
Commentary

Machine learning can improve the development of
evidence-based dietary guidelines

The Dietary Guidelines for Americans provide dietary
advice for health promotion and disease prevention and
serve as the cornerstone to all other US Federal nutrition
policy and education efforts(1). Defining what populations
should eat to optimise health is challenging, however,
owing to the complexity of the diet. A recent report by
the National Academies of Science, Engineering, and
Medicine(2) recommended approaches to improve the
process of establishing the Dietary Guidelines to account
for this complexity, including a call for more advanced ana-
lytic techniques for analysing existing dietary data. In this
commentary, we highlight several analytic challenges in
nutrition and how they can be addressed using a machine
learning, a set of flexible algorithms and methods to model
complex relations in data.

It is well recognised that foods are eaten in complex
combinations with potential antagonistic and synergistic
interactions that may impact long-term health(3,4). Some
research has captured this complexity by testingwhole-diet
interventions, such as those rich in vegetables, fruits, whole
grains, fish, nuts and beans in the DASH (Dietary
Approaches to Stop Hypertension) trial(5–7). Whole-diet
interventions have suggested that the most relevant expo-
sure is the totality of the diet(3), typically conceptualised as a
multidimensional and dynamic construct referred to as
‘dietary patterns’(8). Dietary patterns constitute the con-
sumption of an array of foods and beverages in different
amounts and combinations. The 2010 version of the
Dietary Guidelines for Americans recognised the impor-
tance of dietary patterns(9), and its emphasis has remained
in each subsequent edition(10,11).

Unfortunately, high-quality randomised trials of whole-
diet interventions are much more difficult to conduct than
dietary supplement interventions(12). Challenges include
their sheer complexity, identifying suitable comparators,
blinding participants and allocators, and numerous compli-
cations involving potential non-adherence to the interven-
tion protocols(13). As a result, observational studies of
dietary patterns and disease risk form a majority of the evi-
dence base for dietary recommendations(1). Consequently,
the validity of inferences drawn from observational data is
critical for informing evidence-based dietary guidelines.
Researchers in nutritional epidemiology tend to focus on
improving validity primarily by addressing problems with
dietary measurement error(14,15). Yet, despite urging from

nutrition experts(8), less research has focused on reducing
other potential biases and problems with interpretability
that can arise when using conventional methods for analy-
sing nutritional epidemiologic data.

Converting complex dietary patterns into
quantitative, interpretable summaries is difficult

Nutrition researchers have predominantly used two meth-
ods for summarising diet patterns as primary exposures: a
posteriori (data-driven)methods like cluster or factor analy-
sis and a priori (researcher-driven) methods like diet
indexes(8,16,17). Cluster analysis seeks to identify groups
of people with similar diets. However, clustering algo-
rithms cannot measure how well the algorithm fits the data
on the basis of measured outcomes. As a result, there is
often a large degree of unrecognised uncertainty with
respect to the quality of a given clustering analysis(18).
Factor and principle component analyses identify con-
structs that explain variability according to food groups,
but results from such analyses in nutrition are often errone-
ously interpreted as causal effects(19). Unfortunately, trans-
lating the first principle component of a combination
dietary factors into a meaningful quantity that can be used
to evaluate the causal effect of a diet pattern is not straight-
forward(20). Further, questions have been raised about the
performance of these techniques for identifying actionable
information about the effects of diet on health(20).

Diet indexes measure adherence to a set of diet recom-
mendations defined a priori. The Healthy Eating Index-
2015 (HEI-2015) is used to evaluate adherence to the
2015–2020 Dietary Guidelines for Americans(21) (an
updated version of the HEI aligning with the 2020–2025
Dietary Guidelines has not yet been released). Like other
diet indexes (e.g. the Alternative Health Eating Index, the
Mediterranean Diet Score index, DASH score(22–24)), the
HEI-2015 score includes many dietary components, and
the total is derived by summing the scores for each individ-
ual component, which are truncated at a maximum value.
Although diet indexes consider multiple aspects of the diet,
the richness of dietary data is reduced into a score. Further,
the scoring is defined subjectively without regard to the
components’ relation to a heath outcome.
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Indeed, the last three editions of the Dietary Guidelines
for Americans have recommended a dietary pattern with a
variety of vegetables, whole fruits, low-fat or fat free dairy, a
variety of protein foods and oils, and limited in added sug-
ars, saturated fats, Na and moderate alcohol(9–11). The HEI-
2015 scoring reflects the equal emphasis of these elements
of a healthy diet recommended in the 2015–2020 Dietary
Guidelines, whereby each of the thirteen components is
given a maximum score of 10(21). The Guidelines and the
HEI imply that each component of the diet has equal impor-
tance to health (adequate fruit is as important as adequate
dairy). Yet, studies have not provided an empirical basis for
the weighting of the Dietary Guidelines or HEI-2015 score.
Analytic approaches that generate weights of each nutri-
tional component for reducing risk of adverse health
outcomes are essential for ensuring systematic, objective
results.

Methods typically used in diet patterns research do
not formally account for synergy in the diet

Results from laboratory studies have shown that foods
eaten in combinations have synergistic effects on some
markers of disease risk(25–27), but exploring or accounting
for synergy on a wide range of health outcomes in nutri-
tional epidemiology has been limited. While the aforemen-
tionedmethods for summarising dietary patterns attempt to
account for the multidimensionality of diet with a focus on
dietary patterns rather than specific foods or nutrients, they
do not necessarily account for potential synergistic effects
among dietary components.

The presence of such heterogeneity among dietary com-
ponents has at least two important consequences. First,
evenwhen such synergy is not of primary scientific interest,
models used to quantify the relation between diet and
health outcomes must account for this heterogeneity to
avoid potential bias due to the misspecification of variables
in the model(28–30). Second, the Dietary Guidelines recom-
mend a diet pattern for the general population, with some
differences according to age or life stage(10). These popula-
tion-level guidelines do not account for the potential for
complex varying causal effects of diet patterns in the pop-
ulation, as highlighted by the aforementioned National
Academies of Science, Engineering, andMedicine report(2).
Evaluating heterogeneity (e.g. synergy, interaction or effect
modification) in the causal effects of dietary patterns on
health outcomes can enable researchers to target interven-
tions to populations with the greatest likelihood to ben-
efit(31). Notably, deepening our understanding of the role
that dietary synergy can play in improving health outcomes
extends beyond observational studies. The complexity of
randomised trials to estimate the effects of dietary interven-
tions, and the plethora of data usually collected in the con-
text of dietary trials, provides tremendous opportunity to
advance this aspect of nutrition.

Nevertheless, it is nearly impossible with conventional
parametric methods to correctly code statistical interactions
among dietary components in a regression model in order
to avoid misspecification bias and correctly capture hetero-
geneity in the population. This is due to the dearth of
knowledge of dietary synergy on outcomes of interest
and the vast number of possible interactive associations
in the diet.

Machine learning methods can help establish
evidence-based dietary guidelines

One approach to address the difficulties faced when con-
verting complex dietary patterns into quantitative, inter-
pretable summaries is unsupervised learning, which uses
machine learning algorithms to identify clusters of individ-
uals that share unique dietary patterns. Algorithms include
k-means(32), k-medoids(33), hierarchical or density-based
clustering algorithms(34), which can be used to evaluate pat-
terns in diet shared across individuals in a sample. While
they can sometimes suffer from stability problems(18), these
algorithms have the potential to aid nutrition researchers in
better understanding how data can be used to define or
inform dietary patterns causally related to health outcomes,
as well as how these components should be weighted rel-
ative to one another.

Additionally, machine learning can mitigate other prob-
lems, such as underlying heterogeneity in associations of
interest. For instance, researchers may be interested in
the confounder adjusted causal effect of a diet pattern on
the risk of adverse health outcomes. To quantify this risk
contrast, one would typically adjust for several variables,
including other dietary components, in a logistic regression
or other parametric regression model. Misspecification bias
will result if this association varies among people depend-
ing on factors like their fruit intake, their intake of added
sugars or their smoking status. One machine learning
approach to avoid this bias by accounting for heterogeneity
is called stacked generalisation(35), which combines several
machine learning algorithms into one. These algorithms
can include standard regression models (i.e. generalised
linear models) along with other algorithms like random for-
ests and gradient boosting, which may better address
potential synergies(36). Results from this stacked generalisa-
tion can be used to obtain valid statistics for causal infer-
ence (P values, CI) using advanced analytic techniques(37).

Lastly, when researchers are specifically interested in
evaluating the presence and magnitude of synergy among
dietary components or population characteristics, several
newer machine learning methods can be used to this
end. For example, ‘causal forests’ can be used to quantify
the extent to which a causal effect of interest (e.g. a diet pat-
tern rich in vegetables on health outcomes(38)) differs
across a host of other variables(39), evenwhen the exact var-
iables that lead to heterogeneity in the treatment effect are
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unknown. This machine learning approach uses random
forests to find those variables that explain the largest degree
of heterogeneity in the treatment effect of interest and can
estimate the precise magnitude of these differences.

An important caveat to recognise is that questions about
the impact of dietary synergy on health outcomes are fun-
damentally causal(40). This requires that a set of conditions
hold, such as counterfactual consistency, positivity, no
interference and exchangeability (i.e. no information bias,
selection bias and confounding bias). These conditions are
not guaranteed in observational or randomised trial data,
whether machine learning methods are used or not.

Understanding the complex synergies in dietary pat-
terns, their impact on health outcomes and how we can
use these to create interpretable measures of dietary pat-
terns is critical for informing national nutrition guidance.
Machine learning approaches hold substantial promise in
enabling researchers better use the multidimensional
nature of dietary data without heavy reliance on parametric
assumptions. However, nutrition researchers should be
aware of the limitations of machine learning methods,
which include high bias, high mean squared error and less
than nominal CI coverage when appropriate techniques
are not employed(37,41). The challenges in implementing
these approaches require nutrition scientists to collaborate
with a multidisciplinary team of investigators to identify
policy-relevant research questions, appropriate datasets
for this work and the techniques needed to address chal-
lenges when implementing machine learning. Teams
should carefully consider applications of machine learning
to their work on dietary patterns so as to ensure possible
limitations have been mitigated and their implications for
the findings fully recognised.
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