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Abstract

This work focuses on finding optimal dividend payment and capital injection policies
to maximize the present value of the difference between the cumulative dividend
payment and the possible capital injections with delays. Starting from the classical
Cramér–Lundberg process, using the dynamic programming approach, the value
function obeys a quasi-variational inequality. With delays in capital injections, the
company will be exposed to the risk of financial ruin during the delay period. In
addition, the optimal dividend payment and capital injection strategy should balance the
expected cost of the possible capital injections and the time value of the delay period. In
this paper, the closed-form solution of the value function and the corresponding optimal
policies are obtained. Some limiting cases are also discussed. A numerical example is
presented to illustrate properties of the solution. Some economic insights are also given.

2010 Mathematics subject classification: primary 93E20; secondary 62P05.
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1. Introduction
Designing dividend payment policies has long been an important issue in financial
and actuarial sciences. The dividend payment decision is crucial because it not
only represents an important signal about a firm’s future growth opportunities and
profitability but also may influence the investment and financing decisions of the firm.
A practitioner will manage the bank capital and dividend payment against asset risks so
that the bank can satisfy its minimum capital requirement. For insurance companies,
because of the nature of their products, insurers tend to accumulate relatively large
amounts of cash, cash equivalents, and investments in order to pay future claims
and to avoid financial ruin. It is thus desirable to study the dividend decisions of
insurance companies because the payment of dividends to shareholders may reduce an
insurer’s ability to survive adverse investment and underwriting experiences. Recently,
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the financial crisis has led to controversial discussion on the dividend policy of the
European insurance industry [13].

Stochastic optimal control problems regarding dividend strategies for an insurance
corporation have drawn increasing attention since the introduction of the optimal
dividend payment model proposed by De Finetti [3]. Recently, there have been
increasing efforts to use advanced methods of stochastic control to study the optimal
dividend policy [1, 10, 17]. As an extension of previous work, the dividend is assumed
to be paid out with the constraint that a transaction cost must be paid. Optimal dividend
problems with transaction costs with a compound Poisson process were studied by
Thonhauser and Albrecher [15], and with a Brownian risk model by He and Liang [8].
On the other hand, to maximize the expected total discounted dividend payments,
the company will bankrupt almost surely if the dividend payment is paid out as a
barrier strategy. In practice, Dickson and Waters [4] suggested that capital injections
can be taken into account to maintain the business when cash flow is insufficient.
Furthermore, a penalty will be paid at the time of ruin, which can be considered as
the transaction cost (proportional and fixed) of capital injection [11, 14, 16]. Recently,
there have been resurgent efforts devoted to the study of time delay on stochastic
models. Puera and Keppo [12] considered the problem of a bank’s optimal strategy of
recapitalization with a fixed delay period. Bayraktar and Egami [2] proposed a direct
solution method for delayed impulse control problems of one-dimensional diffusions
and solved an optimal labour force problem with firing delay. Egami and Young [5]
studied the optimal reinsurance strategy under fixed cost and delay. Considering such
a delay in the capital injection makes our formulation more general and realistic.
Whenever the company is on the verge of ruin, it can raise sufficient funds to survive.
A natural payoff function is to maximize the difference between the expected total
discounted dividend payment and the capital injections with costs under the optimal
controls.

With the classical capital injection policies, the company could run the business in
the absence of risk of ruin. However, empirical studies indicate that traditional surplus
models with capital injections fail to capture the impact of regulatory processes of
capital raising transactions. To better reflect reality, we have to consider the factor
that the transactions of capital injections need a certain amount of time to be carried
out after the decision of injecting extra capital is made. The time needed can be
modelled by using delays. In the real world, the capital injection can never happen
instantaneously. Time delays cannot be ignored and are unavoidable. Time delays
occur naturally in insurance decision-making problems such as improving the capital
reserve to a positive capital buffer level by capital injections. Many companies face
regulatory delays (for example, preparatory and administrative work), which need
to be taken into account when the companies make decisions under uncertainty of
insolvency during the delays. In the presence of delay, the corporations will be
exposed to a strictly positive probability of insolvency during the waiting period. In
addition, dividend payment is not allowed during this cash insufficient period. Unlike
the models where capital injections can be implemented instantaneously to remove the
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ruin completely, the positive probability of liquidation risk in our model makes the
decision of capital injections with delays more realistic but more complicated.

As far as the significance of the contributions is concerned, this paper reveals
clearly the differences between the strategies with and without delays. The problem
of finding the optimal strategy under the condition of delayed capital injections
involves a stochastic delay system with impulse controls. There is a fundamental
difference between the models with and without delays. In the absence of delays,
capital injections will only be implemented when surplus hits zero. The size of the
capital injections is always a constant to increase the surplus to a positive capital
buffer level [16]. One of the novel contributions of the current paper is that, taking
into account the time delays, the impulse controls of capital injections depend on
the surplus and can be very large. Together with the unrestricted dividend payment
policy, using a quasi-variational inequality approach, we demonstrate that these state-
dependent capital injections lead to the formulation of a free boundary problem. Under
general assumptions, the analytical solution of the free boundary problem and the
optimal state-dependent “threshold” strategies are obtained in this paper.

In addition, our new findings indicate that systems without delays in the traditional
sense are a special case considered in our paper, namely ∆ = 0. Note that for the
case of capital injection without delays, financial ruin can be completely avoided,
whereas when delays are allowed and when surplus approaches zero, the optimal
capital injection value converges to zero. This demonstrates that even when capital
injections are available, the insurance company will be unlikely to avoid financial ruin
due to delay when the surplus is sufficiently low. This has not been considered in the
literature, to the best of our knowledge. Furthermore, the capital injection barriers
are not monotone with respect to the delay period and exhibit hump-shaped curves.
Furthermore, we show that the dividend payment barrier is very sensitive to the delay
when the delay period is relatively short, but is more stable with relatively long delays.
It also demonstrates that for large delays, a capital injection strategy is not optimal.
We have found the most valuable moment of capital injections. To maximize the
performance, it is shown that the injected capital is most valuable to the insurance
company when the surplus reaches a neighbourhood of the capital injection barrier
with a reasonable distance below it.

The new model we constructed involves the consideration of an important factor, the
delay factor in the capital injection process. Through our numerical experiments, it can
be clearly seen that the delay factor leads to state-dependent optimal strategies, which
provide insights for the insurance company in their decision-making process and risk
analysis. Not only are such results theoretically sound, but they are crucial in insurance
practice. Capital injections and dividend payment policies with transaction costs are
introduced as impulse and singular stochastic controls. The imposed time delay on
the capital injections makes the problem more complicated. By adopting the diffusion
approximation technique and using a diffusion model, we obtain a quasi-variational
inequality (QVI) in this paper. The closed-form solution of the QVI is obtained
under certain general assumptions. The value function is verified to be a concave
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function and defined separately in three regions, which are the capital injection region,
continuation region, and dividend payment region. The capital injection barrier and
dividend payment barrier are also given. Finally, the optimal capital injection and
dividend payment strategies are obtained.

The paper is organized as follows. A formulation of the optimal capital injection
strategies and dividend policies is presented in Section 2. Section 3 deals with the
construction of the value function and dividend payment strategy and the verification
of the solution of the value function. Some limiting cases on different values of ∆ are
considered in Section 4. A numerical example is provided in Section 5 to illustrate
the effect of the parameters on properties of the solution. Further remarks are given in
Section 6. Appendix A gives some technical results.

2. Formulation

We work with a filtered probability space (Ω,F , {Ft}, P), where {Ft} (or simply Ft)
is a filtration satisfying the usual condition. That is, Ft is a family of σ-algebras such
that Fs ⊂ Ft for s ≤ t and F0 contains all null sets. In the traditional set-up of risk
theory, one assumes that the surplus X(t) of an insurance company in the absence
of dividend payments and capital injections satisfies the classical Cramér–Lundberg
process,

X(t) = x + ct − S (t), t ≥ 0,

where x is the initial surplus and c is the rate of premium. Let % j be the inter-arrival
time of the jth claim, νn =

∑n
j=1 % j, and let

N(t) = max{n ∈ N : νn ≤ t}

be the number of claims up to time t, which is a Poisson counting process. Let

S (t) =

N(t)∑
i=1

Yi

be a compound Poisson process representing claims with arrival rate λ, where {Yi} is
a sequence of independent and identically distributed random variables known as the
magnitudes of claim sizes and Y1 has the distribution Π(·). Assume that f (y), y ≥ 0,
is the probability density and let µ denote the expectation of Y . Then the Poisson
measure N(·) has intensity λdt × Π(dy) where Π(dy) = f (y)dy.

A dividend strategy Z(·) is an Ft-adapted process {Z(t) : t ≥ 0} corresponding to the
accumulated amount of dividends paid up to time t, such that Z(t) is a nonnegative and
nondecreasing stochastic process that is right continuous with left limits. Throughout
the paper, we use the convention that Z(0−) = 0. The jump size of Z at time t ≥ 0 is
denoted by

∆Z(t) := Z(t) − Z(t−),
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and
Zc(t) := Z(t) −

∑
0≤s≤t

∆Z(s)

denotes the continuous part of Z(t).
We treat the model that allows capital injections to avoid bankruptcy. The capital

injection process L(t) =
∑∞

n=1 I{τn≤t}ζn is described by a sequence of increasing stopping
times {τn : n = 1, 2, . . .} and a sequence of random variables {ζn : n = 1, 2, . . .}, which
represent the times and the sizes of capital injections. The capital injections are
associated with a time delay of length ∆. A control policy u is described by

u = {Z; L} = {Z; τ1, . . . , τn, . . . ; ζ1, . . . , ζn, . . .}.

Assume that the evolution of X(t), subject to capital injections and dividend payments,
follows a one-dimensional process on an unbounded domain G = [0,∞). We impose
X(t) = 0 for all t > τ0, where τ0 = inf{t ≥ 0 : X(t) < 0} represents the time of ruin. The
controlled asset process is given by

X(t) = x + ct − S (t) − Z(t) +
∑

n

I{τn+∆≤t}ζn

for all t < τ0.
Let E[Yi] = µ and E[Y2

i ] = σ2. By adopting diffusion approximation techniques,
X(t) can be approximated by

X(t) = x + (c − λµ)t + σλ1/2W(t) − Z(t) +
∑

n

I{τn+∆≤t}ζn,

where W(t) is a standard Brownian motion. In our set-up, there is no safety loading.
Then this formulation is consistent with the safety loading factor η→ 0 as used by
Asmussen and Taksar [1].

Remark 2.1. While claims do not arrive continuously, the continuous rate of arriving
claims has been always a good approximation. The central limit theorem is applied
to characterize the fluctuations of the claims, and the discrete-valued claim process
is replaced by a diffusion process with a similar distribution of the infinitesimal
increments. The classical reserve processes will converge weakly to some Brownian
motion with drift. Of course any approximation has its limitations; however,
the diffusion approximation has been successfully employed since the time of its
inception.

We assume that shareholders need to pay K + ζ to meet the capital injection of ζ
where K > 0 is the fixed transaction cost. We omit the fixed transaction cost in the
dividend payout process. Denote by r > 0 the discounting factor. For an arbitrary
admissible pair u = (Z, L), the performance functional is

J(x, u) = Ex

[∫ τ0

0
e−rt dZ −

∑
n

e−r(τn+∆)(K + ζn)I{τn+∆<τ0}

]
. (2.1)
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The pair u = (Z, L) is said to be admissible if Z and L satisfy the following
requirements:

(i) Z(t) and L(t) are nonnegative for any t ≥ 0;
(ii) Z is càdlàg (that is, it is right continuous and has left limits), nondecreasing and

adapted to {Ft};
(iii) τn is a sequence of stopping times with respect to {Ft} and 0 ≤ τ1 < · · · < τn < · · ·

almost surely;
(iv) ζn is measurable with respect Fτn ;
(v) P(limn→∞ τn < T ) = 0 for all T > 0; and

(vi) J(x, u) < ∞ for any x and admissible pair u = (Z, L), where J is the functional
defined in (2.1).

In addition, we assume that the admissible control u satisfies:

(a) τn+1 − τn ≥ ∆ for all n ≥ 1;
(b) dZ(t) = 0 for all t ∈ [τn, τn + ∆], n ≥ 1.

Condition (a) tells us that a new capital injection should not be placed during the
waiting period of the previous capital injection. Condition (b) states that dividends
will not be paid during the waiting periods of the capital injections.

Suppose that A is the collection of all admissible pairs. Define the value function
as

V(x) := sup
u∈A

J(x, u). (2.2)

For all V(·) ∈ C2(R), define an operator L by

LV(x) = (c − λµ)Vx(x) + 1
2λσ

2Vxx(x),

where Vx and Vxx(x) denote the first and second derivatives with respect to x,
respectively. For X∆ satisfying dX(t) = (c − λµ) dt + σλ1/2 dW(t) with X(0) = x, define
a capital injection operatorM by

MV(x) = Ex

[
e−r∆ sup

s≥0
{V(X∆ + s) − s − K}I{τ0>∆}

]
, (2.3)

in which the integrability is assumed to ensure that MV(x) is well defined; in the
following development, we find a suitable function ensuring this. If the value function
V defined in (2.2) is sufficiently smooth, by applying the dynamic programming
principle [6], we formally derive the following QVI:

max{LV(x) − rV(x), 1 − Vx(x),MV(x) − V(x)} = 0. (2.4)

The derivation of (2.4) is given in Appendix A.
Similar to Yao et al. [16], we divide the set of the surplus into three regions:

(i) continuation region,

C := {LV(x) − rV(x) = 0, 1 < Vx(x),MV(x) < V(x)};
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(ii) dividend payout region,

D := {LV(x) − rV(x) < 0, 1 = Vx(x),MV(x) < V(x)};

(iii) capital injection region,

I := {LV(x) − rV(x) < 0, 1 < Vx(x),MV(x) = V(x)}.

Boundary conditions. The capital injection is taken into account when there is
not enough solvency capital to maintain the business. To make the company run
continuously, the capital injections will definitely occur at the moments when x = 0.
Intuitively, in the absence of the capital injection delays, on the boundary of the capital
injection region, the value function obeys

M′V(x) = sup
s≥0
{V(x + s) − s − K}.

Then the optimal payoff or the value function V(x) will not be zero with instantaneous
capital injections, which could always guarantee the stability of the company’s capital
structure [9]. However, with the capital injection delays, the company will violate
the capital adequacy if the capital injection is held while the surplus hits zero. Thus,
taking into account the time delay of the capital injections, the value of the V(x) on the
boundary can be obtained as

V(0) = 0. (2.5)

In addition, capital injections also occur whenever the surplus is sufficiently low. The
impulse control of a capital injection depends on the surplus state and leads to a free
boundary of the capital injection region.

We consider the dividend payment strategy with delayed capital injections.
Combining (2.4) and (2.5), the following QVI with boundary condition is obtained:

max{LV(x) − rV(x), 1 − Vx(x),MV(x) − V(x)} = 0, V(0) = 0. (2.6)

Remark 2.2. The value function V(x) is not necessarily smooth. In fact, the second
derivative of the value function is not always continuous. In the absence of a classical
solution of the QVI, one alternative definition for a solution to (2.6) is that of a
viscosity solution. However, we can interpret the differential generator in terms of
left or right derivatives [12].

3. Value function, dividend strategy and verification

3.1. Value function and dividend strategy To solve the QVI, we guess the form
of a solution and verify the validation of the constructed solution in a general case.
The solution can be formulated based on the strategies in each of the optimal regions.
Referring to Jin et al. [9], we consider the dividend payment strategy with capital
injections as a band strategy. The decision maker takes no action until the surplus
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reaches the lower barrier, where an impulse control of capital injection is taken. The
dividend is paid out immediately when the surplus reaches the upper barrier. That
is, suppose there exist two thresholds b1 and b2 separating the three regions, where
0 < b1 < b2 <∞. The form of the solution is as follows:

(1) for x ∈ [0, b1), it is optimal to inject the capitals;
(2) for x ∈ [b1, b2), it is optimal neither to order the new capitals nor to pay

dividends;
(3) for x ∈ [b2,∞), it is optimal to pay all the extra surplus as dividends.

In view of (2.6), we look for a function that satisfies each component of the QVI in
the corresponding regions defined above. According to Remark 2.2, this function is
continuously differentiable at the impulse control barrier b1 and twice continuously
differentiable at the singular control barrier b2.

We now construct the solutions in the continuation region when the equality holds.
Write f (x) for the candidate solution in the continuation region. The equality in the
continuation region then becomes

1
2λσ

2Vxx(x) + (c − λµ)Vx(x) − rV(x) = 0. (3.1)

The solution to (3.1) is
f (x) = m1ed+ x + m2ed−x, (3.2)

where

d± =
−(c − λµ) ±

√
(c − λµ)2 + 2rλσ2

λσ2 .

In addition, the equality in the dividend payout region is represented as

1 = Vx(x). (3.3)

Then the solution in the dividend payout region, denoted by g(x), is given by

g(x) = x + a.

Based on the rule of the solution forms, it is shown that b2 is the threshold to separate
the continuation region and dividend payout region. Thus, the solution should satisfy
both (3.1) and (3.3) at b2. On the other hand, the twice continuous differentiability of
g(x) at b2 requires that fx(b2) = 1 and fxx(b2) = 0. Imposing these boundary conditions
on (3.2) yields

f (x; b2) = a1e−d+(b2−x) + a2e−d−(b2−x), (3.4)

where
a1 =

d−
d+(d− − d+)

> 0, a2 =
d+

d−(d+ − d−)
< 0.

Furthermore, substituting fx(b2) = 1 and fxx(b2) = 0 into (3.1) yields

f (b2; b2) =
c − λµ

r
. (3.5)
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Moreover, subject to the boundary condition at b2, g(x) becomes

g(x; b2) = x +
c − λµ

r
− b2. (3.6)

Finally, we need only construct the solution in the capital injection region. Assume
that a concave function denoted by h(x; b2) satisfies Vx(x; b2)|x=b2 = 1 and (3.5).
Because of the concavity of the function h(x; b2), it is shown that the supremum is
achieved when s = b2 − X∆. Thus, (2.3) is simplified to

h(x; b2) = e−r∆Ex[{V(b2; b2) − b2 + X∆ − K}I{τ0>∆}]

= e−r∆Ex

[{
X∆ +

c − λµ
r
− b2 − K

}
I{τ0>∆}

]
. (3.7)

Let γ = (c − λµ)/r − b2 − K. This parameter γ can be interpreted as the benefit of
capital injections. Expression (3.7) can be further simplified as

h(x; b2) = e−r∆Ex[{X∆ + γ}I{τ0>∆}] = e−r∆Ex+γ[X∆I{τγ>∆}], (3.8)

where τγ = inf{t ≥ 0 : X(t) = γ}. Define a Markov transition probability density
function p(∆, x + γ, y) with y ∈ [0,∞), which is the density of the absorbed process
X∆∧τγ that starts at x + γ. Then

p(∆, x + γ, y) = ϕ(y, (c − λµ)∆ + x + γ, σλ1/2
√

∆)

− exp
(
−

2(c − λµ)x
σ2

)
ϕ(y, (c − λµ)∆ − x + γ, σλ1/2

√
∆),

where ϕ(y, µ̂, σ̂) denotes the density of a normal distribution with mean µ̂ and variance
σ̂2, that is,

ϕ(y, µ̂, σ̂) =
1

σ̂
√

2π
exp

(
−

(y − µ̂)2

2σ̂2

)
.

Hence, (3.8) yields

h(x; b2) = e−r∆Ex+γ[X∆∧τγ I{τγ>∆}] = e−r∆

∫ ∞

γ

yp(∆, x + γ, y) dy.

Finally, we obtain the constructed function as follows:

h(x; b2) = e−r∆
{[

x + (c − λµ)∆ +
c − λµ

r
− b2 − K

]
Φ

( x + (c − λµ)∆

σλ1/2
√

∆

)
+ σλ1/2

√
∆ϕ

( x + (c − λµ)∆

σλ1/2
√

∆

)
− exp

(
−

2(c − λµ)x
λσ2

)
×

[[
−x + (c − λµ)∆ +

c − λµ
r
− b2 − K

]
Φ

(
−x + (c − λµ)∆

σλ1/2
√

∆

)
+ σλ1/2

√
∆ϕ

(
−x + (c − λµ)∆

σλ1/2
√

∆

)]}
, (3.9)
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where Φ(·) and ϕ(·) are the cumulative standard normal distribution and its density
function, respectively. It is clear that h(0; b2) = 0.

On the other hand, the boundary condition of h(x; b2) on the boundary of the capital
injection region b1 can be formulated as

h(b1; b2) = f (b1; b2), (3.10)
∂h(x; b2)

∂x

∣∣∣∣∣
x=b1

=
∂ f (x; b2)

∂x

∣∣∣∣∣
x=b1

. (3.11)

The explicit expressions for the region boundaries b1 and b2 are not easy to obtain
because of the nonlinearity of the QVI. However, the existence of b1 and b2 is verified
in the next section under certain conditions. Combining (3.4), (3.6) and (3.9), given
the existence of b1 and b2, the value function V(x) can be written as

V(x) =


h(x; b2) if 0 ≤ x < b1

f (x; b2) if b1 ≤ x < b2

g(x; b2) if b2 ≤ x <∞.
(3.12)

3.2. Verification theorem Here we verify the existence of the boundaries of the
continuation region b1 and b2. Under general conditions, sufficient conditions for the
existence of b1 and b2 are given. Moreover, the value function V(x) defined in (3.12)
is verified as the solution to (2.6). To prove the theorem, we need to establish a series
of technical lemmas. These are given in Appendix A.

Theorem 3.1. Assume that a solution to (3.10)–(3.11) as defined in Lemma A.5 exists
and V(x) is defined by (3.12). Then V(x) is a concave solution to (2.6).

Proof. We prove the concavity of V(x) in the three regions. In the dividend payout
region, Vxx(x) = 0. In the capital injection region, h(x; b2) is concave following from
Lemma A.2. In the continuation region, differentiating f (x; b2) three times, it is shown
that fxxx(x; b2) > 0 on x ∈ [b1, b2). Combining with the value of the second-order
derivative on the boundary, fxx(b2; b2) = 0, we have fxx(b2; b2) < 0 for all x ∈ [b1, b2).
Hence, V(x) is concave in the continuation region [b1, b2). Thus, V(x) is concave.

The proof that V(x) satisfies (2.6) consists of four steps.
Step 1. V(0) = h(0; b2) = 0.
Step 2. For x ∈ [b2,∞), Vx(x) = 1 by construction. For x ∈ [0, b2), Vx(x) > 1 following
from the concavity of V(x).
Step 3. V(x) = h(x; b2) =MV(x) for x ∈ [0, b1) by construction. For x ∈ [b1, b2),
V(x) = f (x; b2) ≥ h(x; b2) =M(x) following from Lemma A.5. For x ∈ [b2,∞), V(x) =

g(x; b2) >M(x). Hence, V(x) ≥M(x) globally.
Step 4. For 0 ≤ x < b1, V(x) = h(x; b2). Denote τ∗ε = τε ∧ ε for some ε > 0 such that
(x − ε, x + ε) ∈ (0, b1) and τε = inf{t ≥ 0 : X(t) < (X(0) − ε,X(0) + ε)}. Following from
Dynkin’s formula,

Ex[e−rτ∗εh(X(τ∗ε); b2)] = h(x; b2) + Ex

[∫ τ∗ε

0
(L − r)h(X(s); b2) ds

]
,
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where Ex[e−rτ∗εh(X(τ∗ε); b2)] is the present value of the optimal payoff or the value
function where a new capital injection occurs after τ∗ε. Because of the rule of
optimization that immediate ordering of capital is the optimal policy in the capital
injection region,

Ex[e−rτ∗εh(X(τ∗ε); b2)] ≤ h(x; b2).

Thus, in the capital injection region x ∈ [0, b1), we obtain

Ex

[∫ τ∗ε

0
(L − r)V(X(s)) ds

]
≤ 0.

Taking the limit yields

(L − r)V(x) = lim
ε→0

1
Ex[τ∗ε]

Ex

[∫ τ∗ε

0
(L − r)V(X(s)) ds

]
≤ 0,

where x ∈ [0, b1). For x ∈ [b1, b2), (L − r)V(x) = 0 by construction. For x ∈ [b2,∞),
V(x) = (c − λµ)/r + x − b2. Then

(L − r)V(x) = (c − λµ)Vx(x) + 1
2λσ

2Vxx(x) − rV(x)

= c − λµ − r
(c − λµ

r
+ x − b2

)
= r(b2 − x) ≤ 0.

Thus, (L − r)V(x) ≤ 0 globally.
To summarize, the value function V(x) in (3.12) satisfies the QVI (2.6). �

4. Discussion of different cases of ∆

4.1. ∆ = 0 In the absence of any capital delays, the optimal dividend payment
strategy is a barrier strategy, where the extra surplus is paid out as dividends beyond a
certain barrier level. To maximize performance, the capital injection time is postponed
and capital could fall to arbitrarily close to zero. Thus zero is an absorbing boundary.
The value function is concave and monotone increasing. The initial value V(0) is
nonzero because capital injections can always guarantee the continuity of business
even with zero initial surplus. Furthermore, starting as a curve, the value function
increases linearly after the barrier level, which means that extra surplus will all be paid
out as dividends after reaching a certain barrier.

Taking ∆ = 0 in (3.9), the function h(x; b2) is simplified to

h(x; b2) = x +
c − λµ

r
− K − b2,

where x > 0. Hence, the initial value of the value function V(0) under the condition
∆ = 0 can be written as

V(0) = max
(

lim
x→0+

h(x; b2|∆=0), 0
)

= max
(c − λµ

r
− K − b2, 0

)
. (4.1)
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Since the capital injection region is reduced to one point, we only have one barrier in
this limiting case. This barrier separates the continuation region and dividend payout
region. The value function and the corresponding barrier are given in the following
proposition.

Proposition 4.1. If (c − λµ)/r − K − b0 > 0, where b0 is given in (A.6), then the value
function satisfies

V(x) =

a1e−d+(b̄−x) + a2e−d−(b̄−x) if x < b̄
(c − λµ)/r + x − b̄ if x ≥ b̄,

where b̄ < b0 is the unique positive solution for b in the equation

f̃ (0, b) =
c − λµ

r
− K − b.

Otherwise, b̄ = b0.

Proof. Assume that the maximum in (4.1) is achieved by the first term. Following
from (3.4), the boundary of the dividend payout region b̄ is determined by

f̃ (0, b) = a1e−d+b + a2e−d−b =
c − λµ

r
− K − b. (4.2)

Since f̃b(0, b) < 0 and f̃ (0, 0) = (c − λµ)/r > (c − λµ)/r − K − b > f̃ (0,∞) = 0, (4.2) is
solved by a unique b̄ > 0. In addition, b̄ satisfies

f̃ (0, b̄) =
c − λµ

r
− K − b̄ > 0. (4.3)

On the other hand, f̃ (0, b0) = 0 by (A.6). Thus, the negative derivative of f̃ (0, b) with
respect to b implies b̄ < b0. To guarantee the validity of (4.3), a sufficient condition for
(c − λµ)/r − K − b0 > 0 must be satisfied. That is, f̃ (0, b) intersects (c − λµ)/r − K − b
with positive value at b̄ under the assumption. �

4.2. Capital injection is not optimal for large ∆ When the capital injection delay
∆ or the transaction cost K are sufficiently large, capital injection is no longer optimal.
Thus, the problem is reduced to analysing a dividend payment strategy without capital
injection [7]. Hence the capital injection region does not exist in this case. Then the
corresponding value function becomes a special form of (3.12) with b1 = 0 and b2 = b0,
given by

V(x) =

a1e−d+(b0−x) + a2e−d−(b0−x) if x < b0

(c − λµ)/r + x − b0 if x ≥ b0,
(4.4)

where a1, a2 and d± are defined as above.
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Figure 1. Optimal value function versus surplus process.

5. Numerical example

This section is devoted to a numerical example. Under the assumptions, the value
function is constructed. We also analyse the effects of claim frequency, delay on the
capital injection, and capital injection cost on optimal capital injection and dividend
policies. We assume that S (t) is a compound Poisson process. The claim severity
distribution follows µ = 0.01 and σ = 0.01. The rate of premium c is assumed to
be 0.02. Furthermore, {νn+1 − νn} is a sequence of exponentially distributed random
variables with λ = 1. The discounting factor is r = 0.04.

5.1. Value function Let the delay of capital injections be ∆ = 0.5, and the capital
injection cost K = 0.01. Then the value function V(x) against the surplus process
is depicted in Figure 1. It can be shown that the value function is monotonically
increasing and concave as described in (3.12). The capital injection barrier b1 = 0.9%
and the dividend payout barrier b2 = 3.66% separate the three regions.

The value function V(x) coincides with h in the capital injection region [0, b1),
where it is optimal to order the capital injection immediately. V(x) matches f in the
continuation region [b1, b2), in which neither capital injection nor dividend payment
is optimal. We also see that h and f are smoothly connected with the first derivatives
being equal, but different second derivatives. Since h is more concave than f at b1, the
second derivative is discontinuous at b1. When the surplus hits b2, extra surplus is paid
out immediately to maximize the payoff function. Thus V(x) follows g in the dividend
payout region [b2,∞). Moreover, f and g are also smoothly connected with equal first
and second derivatives, but not third derivatives, where fxxx(b2) = −2r/σ2 = −800 and
gxxx(b2) = 0.

5.2. Optimal dividend and capital injection strategies Figure 2 shows the effects
of claim frequency λ on optimal dividend and capital injection strategies. Let
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Figure 2. (a) Capital injection barrier b1 versus delay period ∆. (b) Dividend payment barrier b2 versus
delay period ∆.

the parameters c, K, r, µ and σ be fixed, with different claim frequencies. The
corresponding barriers b1 and b2 are obtained against the delay period ∆.

Figure 2(a) shows that the capital injection barriers are increasing with respect to
the claim frequency λ. The more claims, the more risk of liquidation the company will
be exposed to during the delay period, and thus the decision makers are more willing
to order capital injections. Furthermore, the capital injection barrier converges to zero
as the delay ∆ converges to zero, which is consistent with the result of Dao et al. [16].
When ∆ = 0, due to the time value of money, the capital injection should be postponed
until the surplus reaches arbitrarily close to zero to maximize performance.

Moreover, the capital injection barriers are not monotone with respect to the delay
period. These humped curves show that the capital injection barrier is positively
related to increasing delay period when the delay is relatively short. When the delay
is relatively long, the response to the increasing delay period is negative in the capital
injection barrier. This is because the capital injection barrier is influenced by the delay
in two ways. On one hand, since dividend payment is prohibited during the delay
period, it is optimal to take a “wait and see” approach instead of ordering capital
injections immediately to avoid the potential loss of missing dividends in the future,
leading to a decrease of the capital barrier. On the other hand, higher risk of financial
ruin with respect to a longer delay period yields a higher capital injection barrier.
When the delay is relatively long, the former reason is dominant; when the delay is
relatively short, the latter reason is dominant.

In Figure 2(b), the dividend payment barriers are decreasing with respect to the
claim frequency λ. It can be interpreted that the dividend payment should be postponed
to avoid surplus shortage if more frequent claims come. As the delay period increases,
the dividend payment barriers are monotonically increasing because of prohibition of
dividend payment during the delay period. Moreover, higher risk of financial ruin due
to the increasing delay period leads to a higher reserve of the surplus to guarantee
financial safety, thus yielding an increasing dividend payment barrier.
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Figure 3. Effects of the rate of premium c on optimal dividend and capital injection strategies with λ = 1,
K = 0.01, r = 0.04, µ = 0.01, σ = 0.01.

0.2 0.4 0.6 0.8 1 1.2 4.10

C
ap

ita
l i

nj
ec

tio
n 

ba
rr

ie
r 

b 1

0.2 0.4 0.6 0.8 1 1.2 4.10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.005

0.01

0.015

0.02

0.025

0.03

0.035

D
iv

id
en

d 
pa

ym
en

t b
ar

ri
er

 b
2

0

0.04
0%
0.25%
0.5%
1%

0%
0.25%
0.5%
1%

Delay period Δ Delay period Δ
(a) Capital injection barrier
        versus delay period Δ

(b) Dividend payment barrier b2 b1 
versus delay period Δ 

Figure 4. Effects of the transaction cost K on optimal dividend and capital injection strategies with
c = 0.02, λ = 1, r = 0.04, µ = 0.01, σ = 0.01.

Figure 3 analyses the effects of the rate of premium c on optimal dividend and
capital injection strategies. We see that both the capital injection barrier and dividend
payment barrier are decreasing with respect to c. It is shown that the capital injection
is postponed with lower risk of financial ruin because of the higher rate of premium
income, suggesting a decrease of the capital injection barrier. In addition, the dividend
payment is triggered at a lower surplus status with higher rate of premium. The impact
of the delay on the capital injection and dividend payment barriers under various rates
of premium has the same trend and interpretation as for Figure 2.

Figure 4 shows the impact of the capital injection cost K on optimal dividend and
capital injection strategies. In Figure 4(a), unlike the effects of λ and c, the capital
injection barriers are decreasing in the capital injection cost K. With higher capital
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Figure 5. Exponential claim size distribution with r = 0.04, µ = 0.01, σ = 0.01.

injection cost, decision makers are less willing to order extra capital injections, which
yields a lower barrier of the capital injection region. In Figure 4(b), the dividend
payment barriers are increasing with respect to the capital injection cost K, since an
increasing capital injection cost increases the surplus reserved needed to guarantee
financial safety, thus postponing the dividend payment.

We also find that the dividend barrier is nondecreasing with respect to K. However,
it is shown that the dividend payment barrier is very sensitive to the delay when the
delay period is relatively short, while for the case of a relatively long delay period, the
dividend barrier is more stable. In particular, when K = 0 and ∆ = 0, it is shown that
the dividend barrier is zero. In this case, the so-called perfect market, the surplus is
paid out immediately as dividend to maximize performance.

5.3. Value of capital injection The opportunity of capital injection is an option for
the insurance company, and thus will not reduce the value of the company. The value of
the capital injection is determined as the difference of (3.12) and (4.4), where no capital
injections are exercised. In Figure 5, the values of the optimal capital injections are
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depicted under the effects of parameters. The corresponding capital injection barriers
and dividend payment barriers are also marked as triangles and stars, respectively.

Figure 5 shows that the optimal capital values all follow hump-shaped curves with
respect to surplus. The value of the optimal capital injection is increasing with respect
to λ and decreasing with respect to c and K. This result is reasonable since λ and c
have the opposite effect on the financial status, and moreover, higher claim frequency
demands a larger value of capital injection to guarantee financial stability. For the
capital injection cost K, it is shown that the value of optimal capital injection is reduced
with higher capital raising cost.

When surplus approaches zero, the value of the optimal capital injection also
converges to zero. This can be interpreted as the insurance company being unlikely
to avoid financial ruin due to the delay when the surplus is sufficiently low, while
for sufficiently large surplus, the company is financially stable and unlikely to suffer
ruin. Hence, the value of the capital injection is rather flat and stable. In addition,
the optimal capital injection is highest when the surplus is near and below the capital
injection barrier. Surprisingly, the capital injection is most valuable to the insurance
company when the surplus reaches a neighbourhood of the capital injection barrier
with a reasonable distance below it.

6. Further remarks
We study optimal dividend and capital injection strategies with constant time delays

in capital injection processes. Closed-form solutions of the value function and optimal
strategies are obtained. To provide guidance for decision makers in the insurance
industry, numerical experiments are presented and corresponding economic insights
are given. More general time delay models that can be a function of time or even
a random process may be considered in future. These deserve further thought and
consideration. Nevertheless, in the more general models, it will be very difficult to
obtain a closed-form solution, although numerical algorithms can be constructed. In
any case, this paper provides some insight for more complex models.

Acknowledgements
This research was supported in part by an Early Career Researcher Grant from

the University of Melbourne, and the US National Science Foundation under grant
DMS-1207667. We thank the reviewers and the editor for valuable comments and
suggestions that improved the presentation.

Appendix A. Technical results
A.1. Derivation of (2.4) Proving the following four inequalities is equivalent to
deriving (2.4):

LV(x) − rV(x) ≤ 0, (A.1)
1 − Vx(x) ≤ 0, (A.2)

MV(x) − V(x) ≤ 0, (A.3)
(LV(x) − rV(x))(1 − Vx(x))(MV(x) − V(x)) = 0. (A.4)
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Since V(x) is optimal, V(x) ≥ Ex[e−rδV(X(δ))] for any δ > 0. Then

0 ≥ Ex
V(X(δ)) − V(x)

δ
+

e−rδ − 1
δ

ExV(X(δ)).

By virtue of Itô’s lemma and letting δ→ 0, (A.1) holds. Consider an admissible
strategy u0 with J(y, u0) ≥ V(y) − ε for any ε > 0. For any x ≥ y, we define a new
strategy u1 which pays x − y as dividend immediately and follows u0. Then for any
ε > 0,

V(x) ≥ x − y + J(y, u0) ≥ x − y + V(y) − ε.

Since ε is arbitrary, V(x) ≥ x − y + V(y). Thus, (A.2) holds as V(x) is assumed to be
sufficiently smooth. Inequality (A.3) holds since V(x) is the performance function with
optimal strategies at x and is always larger than the performance functionMV(x) that
is associated with the best immediate capital injection strategies. In addition, equality
holds when it is optimal to inject capitals. Equation (A.4) holds since one of the
three inequalities (A.1)–(A.3) must hold in an optimal strategy. That is, in the optimal
strategy, we should either take no action, pay dividend or inject capital.

A.2. Lemmas

Lemma A.1. Let q(x, t) = P[τ0 ≤ t | X(0) = x]. Then

Ex[X∆I{τ0>∆}] = x + (c − λµ)∆ − (c − λµ)
∫ ∆

0
q(x, t)] dt.

Proof. The equality is obtained as follows:

Ex[X∆I{τ0>∆}] = Ex[X∆] − Ex[X∆I{τ0≤∆}]

= Ex[X∆] −
∫ ∆

0
E[X∆ | X(t) = 0]

∂

∂t
q(x, t) dt

= x + (c − λµ)∆ −
∫ ∆

0
(c − λµ)(∆ − t)

∂

∂t
q(x, t) dt

= x + (c − λµ)∆(1 − q(x,∆)) + (c − λµ)
∫ ∆

0
t
∂

∂t
q(x, t) dt

= x + (c − λµ)∆ − (c − λµ)
∫ ∆

0
q(x, t) dt.

�

Lemma A.2. If γ ≥ 0 then, for all x > 0,

∂h(x; b2)
∂x

> 0 and
∂2h(x; b2)

∂x2 < 0.
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Proof. In view of (3.8),

h(x; b2) = e−r∆Ex[{X∆ + γ}I{τ0>∆}]

= e−r∆[γEx[I{τ0>∆}] + Ex[X∆I{τ0>∆}]]

= e−r∆[γ(1 − q(x,∆)) + Ex[X∆I{τ0>∆}]]

= e−r∆
[
γ(1 − q(x,∆)) + x + (c − λµ)∆ − (c − λµ)

∫ ∆

0
q(x, t) dt

]
.

The first- and second-order derivatives of h(x; b2) are

∂h(x; b2)
∂x

= e−r∆
[
−γ

∂q(x,∆)
∂x

+ 1 − (c − λµ)
∫ ∆

0

∂q(x,∆)
∂x

dt
]
,

∂2h(x; b2)
∂x2 = e−r∆

[
−γ

∂2q(x,∆)
∂x2 − (c − λµ)

∫ ∆

0

∂2q(x,∆)
∂x2 dt

]
.

Since q(x, t) = P[τ0 ≤ t | X(0) = x] satisfies the Kolmogorov backward equation and its
derivatives satisfy

∂q(x, t)
∂x

< 0,
∂2q(x, t)
∂x2 > 0,

∂q(x, t)
∂t

> 0,

we obtain
∂h(x; b2)

∂x
> 0 and

∂2h(x; b2)
∂x2 < 0

when γ > 0. �

Lemma A.2 shows the concavity of the value function in the capital injection region,
which means that the new capital issues can be optimized when γ > 0. Now we
consider a positive barrier of the continuation region. Define the function f̃ (x, b) as

f̃ (x, b) = a1e−d+(b−x) + a2e−d−(b−x), (A.5)

where d± are defined as in (3.2). Consider a positive barrier b0 which satisfies
f̃ (0, b0) = 0. Then we deduce that

b0 =
2

d+ − d−
ln

(
−

d−
d+

)
. (A.6)

Lemma A.3. Let b2 and b0 be the barriers defined above. Then

max(b2, b0) < (c − λµ)/r.

Proof. Differentiating (A.5) with respect to b, we obtain

f̃b(x, b) = − fx(x; b) < −1 for x ∈ [0, b2).

Moreover,

f̃ (0, b0) = 0 and f̃ (0, 0) = f (b2; b2) =
c − λµ

r
.
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Since the absolute value of the derivative of f̃ with respect to b is greater than 1,
b0 < (c − λµ)/r. On the other hand, b2 < (c − λµ)/r − K < (c − λµ)/r following from
γ > 0. Thus, max(b2, b0) < (c − λµ)/r. �

Lemma A.4. For all b2 ∈ (0, b0], h(x; b2) < g(x; b2) = (c − λµ)/r + x − b2.

Proof. Referring to (3.7), by using Lemmas A.1 and A.2,

h(x; b2) = e−r∆Ex

[(
X∆ +

c − λµ
r
− b2 − K

)
I{τ0>∆}

]
= e−r∆Ex[{X∆}I{τ0>∆}] + Ex

[(c − λµ
r
− b2 − K

)
I{τ0>∆}

]
= e−r∆

[
x + (c − λµ)∆

− (c − λµ)
∫ ∆

0
q(x, t) dt +

(c − λµ
r
− b2 − K

)
(1 − q(x,∆))

]
≤ e−r∆

[c − λµ
r

+ x + (c − λµ)∆ − b2

− (c − λµ)
∫ ∆

0
q(x, t) dt −

(c − λµ
r
− b2

)
q(x,∆)

]
< e−r∆

[c − λµ
r

+ x + (c − λµ)∆ − b2

]
<

c − λµ
r

+ x − b2

= g(x; b2).

Thus, the inequality is verified. �

Define a two-component function h̃(x, b), where (x, b) ∈ R+ × R+, as

h̃(x, b) = e−r∆
{[

x + (c − λµ)∆ +
c − λµ

r
− b − K

]
Φ

( x + (c − λµ)∆

σλ
1
2
√

∆

)
+ σλ1/2

√
∆ϕ

( x + (c − λµ)∆

σλ1/2
√

∆

)
− exp

(
−

2(c − λµ)x
λσ2

)
×

[[
−x + (c − λµ)∆ +

c − λµ
r
− b − K

]
Φ

(
−x + (c − λµ)∆

σλ1/2
√

∆

)
+ σλ1/2

√
∆ϕ

(
−x + (c − λµ)∆

σλ1/2
√

∆

)]}
, (A.7)

where h̃(x, b2) = h(x; b2).

Lemma A.5. If ∂h̃(x, b0)/∂x|x=0 > ∂ f̃ (x, b0)/∂x|x=0 and γ ≥ 0 then there exists a pair
of solutions (b1, b2) to (3.10)–(3.11) satisfying 0 < b1 < b2 < b0 such that h̃(x, b2) ≤
f̃ (x, b2) for all 0 ≤ x ≤ b2.
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Proof. Step 1. In view of (A.7), we have h̃(0, b0) = 0. Also, f̃ (x, b0) = 0 from
the definition. The condition ∂h̃(x, b0)/∂x|x=0 > ∂ f̃ (x, b0)/∂x|x=0 implies that there
exists some point x1 ∈ (0, b0) such that h̃(x1, b0) > f̃ (x1, b0). On the other hand, from
Lemma A.4, substituting b2 = b0 in h̃(x, b2), we have h̃(b0, b0) < (c − λµ)/r = f̃ (b0, b0).
This shows that h̃(x, b0) must cross f̃ (x, b0) from above at some point x2 in the interval
(0, b0).

Step 2. For all b2 ∈ (0, b0), since f̃b(x, b) < −1, we have h̃(0, b2) = 0 = f̃ (0, b0) <
f̃ (0, b2). In addition, h̃(b2, b2) < f̃ (b2, b2) = (c − λµ)/r by Lemma A.4. From (A.5)
and (A.7),

lim
b2→0

h̃(b2, b2) = 0 <
c − λµ

r
= lim

b2→0
f̃ (0, b2).

By Lemma A.2, γ ≥ 0 implies that h(x; b2) is increasing and concave, and so is
h̃(x, b2) with respect to x; f̃ (x, b2) is also increasing in x. Thus, combining with the
previous inequality, we can always find a positive b2 in the interval (0, b0) such that
h̃(x, b2) < f̃ (x, b2) for 0 ≤ x ≤ b2.

Step 3. In view of Steps 1–2, following from the continuity of h̃(x, b) and f̃ (x, b)
with respect to x and b, there exists b2 in the interval (0, b0) such that h̃(b1, b2) =

f̃ (b1, b2) for some 0 < b1 < b2, where h̃(x, b2) ≤ f̃ (x, b2) for all 0 ≤ x ≤ b2. For the
(b1, b2) we have chosen, the continuous differentiability of h̃(x, b2) and f̃ (x, b2) with
respect to x yields ∂h̃(x, b2)/∂x|x=b1 = ∂ f̃ (x, b2)/∂x|x=b1 . The equality is established
because the two continuously differentiable lines have the same derivative if they
coincide but do not cross at some point. In view of the definition of the two functions
f̃ (b1, b2) and h̃(b1, b2), we find that (3.10)–(3.11) hold. �
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