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Abstract. We present a classification of the nilpotent primitive subgroups of
GL(n, q), up to conjugacy in GL(n, q). Groups in the classification are specified
explicitly by generating sets of matrices, where each generating set has size at most
2. Additionally we give an algorithm designed to provide electronic access to the
classification for any n and q.
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1. Introduction. This paper is a successor to [2]; it generalises and strengthens
results therein. Our aim here is to classify, up to conjugacy, the nilpotent primitive
(irreducible) subgroups of GL(n, �), where � is a finite field of size q and character-
istic p.

Nilpotent linear groups have been studied for a long time. The first systematic
investigation of such groups was undertaken in the late 1940s by D. A. Suprunenko,
who introduced basic techniques, particularly efficient for groups over an algebraically
closed field � (see [7, Chapter III]). In this case many structural results were obtained,
as well as a complete classification of maximal locally nilpotent subgroups of GL(n, �)
(if the characteristic of � does not divide n then such subgroups are unique up
to conjugacy; otherwise, nilpotent irreducible subgroups of GL(n, �) do not exist).
Subsequent efforts by other authors were concentrated on extending Suprunenko’s
work to other fields. In [9, 10], methods from [7] were applied to the case of nilpotent
irreducible groups over finite fields. But that approach turns out to be not very efficient.
One reason for this is that if � is algebraically closed then there are no nilpotent
primitive subgroups of GL(n, �): each nilpotent irreducible subgroup of GL(n, �) is
monomial (see [8, Lemma 2, p. 219]). The focus of study in [9, 10] is absolutely
irreducible groups, and thus nilpotent primitive subgroups of GL(n, �) are mostly
ignored (nilpotent absolutely irreducible primitive linear groups over � exist only in
degree 2). So, although much was known about the structure of nilpotent linear groups,
and there were some classification results known for maximal absolutely irreducible
nilpotent subgroups of GL(n, �), a complete classification of nilpotent irreducible – in
particular, primitive – subgroups of GL(n, �) was not derived.

Nilpotent linear groups over an arbitrary field � are treated in several publications
by V. S. Konyukh (see [4], where most of the relevant results are summarised). We
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remark that, just as in [9, 10], classification results in [4] are concerned with maximal
locally nilpotent subgroups of GL(n, �). To study a nilpotent absolutely irreducible
primitive linear group G (of prime power degree), Konyukh considered factors of the
series G ≥ Z ≥ K ≥ 1 where K = [G, G] and Z = CG(K). Since Z has nilpotency class
at most 2, the problem is reduced to describing class 2 nilpotent irreducible linear
groups. For nilpotent primitive groups G over � this procedure is not really fruitful,
because Z will be abelian except when the Sylow 2-subgroup of G is quaternion of order
8. In fact finite nilpotent primitive linear groups G have a very apparent structure: each
odd order subgroup is cyclic, and the Sylow 2-subgroup of G has a cyclic subgroup of
index 2, that is, G has a cyclic subgroup of index 2 (see [5, 12]). This information is the
starting point for our classification. In the penultimate section of the paper we give an
algorithm to compute, for any input n and q, a list of nilpotent primitive subgroups
of GL(n, �) such that any group of that kind is GL(n, �)-conjugate to a single listed
group. Each listed group is given by an explicit generating set of matrices, of size at
most 2.

In the paper’s last section we deal briefly with nilpotent imprimitive irreducible
subgroups of GL(n, �). For some classes of subgroups (e.g. soluble, periodic) of
GL(n, �), one may directly reduce study of the irreducible subgroups to study of
the primitive subgroups. This is not a viable approach for nilpotent linear groups,
partly because a wreath product H � L ≤ GL(n, �) where H ≤ GL(m, �), L ≤ Sym(k)
are nilpotent and mk = n, need not be nilpotent. Also note that there are several
complications to be overcome in attempting a classification of nilpotent subgroups of
GL(n, �) when � is infinite. For example, GL(n, �) could contain nilpotent irreducible
subgroups of every nilpotency class l (see the corollary on p. 73 of [7]). Moreover there
may be infinitely many conjugacy classes of maximal locally nilpotent irreducible
subgroups of GL(n, �), as shown in [4]. However, for finite fields the forecast is
more optimistic, and our paper is a first step towards classifying nilpotent irreducible
subgroups of GL(n, �).

2. Linear groups with an irreducible abelian normal subgroup. Recall that a Singer
cycle in GL(n, �) is an irreducible maximal abelian subgroup. In this section we look
at subgroups of the normaliser of a Singer cycle in GL(n, �), and conjugacy between
elements of such normalisers. For basic theory of Singer cycles see e.g. Section 2 of [6].

Let G = 〈A, g〉 ≤ GL(n, �), where A is an irreducible maximal abelian normal
subgroup of G, |G : A| = r. The �-enveloping algebra � = 〈A〉� of A is a field extension
of degree n over �1n. Since G�× normalises the Singer cycle �×, whose GL(n, �)-
normaliser is the semidirect product of �× with a cyclic group of order n, and G�×/

�× ∼= G/A, it follows that r divides n. Set n/r = m. For some d ∈ GL(n, �) we have
an �-automorphism σ of � of order n defined by σ : x 	→ dxd−1, x ∈ �. Let δ = σ m.
Then δ : x 	→ gxg−1, x ∈ �, is an automorphism of � of order r. Denote by � the
δ-invariant subfield of �, so that |� : �1n| = m. It is not difficult to see that � is the
centraliser of G in Mat(n, �). Since � is a field, the irreducible parts of �× are pairwise
equivalent, implying that there exists y ∈ GL(n, �) such that (�×)y is generated by
the block diagonal matrix diag(s, s, . . . , s), 〈s〉 a Singer cycle of GL(m, �). Therefore
�1 := 〈s〉� = 〈s〉 ∪ {0} ⊆ Mat(m, �) is a field isomorphic to �.

As explained in the proof of [11, Theorem 1.19, p. 12], there is a �-algebra
isomorphism φ of CMat(n,�)(�) onto Mat(r, �) such that φ(G) is an absolutely irreducible
subgroup of GL(r, �). We may view the action of φ more explicitly as follows. Let
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y ∈ GL(n, �) and s ∈ GL(m, �) be as in the previous paragraph. If c ∈ CMat(n,�)(�)
then cy as an r × r block matrix has m × m blocks that each commute with s, and are
therefore either zero or invertible by Schur’s Lemma. If invertible, a block must be in
〈s〉, because the Singer cycle 〈s〉 is self-centralising in GL(m, �). Thus we assume that
G – or more generally any element of CMat(n,�)(�) – is in r × r block matrix form, with
the blocks coming from a field �1 ⊆ Mat(m, �) isomorphic to �. The action of φ is
then obvious. We reiterate that � itself has block diagonal form, with constant entry
on the main diagonal.

Let h ∈ CMat(n,�)(�). Denote by det�/�h the determinant of h ∈ Mat(r, �) over
�; that is, det�/�h = detφ(h). If H ⊆ CMat(n,�)(�) then we define Det�/�H to be
{det�/�h | h ∈ H}.

LEMMA 2.1. Let t1 = db1, t2 = db2, bi ∈ �×, i = 1, 2. Suppose detb1 = detb2. Then
there exists h ∈ �× such that ht1h−1 = t2.

Proof. The norm of x ∈ � over �1n is (detx)1n. Set b = b2b−1
1 , so that t2 = t1b.

Since detb = 1, by Hilbert’s Theorem 90 [3, 23.13, p. 365] there exists h ∈ �× such
that b = σ−1(h)h−1. Then ht1h−1 = ht2b−1h−1 = ht2σ

−1(h−1)hh−1 = ht2d−1h−1d =
hdb2d−1h−1d = db2 = t2, because b2, d−1h−1d ∈ � commute. �

PROPOSITION 2.2. Suppose b1, b2 ∈ �× and det�/�b1 = det�/�b2. Then gb1, gb2 are
conjugate by an element of �×.

Proof. The isomorphism φ is defined on � ⊆ CMat(n,�)(�). Since G ⊆ CMat(n,�)(�),
φ(g) is also defined, and (acting by conjugation) is a �-automorphism of φ(�) of
order r. Now we apply Lemma 2.1 with n replaced by r, � by �, d by φ(g), and x ∈ �

by φ(x), to conclude that there exists h̄ ∈ φ(�) such that h̄φ(gb1)h̄−1 = φ(gb2). Let
h1 = φ−1(h̄) ∈ �. Then h1gb1h−1

1 = gb2. �
COROLLARY 2.3. Matrices gb1, gb2, where bi ∈ �×(i = 1, 2), are �×-conjugate if

and only if detb1 = detb2 and det�/�b1 = det�/�b2.

3. Nilpotent primitive linear groups. We retain notation from the previous section.
Throughout G is nonabelian. We assume G = 〈A, g〉 = G2 × C where A is irreducible
abelian, |G : A| = 2, G2 denotes the Sylow 2-subgroup of G, and C = O2′ (G) is
cyclic. Thus r = 2 and n = 2m, m = |� : �1n|, where � is the subfield of � = 〈A〉� of
δ-invariant elements, δ the order 2 element of Gal(�/�1n) defined by δ(x) = gxg−1.
Further, if A2 is the Sylow 2-subgroup of A then A = C × A2 and G2 = 〈g, A2〉. All of
these restrictions on the structure of G are realised if G is nilpotent and primitive; then
G2 is dihedral, semidihedral, or generalised quaternion – see [5, 12].

As shown in Section 2, each element of CMat(n,�)(�) – hence each element of �×

and of G – can be written as a matrix over a field �1 ⊆ Mat(m, �) isomorphic to �,
|�1 : �1m| = m, via a �-algebra isomorphism φ of CMat(n,�)(�) onto Mat(2, �1). In
particular C ⊆ � implies φ(C) is scalar.

THEOREM 3.1. Suppose G is primitive. Then
(i) φ(G2) ≤ GL(2, �1) is absolutely irreducible and primitive,

(ii) φ(A2) is irreducible,
(iii) �× does not contain an element of order 4,
(iv) m is odd,
(v) � = 〈C〉�.
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Proof. By [11, Theorem 1.19, p. 12], φ(G) is absolutely irreducible and primitive.
Since φ(C) is scalar, (i) is now clear. As an index 2 subgroup of the primitive linear
group φ(G2), φ(A2) is irreducible. By [12], if GL(2, �) has nonabelian primitive
2-subgroups then

√−1 /∈ �. This gives (iii). For (iv), we observe that if m is even
then 4 divides qm − 1, which contradicts (iii).

Since −1n ∈ A2, and 〈A2〉� �= �1n, so 〈A2〉� = �1n(a) for some a ∈ A2 of order
divisible by 4. Thus 〈A2〉� ∩ � = �1n by (i). Then from this fact, together with � =
〈A2, C〉� and 〈C〉� ⊆ �, we infer |〈C〉� : �1n| = m; that is 〈C〉� = �.

We assume henceforth that 〈C〉� = �, q ≡ 3 (mod 4), and m is odd. (If p = 2 then
a 2-subgroup of GL(2, �) is abelian, so p will definitely be odd.) We then see that
C = 〈diag(x, x)〉 for some 〈x〉 ≤ �×

1 , 〈x〉� = �1. Set C1 = 〈x〉. Since |�×
1| = qm − 1,

�×
1 is a Singer cycle of GL(m, �), and thus C1 is irreducible.

Denote the natural GL(n, �)-module by V . We have V = V1 ⊕ V2, dim�Vi = m,
C|Vi= C1, 1 ≤ i ≤ 2. As C-modules, V1

∼= V2 and V1 is irreducible. Indeed, if W is any
irreducible C-submodule of V then W ∼= V1.

LEMMA 3.2. Let T be a 2-subgroup of �×. Then T × C ≤ GL(n, �) is irreducible if
and only if φ(T) ≤ GL(2, �1) is irreducible.

Proof. Suppose T∗ = T × C is irreducible. If φ(T) is reducible then by Maschke’s
Theorem it is generated (up to conjugacy) by a diagonal matrix with entries ±1; but
then each Vi is a T∗-module: contradiction.

Now suppose φ(T) is irreducible. An irreducible T∗-submodule of V contains an
irreducible C-submodule, hence has dimension at least m, and so 〈T∗〉� = 〈C〉� if T∗ is
reducible (by our assumption 〈C〉� = �). But then φ(T) is scalar.

By Lemma 3.2, A irreducible implies φ(A2) irreducible, and vice versa.

LEMMA 3.3. (i) |A2| divides q2 − 1.
(ii) |A2| divides 2(qr + 1) for all odd r.

Proof. Certainly |A2| divides |�×| = q2m − 1. We have

q2m − 1 = (q2 − 1)
(
q2(m−1) + q2(m−2) + · · · + q2 + 1

)
and since m is odd, the second factor on the right hand side above is odd. Hence |A2|
divides q2 − 1. Since q ≡ 3 (mod 4), |A2|/2 divides q + 1. Then

qr + 1 = (q + 1)(qr−1 − qr−2 + qr−3 − · · · + q2 − q + 1)

yields (ii).

We rely heavily on the criterion stated in [6, 2.6]: an irreducible abelian linear
group of degree d over a finite field of size f is imprimitive if and only if its order
divides r(f d/r − 1) for some prime divisor r of d. To illuminate one direction of this
equivalence, note that if the group has an imprimitivity system of prime size r then the
group’s order divides r(f d/r − 1).

LEMMA 3.4. Suppose C1 ≤ GL(m, �) is primitive. If A is imprimitive then every
imprimitivity system for A has size 2.

Proof. If k is a prime dividing the size l of an imprimitivity system for A then
A has an imprimitivity system of size k. Suppose k is odd. Then |A2||C1| divides
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k(qm/k − 1)(qm/k + 1). Some prime divisor of |C1| must divide qm/k + 1, hence divides
qm + 1 – cf. the proof of Lemma 3.3. As |C1| divides qm − 1 we get a contradiction.
Thus l is a 2-power dividing 2m, so that l = 2.

THEOREM 3.5. A is primitive if and only if C1 ≤ GL(m, �) and φ(A2) ≤ GL(2, �1)
are primitive.

Proof. Let A be primitive. Suppose C1 is imprimitive, so m > 1 and |C1| divides
r(qm/r − 1) for some prime divisor r of m. But then by Lemma 3.3 (ii), |A| = |A2||C1|
divides r(q2m/r − 1), contradicting primitivity of A. If φ(A2) were imprimitive then it
would have to be monomial, but an abelian monomial 2-subgroup of GL(2, �1) has
order at most 4, whereas |A2||C1| does not divide 2(qm − 1).

Now suppose C1 and φ(A2) are primitive. If A is imprimitive then by Lemma 3.4,
|A| divides 2(qm − 1). But then φ(A2), of order less than 8, cannot be primitive.

THEOREM 3.6. G is primitive if and only if C1 ≤ GL(m, �) and φ(G2) ≤ GL(2, �1)
are primitive.

Proof. Let G be primitive, so φ(G2) is primitive by Theorem 3.1. If A is primitive
then C1 is primitive by Theorem 3.5. Suppose A is imprimitive. As a consequence of
Lemma 3.4 and the fact that the Vi are the unique (up to isomorphism) m-dimensional
C-submodules of V , we may then consider that {V1, V2} is an A-system of imprimitivity.
Let A′ denote the kernel of the permutation action of A on this system. Each Vi is a
faithful A′-module, and is primitive by Lemma 3.4. Since |A′| divides qm − 1 we have
|A′ ∩ A2| = 2 i.e. A′|Vi= 〈−1m, C1〉, so C1 is primitive.

Now let C1 and φ(G2) be primitive. Then φ(A2) is irreducible. If φ(A2) is primitive
then G is primitive by Theorem 3.5. Suppose that φ(A2) is imprimitive. By the usual
order criterion this means that |φ(A2)| = 4 and thus G2

∼= Q8, so G2 = 〈a2, g〉 where
a2

2 = g2 = [a2, g] = −1n and 〈a2〉 = A2.
Suppose G is imprimitive. An imprimitivity system I for G is an imprimitivity

system for A, and by Lemma 3.4, I has size 2. Again we may assume I = {V1, V2}. Since
φ(A2) is irreducible, a2 interchanges V1 and V2, so a2 has form l = ( 0m α

−α−1 0m ) where α ∈
GL(m, �) (here we have also used the relation a2

2 = −1n). In fact α ∈ 〈C1〉� because α

centralises C1. The GL(n, �)-normaliser of the Singer cycle �× is 〈diag(1m,−1m),�×〉,
and therefore g = diag(1m,−1m)β for some β ∈ �×.

Recalling that {V1, V2} is a G-system of imprimitivity, we see that either g fixes
the Vi, and then β = diag(β1, β1) ∈ 〈C〉�, or g interchanges the Vi. In the first case
g2 = −1n forces β2

1 = −1m, which we know cannot be true. 〈C〉� = � is an odd degree
extension of a field of size congruent to 3 (mod 4). In the second case we get the same
contradiction that 〈C〉� contains an element of order 4.

4. The classification. In this section we present a full classification of nilpotent
primitive subgroups of GL(n, �); that is, we give a list of such groups that is complete
and irredundant with respect to conjugacy in GL(n, �). We also outline an algorithm
for constructing the list, given any input degree n and field size q. Every listed group is
metacyclic, and so can be specified by at most two (explicit) generating matrices.

Let An,q be a list of all the primitive subgroups of the Singer cycle �× of GL(n, �).
The elements of An,q are precisely those subgroups of �× whose orders do not divide
r(qn/r − 1) for any prime divisor r of n. If either q �≡ 3 (mod 4), or n is not twice an odd
integer, then Pn,q = An,q.

To proceed further we need a couple of auxiliary results.
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LEMMA 4.1. Let � be a finite field of characteristic p and size e, e ≡ 3 (mod 4). The
Sylow 2-subgroup S of a Singer cycle in GL(2, �) is primitive, and DetS = {−1, 1}.
If p ≡ 3 (mod 8) then S is the unique (up to conjugacy) abelian primitive 2-subgroup
of GL(2, �), and |S| = 8. If p ≡ 7 (mod 8) then |S| > 8, there exist abelian primitive
2-subgroups B of GL(2, �) other than S, and DetB = {1} for each such B.

Proof. Obviously p is odd and not congruent to 1 or 5 (mod 8).
Let 2t be the largest power of 2 dividing e + 1, and define

x =
(

0 1
−ωe+1 ω + ωe

)(e2−1)/2t+1

where ω is a primitive element of the degree 2 Galois extension of �. Then x ∈ GL(2, �)
and |x| = 2t+1, which is the largest power of 2 dividing e2 − 1; that is, 〈x〉 can serve as
S. The usual order criterion ensures S is primitive. We calculate that (det x)2 = 1 and
det x = 1 implies ω(e2−1)/2 = 1, so det x = −1. Every proper subgroup of S, and so every
abelian primitive 2-subgroup of GL(2, �) other than S, must therefore lie in SL(2, �).

The subgroup of GL(2, �) generated by l = ( 0 1
−1 0 ) is irreducible of order 4 (because

�× does not have an element of order 4). Thus any abelian irreducible 2-subgroup
of GL(2, �) of order less than 8 is monomial, so GL(2, �) has abelian primitive
2-subgroups if and only if there exists h ∈ GL(2, �) such that h2 = l.

Suppose p ≡ 3 (mod 8). By quadratic reciprocity, −2 ∈ �2, and
√−2

2 ( 1 −1
1 1 ) has

determinant −1 and squares to l. Hence |S| = 8.
Suppose p ≡ 7 (mod 8). Then e ≡ 7 (mod 8), t > 2, and 1√

2
( 1 1

−1 1 ) ∈ GL(2, �)
squares to l.

We continue with the notation and assumptions of Section 3. Suppose φ(A2) is
irreducible (as happens when G is primitive). Then, up to conjugacy in GL(2, �1), φ(A2)
contains the irreducible group of order 4 generated by ( 0 1

−1 0 ). Since φ(C) is scalar, we can
assume A contains lm := ( 0m 1m

−1m 0m ). Then � = 〈lm〉�, because |�: �| = 2. The GL(2, �1)-
normaliser of φ(�×) is generated by φ(�×) and φ(d), where d = diag(1m,−1m), so
g = db for some b ∈ �×. Let d ′ = ( α β

β −α ), α, β ∈ �1, α2 + β2 = −1m (�1 is finite, so
such α, β always exist).

PROPOSITION 4.2. Suppose G is primitive. If −1 ∈ Det�/�G then G is �×-conjugate
to 〈A, d〉. Otherwise G is �×-conjugate to 〈A, d ′〉.

Proof. Since Det�/�G2 ⊆ {−1, 1} and det�/�d = −1, we have det�/�b = ±1.
Suppose −1 ∈ Det�/�G. If −1 �∈ Det�/�A then det�/�(dba) = −1 for some a ∈ A,

i.e. det�/�(bc) = 1 for some c ∈ C, yielding det�/�b = 1. By Proposition 2.2, G is then
�×-conjugate to 〈A, d〉. If det�/�e = −1 for some e ∈ A then either det�/�b = 1 or
det�/�(be) = 1; therefore G = 〈A, dh〉 for some h ∈ �×, det�/�h = 1. Again the desired
conclusion follows by Proposition 2.2.

Suppose −1 �∈ Det�/�G, so that det�/�b = −1. Since d ′ = db′ where b′ =
diag(α, α)1n + diag(β, β)lm ∈ 〈lm〉� = � and det�/�b′ = −1, we are done by
Proposition 2.2.

Let �2 = 〈a2〉 be the Sylow 2-subgroup of �×, |a2| = 2t; note that t > 2. For
each T ≤ �2 such that 4 ≤ |T | ≤ 2t, φ(T) is a subgroup of the Singer cycle φ(�×) of
GL(2, �1), and has order not dividing |�1| − 1. Hence φ(T) is irreducible. Also, φ(T)
is primitive if (and only if) |T | ≥ 8.
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Let Cn,q = {〈diag(x, x)〉 | 〈x〉 ≤ �×
1 1m ≤ GL(m, �) odd order primitive}. Denote

|Cn,q| by τn,q. If n = 2 then Cn,q is the list of all odd order subgroups of �×12.
Define B1

n,q = {〈a2t−2

2 〉 × C | C ∈ Cn,q}. Further define

B2
n,q = {〈a2〉 × C | C ∈ Cn,q },

B3
n,q = {〈a2k

2 〉 × C | C ∈ Cn,q, 1 ≤ k ≤ t − 3 }

and

N 1
n,q = {〈A, d ′〉 | A ∈ B1

n,q

}
,

N 2
n,q = {〈A, d〉 | A ∈ B2

n,q

}
,

N 3
n,q = {〈A, d〉, 〈A, d ′〉 | A ∈ B3

n,q

}
.

Note that |B1
n,q| = |B2

n,q| = |N 1
n,q| = |N 2

n,q| = τn,q, |B3
n,q| = (t − 3)τn,q, and |N 3

n,q| =
2(t − 3)τn,q. Every element of B1

n,q ∪ B2
n,q ∪ B3

n,q is irreducible by Lemma 3.2. By
Theorem 3.5, every element of B2

n,q ∪ B3
n,q is primitive, and B1

n,q contains only
imprimitive groups. If p ≡ 3 (mod 8) then B3

n,q and consequently N 3
n,q are empty

by Lemma 4.1. If p ≡ 7 (mod 8) then t ≥ 4 and N 3
n,q is nonempty. Let Nn,q =

N 1
n,q ∪ N 2

n,q ∪ N 3
n,q.

THEOREM 4.3.Pn,q = An,q ∪ Nn,q consists entirely of nilpotent primitive subgroups of
GL(n, �), pairwise non-conjugate in GL(n, �). Conversely, a nilpotent primitive subgroup
of GL(n, �) is conjugate to some element of Pn,q.

Proof. Let G = 〈A, g〉 ∈ Nn,q. Clearly G is nilpotent. If G ∈ N 2
n,q ∪ N 3

n,q then G
is primitive because A is primitive. If G ∈ N 1

n,q then φ(G2) ∼= Q8 is primitive (the
full monomial 2-subgroup of GL(2, �1) is dihedral of order 8) so G is primitive by
Theorem 3.6.

Suppose H is a nonabelian nilpotent primitive subgroup of GL(n, �), H = 〈h, B〉
where B is abelian irreducible, |H: B| = 2. Certainly B is conjugate to an element T × C
of B1

n,q ∪ B2
n,q ∪ B3

n,q. Suppose |B| > 4. By Proposition 4.2, if −1 ∈ Det�/�T then H is
conjugate to an element ofN 2

n,q, whereas H is conjugate to an element ofN 3
n,q otherwise.

Suppose |B| = 4, so the Sylow 2-subgroup of H is Q8, and as 〈lm, d〉 is dihedral, H is
conjugate to an element of N 1

n,q by Proposition 4.2.
It remains to prove Pn,q is irredundant. Suppose G, G̃ ∈ Nn,q are distinct and

conjugate. From the definitions we see that G and G̃ must both be in N 3
n,q, say G =

〈A, d〉, G̃ = 〈A, d ′〉. Since det(d ′a) = det(a) ∈ (�×)2 for all a ∈ A, −1 /∈ DetG̃. However
−1 = detd ∈ DetG.

COROLLARY 4.4. Let ηn,q be the number of conjugacy classes of nilpotent primitive
subgroups of GL(n, �), and let γn,q be the number of primitive subgroups of a Singer cycle
in GL(n, �). If either q �≡ 3 (mod 4) or n is not twice an odd integer then ηn,q = γn,q;
otherwise ηn,q = γn,q + 2τn,q if p ≡ 3 (mod 8), and ηn,q = γn,q + (2t − 4)τn,q if p ≡ 7
(mod 8).

We can use Theorem 4.3 to derive a result on isomorphism between the nilpotent
primitive subgroups of GL(n, �), and to determine the maximal such subgroups.
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PROPOSITION 4.5. Nilpotent primitive subgroups of GL(n, �) are conjugate if and
only if they are isomorphic.

Proof. (Cf. [2, Theorem 5.11].) Suppose G, H ∈ Pn,q are isomorphic, G �= H. Since
|G| = |H|, necessarily G, H ∈ N 3

n,q. But then one of G2, H2 is dihedral and the other is
generalised quaternion.

PROPOSITION 4.6. A maximal nilpotent primitive subgroup of GL(n, �) is conjugate
either to �×, or to Ĝ = 〈a2, d, Ĉ〉 where Ĉ has maximal order in Cn,q.

(i) If p = 2, or q ≡ 1 (mod 4), or n is not twice an odd integer, then there is a single
conjugacy class of maximal nilpotent primitive subgroups of GL(n, �), namely the class
containing �×.

(ii) Suppose q ≡ 3 (mod 4) and n = 2m, m odd. If n = 2 and q = 2t−1 − 1 then �×

is conjugate to a subgroup of Ĝ, and there is precisely one conjugacy class of maximal
nilpotent primitive subgroups of GL(n, �); otherwise there are precisely two conjugacy
classes.

Proof. Only (ii) requires proof. We have Ĝ = 〈A, d〉 where |Ĝ : A| = 2 and |A| =
2t−1(qm − 1). Suppose there is a single conjugacy class of maximal nilpotent primitive
subgroups of GL(n, �). Then, up to conjugacy, �× ≤ Ĝ, i.e. |�×| = |A|. Thus qm + 1 =
2t−1. By Lemma 3.3 (i), 2t = |a2| divides q2 − 1, say 2tl = q2 − 1. If m > 1 then it
follows that 2l(qm−1 − qm−2 + qm−3 − · · · − q + 1) = q − 1, which is impossible.

REMARK. The normaliser of a Singer cycle is not usually nilpotent. Proposition 4.6
shows that the normaliser of �× is nilpotent if and only if n = 2 and q = 2t−1 − 1. In
particular a Singer cycle normaliser in GL(2, p) is nilpotent if and only if p is a Mersenne
prime.

As is evident from the foregoing, classifying nilpotent primitive linear groups
over � boils down to listing primitive subgroups of a Singer cycle. These are found
explicitly by taking known powers of a standard generator. It is enough to construct an
element of GL(n, �) of order qn − 1, and this can be done e.g. by methods discussed in
[1, Section 2].

We now outline an algorithm for listing the nilpotent primitive subgroups of
GL(n, �). Let SingerCycle(n, q) be a function that returns a (generator of) a
Singer cycle of GL(n, �). We can then define functions AbelianPrimitive(n, q)
and OddAbelianPrimitive(n, q) which return lists of all the abelian primitive
subgroups of GL(n, �), and the subgroups of odd order amongst those. Two other
functions are implicit below. One calculates the 2-part g2 of a given element g
of GL(n, �), i.e. g = g2g2′ where g2, g2′ ∈ 〈g〉 have 2-power order and odd order,
respectively; this calculation depends on factoring Order(g). The other function finds
an intertwining matrix (by basic linear algebra).

Input: n, q
m := n/2

a := SingerCycle(n, q)

An,q := AbelianPrimitive(n, q)
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Pn,q := An,q

if p = 2 or n is odd or m is an even integer or 4 divides
q − 1

return Pn,q

else find a2

t := log2(Order(a2))

Cn,q :=OddAbelianPrimitive(m, q)

if Cn,q = ∅
return Pn,q

else find h ∈ GL(n, �) such that ha2t−2

2 h−1 = (
0m 1m

−1m 0m

)
a2 := ha2h−1

d := (
1m 0m
0m −1m

)
d ′ := (

α β

β −α

)
, α2 + β2 = −1m ∈ �1

N 1
n,q := {〈a2t−2

2 , C, d ′〉 | C ∈ Cn,q
}

N 2
n,q := {〈a2, C, d〉 | C ∈ Cn,q}

Pn,q := Pn,q ∪ N 1
n,q ∪ N 2

n,q
if p ≡ 3 (mod 8)

return Pn,q

else N 3
n,q := {〈

a2i

2 , C, d
〉
,
〈
a2i

2 , C, d ′〉, | C ∈ Cn,q, 1 ≤ i ≤ t − 3
}

Pn,q := Pn,q ∪ N 3
n,q

return Pn,q

A nonabelian group returned by the algorithm is generated by two elements: d
or d ′, and the generator āc̄ of a cyclic subgroup of index 2, where ā ∈ 〈a2〉 and c̄ is a
generator of some C ∈ Cn,q.

5. Nilpotent linear groups. We can use our knowledge of nilpotent primitive
linear groups to say something about nilpotent imprimitive (irreducible) linear groups.

THEOREM 5.1. There exist nonabelian nilpotent absolutely irreducible primitive
subgroups of GL(n, �) if and only if n = 2.

Proof. Suppose G ≤ GL(n, �) is nonabelian nilpotent primitive. Then n = 2m,
G = G2 × C, and � = 〈C〉� is a field extension of �1n of degree m. If G is absolutely
irreducible then � = CMat(n,�)(G) ⊆ �1n, so m = 1.

COROLLARY 5.2. If G is a nilpotent absolutely irreducible imprimitive subgroup of
GL(n, �) then every component of an unrefinable system of imprimitivity for G is at most
2-dimensional.

THEOREM 5.3. Let G be a nilpotent absolutely irreducible subgroup of GL(n, �). If
any of the following hold then G is monomial.

(i) |G| is odd.
(ii) n is odd.

(iii) q ≡ 1 (mod 4).
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Proof. If G is primitive then G ≤ GL(2, �) has nontrivial Sylow 2-subgroup and
q ≡ 3 (mod 4), so none of (i), (ii), or (iii) can occur. Suppose G is imprimitive. By
[8, Theorem 4, p. 109], for some n1, n2 such that n = n1n2, G is conjugate to a subgroup
of G1 � T where G1 is a nilpotent absolutely irreducible primitive subgroup of GL(n1, �)
and T ≤ Sym(n2) is nilpotent transitive. Furthermore G1 and T are π -groups, where
π is the set of primes dividing |G|. Therefore if |G| is odd then G1 is abelian i.e. n1 = 1
and G1 is scalar. We already know that if n (hence n1) is odd or q ≡ 1 (mod 4) then G1

is abelian.

REMARK. In [10] it is proved that if G ≤ GL(n, �) is maximal irreducible nilpotent,
n is odd, and the GL(n, �)-centraliser of G is �×1n, then G is monomial. Theorem 5.3
is a generalisation of that result.
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