relative injectives. First we define properties (A#), (B#)
and (C#) dual to (A), (B) and (C), respectively.

Let Uo, Ui and U2 be finitely generated i?-modules.

(A#) / / Uo is almost Urinjective for i = 1,2, then Uo is almost Ux © U2-injective.

Assume that Ux is indecomposable.
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(B#) / / Uo is almost Ux-injective but not Urinjective, and Uo is almost U2-injective,
then Ux is always almost U2-injective.

(C#) / / Uo is almost U2-injective, then Uo is always almost U'-injective for any
submodule U' of U2.

As the dual to the Corollary we obtain together with results in [10]

COROLLARY*. Let R be a right artinian ring. Then the following conditions are
equivalent:

(1) R is right co-Nakayama,
(2) (A*) holds,
(3) (B#) holds,
(4) (C#) holds whenever Uo and U2 are finitely generated and uniform.

The implications (1)<=>(2) are given in [4].
Finally we shall give a characterization of two-sided Nakayama rings. Let {A/,}"=1 be

a set of indecomposable R-modules and M = £®Af,-. Take a submodule N of M. If there

exists a suitable direct decomposition A/ = E®A// such that M, = M/ for all i and

N = T,®NC\Ml, then we call N a standard submodule. The following lemma is well

known.

LEMMA 2. Let R be a two-sided Nakayama ring. Then any submodule T of
n

P = E etR is a standard submodule, where the e,- are primitive idempotents.

Proof. See [15], [16, Section 55] or [8, Lemma 5].
If eRe is a local ring for an idempotent e, e is called a local idempotent. In this case eJ

is the unique maximal submodule in eR.
LEMMA 3. Let R be any ring and et, e2 local idempotents. Let B be a submodule in

exJ © e2J c exR © e2R and C a submodule in exJ such that B j>C © 0. / / e^R/C is almost
(e,/? © e2R)lB-projective, then (etR (Be2R)/B is decomposable.

Proof. Since M = {eyR@e2R)IB is not local, e^RIC is Af-projective by [11,
Theorem 1], provided M is indecomposable. However since exR is a projective cover of
e,/?/C, and further there exists a natural homomorphism h of exR into M such that
h(C) # 0 by assumption, exR/C is not M-projective by [1, p. 22, Exercise 4] (cf. the proof
of [5, Lemma 6]). Therefore M is decomposable.

From [1, Proposition 2.5] and the dual result to [11, Theorem 1] we obtain dually to
the above:

LEMMA 3*. Let Ux and U2 be indecomposable injective modules and B an essential
submodule of Ux © U2. If A is almost B-injective for Qi= A c Ux such that Jix(B)cjiA, then
B is decomposable, where JIX : Ux © U2—* Ux is the projection.

Let e be a local idempotent. By M(e) we denote the set of finitely generated
/^-modules M such that M/J(M) = (eRleJ)(n(M)\ the direct sum of n(M)-copies of eR/eJ.
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THEOREM 2. Let R be a perfect ring and e a fixed primitive idempotent. Then the
following conditions are equivalent:

(1) eR is uniserial {and hence \eR\ < °°) and every submodule in eR(&eR is standard,
(2) (C) holds whenever M and N are any members in M{e).

Compare [7, Theorem 5].

Proof. (1)4>(2). In this proof A,At and Aj mean submodules of eR. N is a direct
sum of local modules, N = E e eR/Aj by [8, Lemma 5]. Assume M = M, © M2. Then it is
clear from the definition that M is almost N-projective if and only if M, is so for / = 1, 2.
Hence we may assume M = eR/A. Now N/N' = E® eR/Aj by [8, Lemma 5] for a
submodule N' of N. Then each eR/Aj is an epimorphic image of some eR/Aj. Hence we
can assume that any Aj contains some A,. Since A,^>eJeA by [11, Proposition 2], M is
almost e/?M/-projective by the same proposition. As a consequence M is almost
WW-projective by Theorem 1.

(2)4>(1). Put P = eR(BeR and take submodules / l , c B | , A2cB2 in eR such that
h : BJA\ = B2/A2. We shall show that h (or h~l) is induced from an element in
eRe = HomR(eR, eR). If Bt = eR for j = l or 2, then this is clear. Hence we assume
B, c eJ for i = 1, 2. Since efl is a uniserial module of finite length by Theorem 1, we may
assume Al = eJ"t, B,=eJ"'-, A2 = eJ"2 and B2 = eJ"2'" (« ,gn2) . Then eR/eJ"'~l is
almost efl/eT'-projective and almost e/?/e/"2-projective by [11, Proposition 2]. Hence
eR/eJ"1'1 is almost eR/eJ"' ©e/?/e/"2-projective by Theorem 1. Put C = {BjAx){h), the
graph in eRe/J"'®eR/eJ"2. Let C be the submodule of P such that C zs eJ"'(B eJ"2 and
C = C/(e/ni © eJ"2). TheneR/eJ"'-1 is almost (/>/(&/"' © e7"2))/C = P/C(=P)-projectiveby
(2). Since B, cz e/, P is decomposable by Lemma 3. Hence h is liftable to an element h in
HomR(eR/eJn\ eR/eJ"2) or in Hom^efl/<?/"% eR/eJ"1) by [14, Lemma 2.1] (cf. [7, p. 526,
Remark]), h is clearly liftable to an element in eRe. Therefore we obtain (1) by [8,
Lemma 5].

COROLLARY. Let R be a two-sided artinian ring. Then the following are equivalent:
(1) R is two-sided Nakayama,
(2) (C) holds whenever M and N are finitely generated R-modules,
(3) (C#) holds whenever Uo and U2 are finitely generated R-modules.

Proof. (1)=>(2). Assume that R is two-sided Nakayama. Then every finitely
generated /^-module N is a direct sum of local modules, N = T>9 e/R/Aj (by Lemma 2).
Hence we can use the same argument as in the proof of Theorem 2.

(2)=>(1). We assume (C) for any finitely generated modules M and N. Then R is
right Nakayama from the Corollary to Theorem 1. We may assume that R is a basic ring
with J2 = 0. Then eJ is simple or zero for any primitive idempotent e. Assume h :elJ*=>e2J
for two primitive idempotents ex and e2. Then in the same manner as in the proof of
Theorem 2 we can show that h is liftable to an element in exRe2 or in e2Rex. Hence R is
left Nakayama by [14, Lemma 4.3].

(1)=£>(3). If R is two-sided Nakayama, then every finitely generated R-module is a
direct sum of uniserial modules. Hence R is right co-Nakayama and we may assume that
Uo is uniform and U2= E®V;; the Vt are unform. Since Uo is almost (/2-injective, Uo is

almost K-injective for all i. Let U' be any submodule of U2 and U' = SeV^-; the Wy are

https://doi.org/10.1017/S0017089500008570 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008570


CHARACTERIZATIONS OF RIGHT NAKAYAMA RINGS 97

uniform. Then every Wj is monomorphic to some Vit since W, is uniform, and hence Uo is
almost WJ-injective from Corollary*. Therefore Uo is almost (/'-injective from Corollary*
((1)4>(2)). Hence (C*) holds.

(3)^>(1). We assume (C#) for any finitely generated R-modules Uo and U. Then R
is right co-Nakayama from Corollary*. In order to show that R is two-sided Nakayama,
we may assume 72 = 0. Let e be any primitive idempotent. We shall show that eR is
uniserial i.e.,e/ is simple, provided eJ =£0. Assume eJ ¥= 0 and eJ = AX (& A2® B, where A{ is
simple, so that Ax^0, and similarly for A2. Put £/, = eR/(A2 © B), U2 = eR/(At © B) and
U = UX(B U2. Then (/, is a uniserial module with |(/,| = 2 for i = 1,2. Since R is a right
co-Nakayama ring with 72 = 0, (/, is injective. Put (/0 = i4, and E = £((/0) (=(A). Since
|(/,| = 2 and (/, is injective, Uo is almost (/,-injective, by [5, Proposition 5]. As a
consequence (/0 is almost (/-injective from Corollary*. We take the submodule (/' of U
such that (i) (/'=>7((/) =/((/ ,) ®/((/2), (ii) (/'//((/) = {* + i | i eeR/eJ} c
eR/eJ(BeR/eJ = U/J(U). Then Uo is almost (/'-injective by (C*). Hence (/' is decom-
posable by (ii) and Lemma 3*. Since |Soc((7')|=2 and |(/ ' | = 3, (/' = W, © W2 with
|W,| = 2, |W2| = 1. From (i) and (ii) we know that V̂  is uniserial and Jt,<\ W, is an
isomorphism, where JT, : (/—» (/, is the projection for i = 1, 2. Hence (/, is isomorphic to
(/2 by / = (JZ2 | W,)(^, | W,)~', which induces the identity mapping of efl/e/ by (ii).
Therefore there exists/ in eJe such that the left sided multiplication of (e +/) gives /, i.e.,
(e+j)(A2®B) = Al®B. Thus AX®B=A2®B for 72 = 0. As a consequence eJ is
simple, i.e., R is right Nakayama. Therefore R is two-sided Nakayama by [3, Theorem
5.4].

We shall give a right Nakayama ring where (B) does not hold if M, is not
indecomposable. Let R = See,7? be a right Nakayama ring with the following structure

({e,}f=, is a set of mutually orthogonal primitive idempotents with 1 = £ e,):

exR e2R e3R e4/?

I I I I
(22)R (34)/? (42)/?

(22)(22)fl 0 0

I I
0 0

and R = E® etK © E® (iy)ff © E® {ij){jk)K, (ij) = e,(y>,. and other products among (y)
are zero except as in the above diagram, where K is a field. Put A0 = (13)R,
A{ = (13)(34)K, So = (22)(22)/J and B, = (22)/?. Then Mo = e,/?M0 © «2^/Bo is almost M,
(=e,/?//4, ©^^/BO-projective, but not M,-projective and Mo is almost M2 (=e2R)-
projective. However M, is not almost A/2-projective, since (22)(22) # 0. Similarly MQ
(=e,/?/y4()) is almost M,-projective, but not M,-projective and M'a is M2-projective.
However M, is not M2-projective (cf. [9, Proposition 1]).

3. Transitivity on relative projectives. In this section we shall investigate the
transitivity of relative projectives: if Mo is Af,-projective and M, is M2-projective, is Mo

then A/2-projective? Trie similar property on almost relative projectives is in some sense
the converse of (B).
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PROPOSITION 1. Let R be a perfect ring. Then transitivity of relative projectives on
M(e) always holds. If transitivity on M(cj) U M(e2) holds, then ex] = e2J = 0, where

Proof. Let Mu M2 be in M{e). Assume that Mx is M2-projective and take a projective

cover P, of A/,, i = 1,2: P, = Eee/?,7; eRu = eR, and M, = PJA,. Let / be an element in

P 1 ) P 2 ) ; / = EA/A(P1^P2), where eij(P1->P2) = leR: eRu^eR2j, r^eeRe. Since
r,yey e Homw(P1, P2), (fy-e,-,-)/!^.^ by [1, p. 22, Exercise 4]. Assume that M2 is
Af3-projective and P3 is a projective cover of M3 as above. Take any element g in

.P,) and g = {gu). Then e,y(P,-»P3) = e,>(P2^P3)e,1(P,^P2) and &,-«<,(/»,-»
g,yev(/>2^f3)e,i(Pi^P2MiCg,ye1/(P2^P3M2c/l3. Hence g{Ax)czA^. Accord-

ingly we obtain the transitivity. Next we assume the second condition in the
proposition. Here e^R/eJ is e2^/e2^2-projective and e2R/e2J

2 is e,#/e,/3-projective.
Hence exRlexJ is e1/?/ei/3-prpjective by the transitivity. Therefore e,/ = e,/2, and hence

From Proposition 1 we have

THEOREM 3. Let R be a perfect ring. Then transitivity of relative projectives over
finitely generated modules holds if and only if either R is semi-simple or R/J(R) is a simple
ring.

We shall study the above problem for almost relative projectives. In this case the
transitivity is the converse of (B). Let Mo, Mx and M2 be finitely generated R-modules.
The property of transitivity of almost relative projectives is

(Bj) If Mo is almost Mx-projective and Mx is almost M2-projective, then Mo is always
almost M2-projective.

m
LEMMA 4. Let R be any ring and {e,}£Li a set of local idempotents. Put P = E etR

/=i

and P = Eee,7?/e,J" for a fixed integer n. Assume that every submodule of P is standard.
Then every submodule A of P which contains Eee,J" is also standard in P.

Proof. Put eiR = eiRleiJ
n and A =A/(Yl

(BeiJ"). Then there exists a direct decom-
position of P : = E e P , such that >4 = E®(P^n,4) and P,= e,«. Since EndR(e,«)
is a local ring, we may assume that P1 = elR(g1), where gx: e,fl-> Eee,^- Then

P = P, © e2R 0 - © emR = P, © A © - © Pm-

Considering the projection of P onto E e e , ^ in the above we may assume that P2 = e2R(g2)

withg2:e2«->P,® T,®ekR. Hence we obtain inductively g,,: eft^* E®P*© E e e r £ s u c h
/t3>3 *</ k'>i

that Pj = i/Rigi) and P = E®P* © Y,9ek-R. By induction we can show that g, is liftable
k<i k'>i

to an element g,: e,f l^ L9ekR(gk) © S®er/? and P = Eee,fl(g,)e E® ek.R. Therefore
kSi *• kSi k'
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m _

we have P=Z°e,R(g,) and e,%,) = /> for all i. Since A => E®e/" = Eee//J(g,-)T,
/•=i

Ee(e,/?(g,) n i4) => Eee,/?(g,)/". As a consequence >4 = E®(e,fl(g,) n A).

THEOREM 4. Let R be any ring such that R/J is artinian, and let e be a fixed local
idempotent. Then the following are equivalent.

(1) (B^ holds on the set of local modules of the form eR/A, where eR =>AZD eJ" for
some n.

(2) Any two local modules of the form eR/A are mutually almost relative projective,
where A is as in (1).

(3) eR/N is uniserial with respect to submodules A/N with \eR/A\ < °° and (eJ)2 <z N,
i.e., any simple sub-factor module eJ'/eJ'+i of eR/N except eR/eJ and Soc(eR/N) (if it
exists) is not isomorphic to eR/eJ, where N — (~) (eJ").

n

Further let M'(e) be the set {M} given before Theorem 2 such that M is a
homomorphic image of (e/?/e/")(m) for some integers n and m. Then the following are
equivalent.

(4) (B,) holds on M'{e).
(5) Any two R-modules in M'(e) are mutually almost relative projective.
(6) eR/N is unserial with respect to A/N as in (3) and for any n every submodule of

eR © eR which contains eJ" ffi eJ" is standard.

Proof. (2)4>(1). This is trivial.
(1)^>(3). Assume eJ'i=eJi+\ Let A be a submodule such that eJ'+' <= A <= ef. Then

eReAczeJ' and eJeeReA ceJeeJ' c e / ' + 1 c A Hence eR/A and eR/eReA are mutually
almost relative projective by [5, Proposition 2]. Hence eR/A is (almost) e/?A4-projective
by (1), and so A is characteristic. Let B be another submodule such that eJ'+1 cf lceJ' .
Then since A, A + B and B are characteristic, AczA + B and eJe(A + B)ce/'+1 c B ,
eR/A is (almost) eR/(A + B)-projective and eR/(A + B) is almost eR/B-projective.
Hence eR/A is almost eR/B -projective and so eR/A © eR/B has LPSM. Therefore A <= B
or B<zA by Lemma 1. Accordingly eJ'/eJ'+l is simple. Hence eR/N is uniserial with
respect to A/N. Since eR/eJ' is almost eR/eJ'+l-projective for any i, we know that eR/eJ
is almost e/?/e/"-projective for all n by (B,). Hence eJeeJ <= eJ", and so (eJ)2 c N.

(3)=>(2). This is clear from [5, Proposition 2].
(5)=>(4). This is clear.
(4)^(6). We assume (Bj). Then we know from the first equivalence that eR/N is

uniserial with respect to A/N, and eR/eJ is almost ei?/Af-projective by (3), since N ceJ
are characteristic. Moreover eR/N is A/'-projective from [1, p. 22, Exercise 4] for any M'
in M'(e). Hence by (B,) eR/eJ is almost M'-projective. Let eJ" c.4, c B, be submodules
in eR, i = 1,2 such that B{/Al = B2/A2 via g. First we shall show that g is liftable to an
element in HomR(eR/eJn,eR/eJ") (cf. the proof (2) =>(1) in Theorem 2). If S, = eR, g is
easily liftable to an element in HomR(eR/eJ",eR/eJ"). Hence we assume B,ce7. Put
M = (eR © eR)/Bx(g)B2 e M'(e), where fi,(g)fi2 = {6, + 62 6 S, © S2 | g(&, +/!,) = 62 +
i42}. Then efl/e/ is almost M-projective from the above. Therefore M is decomposable by
Lemma 3 and hence g is liftable to an element in HomR(eR/Al,eR/A2) or
HomR(eR/A2, eR/Ax) by [14, Lemma 2.1] (cf. [7, p. 526, Remark]). As a consequence g
is liftable to an element in HomR(eR/eJ",eR/eJ"), since g is given by an element in eRe.
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Thus every submodule of eR/eJ" (BeR/eJ" is standard by [8, Lemma 5], and we obtain
(6) from Lemma 4.

(6)^(5). Assume that eR/N is uniserial as in (6). Then eR/Ai is almost eR/A2-
projective for any AjCzeR with |e/?/v4,|<°° by (2). Further every module in M'(e) is a
direct sum of local modules eR/A by [8, Lemma 5]. Hence (5) holds by [9, Theorem ]
(note that every module in M'(e) is of finite length).

Assume that R is semi-perfect and that (1) in Theorem 4 holds for any local modules.
Then the above proof (1)^> (3) shows that the set of right ideals {A c eR | \eR/A\ < «>} is
uniserial. Hence eR/eJ' is almost e#/e/;-projective for any i and/. Further since eR/eJ' is
(almost) //?///'+1-projective (/ is a primitive idempotent not isomorphic to e), any two
local modules with finite length are mutually almost relative projective. Hence from [8,
Theorem 4] and the proof of Theorem 4 we can get

PROPOSITION 2. Let R be a semi-perfect ring. Then the following are equivalent:
(1) (B,) holds for any local modules,
(2) R is a right Nakayama ring with radical square-zero.

Further the following are equivalent:
(3) (£$!) holds for any finitely generated R-modules,
(4) R is a two-sided Nakayama ring with J2 = 0.

4. Transitivity on relative injectives. We shall explore here the dual results to the
previous section. We can dually define the concepts of transitivity of (almost) relative
injectives and (Bf). Let 5 be a simple /?-module. By M(S) we denote the set of
/?-modules M such that Soc(M)~5("(M)) with n(M)<°°; by M'(S) we denote the set of
M in M(S) such that \M\ < °°.

PROPOSITION 1*. Let R be any ring and S, a simple R-module. Then the transitivity of
relative injectives on M(S}) holds. Assume further that R is a right semi-artinian ring. In
this case, if the transitivity on M(SX) U M(S2) holds, then 5, and S2 are injective, where S2 is
a simple module not isomorphic to Sx.

THEOREM 3*. Let R be a perfect ring. Then the transitivity of relative injectives over
the modules with finite Goldie dimension holds if and only if either R is semi-simple or
R/J(R) is a simple ring.

We can obtain the dual result to Proposition 2, which we skip. Finally we observe the
dual to Theorem 4.

THEOREM 4*. Let R be any ring and S a fixed simple R-module. Then the following
are equivalent.

(1) (Bf) holds on the set of all submodules with finite length in E(S).
(2) Any two submodules of finite length in E(S) are mutually almost relative injective.
(3) E' = Un Socn(£) is a uniserial module such that any simple sub-factor module of

E' except E'/J(E') (if it exists) and Soc(£) is not isomorphic to Soc(£). (Here {Socn(£)}
is the lower Loewy series of E.)

Further the following are equivalent.
(4) (Bf) holds on M'(S).
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(5) Any two modules in M'(S) are mutually almost relative injective.
(6) E' is a uniserial module as in (3) and every submodule of E' © E' is standard.

Proof. First we note that if Socn(£) is uniserial for all n, and if a submodule A in E'
is not contained in Socn(£) for any n, then A = E', provided £ ' # Soc,(£) for all t. Since
A <£Socn(£) for any n, there exists a in v4\Soc,,(£). A being a submodule in E', a is an
element in Socm(£) for some m, and hence m>n. We may assume a £Socm _,(£). Since
Socm(£) is uniserial, Socn(£) <= Socm(£) = aR <zA. Therefore A=>Socn(E). Now we
prove the theorem. This is dual to Theorem 4. Hence we shall show only (4)4>(6). Put
E = E(S). Then E' = U Socn(£) is a uniserial module as in (3) from the first equivalence.

n

Set E* = Ex © E2 with £,• = E' and denote the projection of E* onto £, by 0,. Let B* be a
submodule of £*, and put B, = 0,(B*) and /t,. = £ r n B ' . Then g : Bx/Ax~ B2/A2 and
fi* = Bx(g)B2 (cf. [8]). If ,4, = 0, then g is liftable to an element g in EndR(£'), since £ ' is
characteristic in E. Hence £* = £ , © £2(g) => 0 © B2(g) = B*. Therefore we assume At #= 0
for i = l ,2. In the dual manner to the proof of Theorem 4, we can show from the first
equivalence that 5 is almost B*-injective. On the other hand, since we may assume At ¥= 0
and Bj^Ai, B* is decomposable by Lemma 3*. Further since Soc(B*) = 5 © 5 , B* =
D, © D2 and the D, are isomorphic to submodules in £ ' for the D, are uniform. Hence they
are uniserial. Assume Bx = E' and | £ ' | = <». Then \DX\ = °° or \D2\ = oo. We may assume
that \DX\ = 0°. Since Dx is uniform, 0, | D, is a monomorphism for i = 1 or 2, say i = 1.
Since |D,| = °°, 6X \ Dt is an isomorphism from the initial remark. Putting h =
62(dx\E')-l:E'^>E', we obtain £* = £ ' ( & ) © £ ' and D, = E'(h)<= B*. Hence B* =
£ ' ( / i ) © f l * n £ ' a n d J 3 * n £ ' < = £ ' . Therefore B* is standard. Finally we assume |B,| < °°
for i = l ,2. Then B' = B®B2=>B*. Let /, be the projection of B' onto Bh We may
suppose |B,| ̂  |J52|. Since B* = Bx(g)B2, JT,(B*) = B,, and hence we assume nx(Dx) = B,.
On the other hand, since Dx is uniform, D] is monomorphic to a submodule of B, or B2>
i.e. |D , | ^ |B , | . Hence xx \ Dx is an isomorphism. Put h = n1n~x~

x\Bx:Bx^*B2. Then
B' = Bx{h)®B2 and Bx(h) = Dx. As a consequence B* = fi,(/i)©£* n B2. Since £ is
injective and £ ' is characteristic, we obtain an extension h' of h in Endw(£'). Hence
£* = £ 1 ( / i ' )©£ 2 r>B 1 ( / i ' )©B*n£ 2 = .B 1 ( / i )©B*nB 2 = B*, i.e. B* is standard in E*.
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