
BOLL. AUSTRAL. MATH. SOC. 20M07, 20M17

VOL. 40 (1989) [59-77]

IDENTITIES FOR EXISTENCE VARIETIES
OF REGULAR SEMIGROUPS

T.E. HALL

A natural concept of variety for regular semigroups is introduced: an existence variety (or
e- variety) of regular semigroups is a class of regular semigroups closed under the operations
H, Se , P of taking all homomorphic images, regular subsemigroups and direct products
respectively. Examples include the class of orthodox semigroups, the class of (regular)
locally inverse semigroups and the class of regular jB-solid semigroups. The lattice of
e-varieties of regular semigroups includes the lattices of varieties of inverse semigroups
and of completely regular semigroups. A Birkhoff-type theorem is proved, showing that
each e-variety is determined by a set of identities: such identities are then given for many
e-varieties. The concept is meaningful in universal algebra, and as for regular semigroups
could give interesting results for e-varieties of regular rings.

1. PRELIMINARIES

A semigroup S (or (5, •), though we will always replace • by juxtaposition) is
called reguiar (in the sense of von Neumann for rings) if for each a 6 5 there exists
x 6 S such that axa — a. The element y = xax then satisfies both ay a = a and
yay — y, and is called an inverse of a in S. A semigroup is called an inverse semigroup
if each element has a unique inverse, and a semigroup 5 (not necessarily regular) is
called a locally inverse semigroup if for each idempotent e € 5 , the subsemigroup eSe
is inverse.

We follow the notation and conventions of Clifford and Preston [2] and Howie [9],
especially for Green's relations C, 72., T>, 7i and J.

An orthodox semigroup is a regular semigroup in which the idempotents form a
subsemigroup. A semigroup S is called E-solid if for all idempotents e, f, g £ S such
that e C f 72. g there exists an idempotent h £ S such that e 72 hC g. Such semigroups
include inverse semigroups (in fact, orthodox semigroups) and completely regular semi-
groups (denned as regular semigroups which are unions of groups).

For any class C of regular semigroups we define classes H(C),Se(C) and P(C) as
follows: H(C) is the class of all (regular) semigroups that are homomorphic images of
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semigroups in C; Se(C) is the class of all regular subsemigroups of semigroups in C;
and P(C) is the class of all direct products of semigroups in C. A class V of regular
semigroups is called an existence variety, or e-variety, if H(V) C V, Se(V) C V and
P ( V ) C V.

2. A BIRKHOFF THEOREM

Simultaneously, and quite independently of the present paper, Kadourek and Szen-
drei [10, Section 1] have considered e-varieties of just orthodox semigroups, which they
call bivarieties of orthodox semigroups, and have also obtained a Birkhoff-type theorem.
By restricting in a natural way the type of identities considered, they obtain the re-
sult that bivarieties of orthodox semigroups are precisely equational classes of orthodox
semigroups (their definition of "an orthodox semigroup (S, •) satisfies an identity" is
prima facie slightly different, and might not be equivalent: for example, for the word
xx'y'y they can substitute aa'a*a with a', a* being different inverses of a).

For any regular semigroup (S, •) (or more simply 5 ) , there is (by the Axiom
of Choice) a unary operation ' : S —» S on 5 such that, for all a; € 5 , xx'x = x and
x'xx' = x'; we call such an operation an inverse unary operation. By a unary semigroup

we mean an algebra (5, •, ') such that (5, •) is a semigroup and ' is a unary operation
on S, while by a regular unary semigroup we mean a unary semigroup (5, •, ') such
that (S, •) is a regular semigroup and ' is an inverse unary operation on (5, •). We
denote the variety of all regular unary semigroups by TUAS, and the e-variety of all
regular semigroups by TIS. For each class C of regular semigroups, define a class C of
regular unary semigroups by C = {(5, •, ') e 'RUS: (5, •) € C}.

For each element x in a semigroup 5 , we put

V(x) = {y £ 5: xyx = x & yxy = y},

the set of inverses of x in 5 . Then the number of inverse unary operations on a
regular semigroup S is of course f[ |V(a;)|, the product of the cardinalities of the sets

xes
V(x), x G 5 . Thus for each 5 in C, the f] |V(.T)| regular unary semigroups obtained
from 5 , by adding an inverse unary operation in all possible ways, all belong to C.

THEOREM 2.1. For each existence variety V of regular semigroups, the class V is

a variety of (regular) unary semigroups.

PROOF: Take any (S, •, ') G V , and any unary semigroup (T, •, ') such that there
exists a (unary semigroup) morphism <f> of (5, •, ') onto (T, •, ' ) . Then </> is also a
(semigroup) morphism of (5, •) onto (T, •), so (T, •) 6 V, whence (T, •, ') € V , so V
is closed under H, the taking of all homomorpliic images.
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[3] Existence varieties 61

Take any (5, •, ') € V and any (regular) unary subsernigroup (T, •, ') of (5 , •, ' ) .
Then (T, •) £ V so again (T, -, ') € V , whence V is closed under S, the taking of
all (regular) unary subsemigroups. Entirely similarly, we see that V' is closed under
taking all direct products, which completes the proof. D

For each e-variety V of regular semigroups, we denote by Id(V') the set of all
(unary semigroup) identities satisfied by all members of V'. We now obtain a Birkhoff
theorem for e-varieties (in the proof, the brackets indicate an alternative statement).

THEOREM 2.2. For any existence variety V of regular semigroups, and tor any set

of (unary semigroup) identities B containing xx'x — x and x'xx' — x', the following

two conditions are equivalent:

(i) B is a basis of Id (V) ;
(ii) V is given by

V = {(5, •) £ US : for some inverse unary operation ' on

(S, •), (5, •, ') satisfies B}

and by

V = {(5, •) £ 1ZS : for every inverse unary operation ' on

(S, •), (S, ., ') satisfies B} .

PROOF: (i) => (ii). Assume (i). If for some [for every] inverse unary operation ' on
( 5 , - ) , we have that (S, •, ') satisfies B, then (5, •, ') is in V' by Birkhoff's Theorem
for the variety V , whence (S, •) is in V by the definition of V . Conversely, if (5, •)
is in V then (5, •, ') is in V (that is, satisfies B), for every inverse unary operation '
on (5, •), which proves (ii).

(ii) =4- (i). Assume (ii) and put

(B)v = {(5, ., ') € TUAS: (5, •, ') satisfies B},

the VMS variety determined by B. From the first equation iu condition (ii) we have

{B)v Q V', and from the second equation in condition (ii) we have that V C (B)v.

Thus B is a basis of V = (B)v, as required. D

We say that an e-variety V is strongly determined by a set of identities B if B

is a basis of Id(V'). We say that a regular semigroup (S, •) satisfies a set C of TUAS

identities if (5, •, ') satisfies C for every inverse unary operation ' on (5, •). Note
that from Theorem 2.2, a basis B of Id(V'), for V an e-variety of regular semigroups,
has the property that, for each regular semigroup (S, •), (S, •, ') satisfies B for some
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inverse unary operation ' on (5, •) if and only if (5, •, ') satisfies B for every inverse
unary operation ' on (5, •).

For each set C of TUAS identities, we call the class

£(C) = {(5, •) G TIS: (5,-) satisfies C)

an equational class. By Theorem 2.2, each existence variety is an equational class.
Example 2.4 below shows that not every equational class is an existence variety. We
say that an e-variety V is weakly determined by a set of identities C if £(C) = V: we
will see many examples in Section 4 where we can find a set C of simpler identities
than those in each basis found for Id (V). Of course, by Theorem 2.2, each e-variety of
regular semigroups is weakly, as well as strongly, determined by each basis of Id(V').

Example 2.3. Of course (US)' = VJUS, and a basis for Id(1ZUS) is (xy)z = x(yz),

xx'x = x, and x'xx' = x'. Not every subvariety of TUAS is of the form V' for
some e-variety V. In fact HZ, the e-variety of right zero semigroups (those satisfying
the identity xy = y), has only two e-subvarieties (itself and the trivial variety), but
the corresponding variety (HZ) has infinitely many subvarieties: if a:*0' = x and
x<"> = (x ( n - 1 } ) ' , for n = 1, 2, 3, . . . , then (11Z)' has a subvariety determined by
a;(m) = £(m+™> for each pair (ra, n) of non-negative integers. For each non-negative
integer k, there is also a subvariety determined by x^ = y^. These varieties are all
the subvarieties of (HZ) , wliich are of course essentially the known varieties of algebras
with one operation only, a unary operation.

Example 2.4. The equational class £((xy)' = x'y') contains all right zero semigroups
and all left zero semigroups (those satisfying xy = x), but it does not contain the
direct product S x U of a left zero semigroup S = {s, t} and a right zero semigroup
U = {u, v}: any function ' from 5 x f / t o 5 x ( 7 i s a n inverse unary operation, and
for many choices of ' , (S x U, -, ') will not satisfy (xy) — x'y'. Hence £((xy) = x'y')
is not closed under P , and so is not. an e-variety.

3. THE LATTICE OF C-VARIETIES

Since the map V —> V is one-to-one, from the class Cev(7lS) of e-varieties of
regular semigroups into the set £V(1ZUS) of varieties of regular unary semigroups, the
class CevCR.S) is actually a set. Moreover, since the intersection of any set of e-varieties
is again an e-variety, we have that the set Cev(TZS) is a (complete) lattice under class
containment C, and for any set {V<: i G /} of e-varieties, we have
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and

\fVi = f|{V € Cn{nS): (Vt G I)(Vi C V)},
t6/

the least e-variety containing (J Vj.
tGJ

Clearly the map ' : Cev(HS) —t CV{TUAS), V —> V , is order-preserving: we will see
that it is A-preserving but not V-preserving.

LEMMA 3.1. The map ': Cev(HS) -» CV{1UAS), V - » V , is A-preserving.

PROOF: For any set {V<: i G / } of e-varieties, we have

• 6/

= ( | Vj, as required.

D
R e m a r k 3.2. All that we have done so far holds equally for universal algebras. For a
fixed type T of algebra, let

Ui(xi,..., xm, yx,..., yn) = V i ( x j , . . . , xm> yi,...,yn), fotiel,

be a set of identities, and let £ be the class of all algebras A = (A, Fn) of type T
(where A is the underlying set of A and Fn is the list of operations of A) such that
for any elements a j , . . . , am G A there exist elements b\,..., bn G A such that

(1) « i ( o i , . . . , a m , 6 i , . . . , 6 n ) = Vi (o i , . . . , o m , 6 i , . . . , 6 n ) , for i G I .

By an e-variety of algebras from £ we mean any subclass V of £ closed under
H,Se and P , the operations of taking all homomorphic images, subalgebras that are
also in £, and products, respectively.

To each algebra A in £ we can adjoin m-ary operations / j A , f^, ..., f^ , obtaining
(A, F A , / j A , / A , . . . , / A ) , as follows: for each m-tuple (oi, a2, . . . , am) of elements of
A, choose &i, . . . , bn G A such that equations (1) hold, and define f^(a\, • • •, a m ) = bj ,
for j = 1, 2, . . . , n . For each subclass C of £ we define C to consist of algebras
{A, F A , / A , /2

A, . . . , / A ) such that A = {A, Fn) belongs to C and bu...,bn are
chosen in all the ways that make equations (1) valid in A.
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Then just as in Theorem 2.1, for each e-variety V, the class V is a variety; V is
determined by each basis B of the identities id(V') as in Theorem 2.2, and the map
V —> V is order preserving and A-preserving from Cev(£), the lattice of e-varieties
contained in £, to the lattice CV(E') of subvarieties of f , as in Lemma 3.1.

Example 3.3. For CZ and 1ZZ, the e-varieties of left zero and right zero semigroups
respectively, we have that CZ V TZZ = HB, the e-variety of all rectangular bands: we
show that (CZ)' V (HZ)' £ (TIB)'. Now each member of (CZ)' and of (HZ)', and
hence also each member of (CZ) V (~RZ) , satisfies the identity (xy) = x'y'. But if
(5, •) is a rectangular band, then (S, •, ') £ (HB) for any function ' from 5 to 5, and
as claimed in Example 2.4, it is easy to find 5 and ' not satisfying (xy)' = x'y'.

We define a (forgetful) function T\ 1ZUS -> US by (5, •, ')T = (5, •), for each
regular unary semigroup (5, •, ' ) . For each class W C WAS, we define WJ7 = {(S, •) 6
US: (S, -,')

Example 3.4. Here we find a variety W 6 CV(TUAS) such that WT is not an e-variety.
Let S be the combinatorial completely 0-simple semigroup M?((1); 3, 2; P) where

l 0 1

Denote by a and b the two non-idenipotent elements of 5 , and define ' on 5 by a' = b,
b' = a and e' = e for each idempotent e € 5 .

Then for each s € 5, the one-generator unary subsemigroup (s) (— ({s, s'}))
generated by s is an inverse unary subsemigroup. It is clear that the class (IKS)
of all regular unary semigroups whose one-generator unary subseniigroups are inverse
(unary) semigroups, is a subvariety of TUAS.

Now T = M°f ( l ) ; 2, 2; f j ] is a subsemigroup of (5, •), so T is in the

e-variety generated by (5, •), while T £ {lUSf T (also T £ {(S, •, l))vJ
r), whence

(IKS)1J- and ((S, •, '))VF are not closed under Se and so are not e-varieties. (By
((5, •, '))„ we mean the TUA.S variety generated by (S, •, ').)

Example 3.5. This is another example of a variety W £ CV(TZUS) such that WJF is
not an e-variety: here WT is not closed under taking morphic images, and not closed
under taking regular subseniigroups. Let W be the variety determined by the identity
x" = x (so in particular, the unary operation is one-to-one and onto). The semigroup
S = M°({1); 4,2; P), where

/ I 1 0 0
\ 0 0 1 1
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is in WT, while the semigroup T = M°({1); 3, 2; Q), where

is not in W^7, though T is a morphic image (and a regular subsemigroup) of S.

We have seen examples of e-varieties U, V such that U'VV' ^ (U V V)'. A natural

question to ask is whether (W V V')T = U V V for all e-varieties W and V.

Example 3.6. (joint with K.G. Johnston). Here we produce e-varieties U and V for
which (W V V').F ^ W V V. In fact (W V V')T is not an e-variety, though W V V is a
more complicated TUAS variety than those iu Examples 3.4 and 3.5.

Let U be the e-variety generated by the combinatorial Brandt semigroups: then
W = {{B2, •, ~1))ti) the inverse semigroup variety of [12, Section XII.4] (therein de-
noted by B), wliich is generated by the five element combinatorial Brandt semigroup
(i?2, •, "* ) • Put V = "R.Z, the e-variety of right zero semigroups. Both W and V
(and also the variety of all inverse semigroups) satisfy the identities (xy) = x"y" and
(xyx) = x'y'x', so W V V' satisfies these identities also.

The semigroup M = M°({f); 2, 3; P), where

(and where (/) denotes a trivial group with element / ) , is easily seen to be a morphic
image of #2 x {R%)2 > w n e r e {R^)2 is a two element right zero semigroup (so M € U V
V). Put T — M°((e); 3, 3; A) , the ten element combinatorial Brandt semigroup (where
(e) is also a one element group), put T* — T\ {0}, and define a partial homomorphism
[2, Section 3.2] <j>: T* -» M as follows: (e;i,j) -> (f;i,j), (e;3,j) -» ( / ; 2 , j ) , for
i = 1, 2 and j = 1, 2, 3. Let S = T* U M be the semigroup [2, Theorem 4.19] which
is the ideal extension of M by T determined by <f>.

It is easy to see that 5 is isomorphic to the subsemigroup {(t, t<j>) £ T x M: t £
T"}U({O} X M) of TxM (this is a special case of [11, Theorem 4.1]), and so 5 G W W .
Finally we show that S ^ (W V V' )J- by showing there is no inverse unary operation
' on 5 satisfying the identity (xyx.) = x'y'x'. Suppose, to the contrary, that there is
such an operation ' on 5 . Then in (5, •, ') we have

(e; 3, 1)(/; 2, l) '(c; 3, 1)

= ( e ; 3 , l M / ; 2, l) ' (e; 3, 1)<£

= (/ ; 2, 1)(/; 2, ! ) ' ( / ; 2, ! ) = ( / ; 2,1).
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Thus

(/ ; 2, 1)' = [(e; 3, 1)(/; 2, l) '(e; 3, 1)]'

= (e; 3, 1)'(/; 2, l)"(e; 3, 1)'

= (e; 1, 3)(/; 2, l)(e; 1,3)

(by uniqueness of inverses of

(e; 3, 1) , ( / ; 1, 2) and (/ ; 1,3))

= (e; 1 . 3 M / ; 2, l)(e; 1,3)^

= ( / ; 1, 3)(/; 2, 1)(/; 1,3)

= ( / ; ! , 3).

Similarly we can prove that (/; 2, 1) = (/; 1, 2), whence (/; 1, 2) = (/; 1, 3), a
contradiction. Thus 5 £ (W V V')T, so (W V V')T is not an e-variety, and in particular
( « ' W ) f ^ V V . We remark that

(1) a similar proof shows that for every inverse unary operation on (S, •),
(S, •, ') does not satisfy (xy) = x"y"; and

(2) a similar example can be obtained by replacing T in the construction by
the 0-direct union of two copies of B2 - M°((l); 2, 2; A).

4. IDENTITIES FOR e-VARIETIES

Here we give identities [strongly] determining many of the known existence varieties
of regular semigroups.

4.1. COMPLETELY REGULAR SEMIGROUPS

By a completely regular (or CTL) semigroup, (5, •), we mean a semigroup which is a
union of groups, while by a completely regular unary (or {CTV)~ ) semigroup (5, •, - 1 )
we mean a completely regular semigroup (S, •) together with the unary operation - 1

which assigns to each element x its inverse a;"1 in the maximal subgroup containing
x. It is well-known that any regular subseniigroup of a CR semigroup is also a CR
semigroup (a corollary to [6, Result 2(iii)]; and also to Lemma 4.1.1 below). It follows
that CR is an e-variety, and that each e-sub variety of C1Z consists of CR. semigroups.

Just as for the e-variety CR of all completely regular semigroups, each e-subvariety
V of CR can be altered to a variety of (CTZ)~ semigroups by simply adjoining to each
semigroup 5 in V the unary operation - 1 ; we denote this variety by V"1.

Conversely, each variety W of completely regular unary semigroups becomes an
e-variety WJ7 by simply dropping the unary operation ~l from each semigroup. Meets
are the same, and joins are the same, in Cev(CR), the lattice of e-varieties of completely
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[9] Existence varieties 67

regular semigroups, as in £v[(C7l)~1], the lattice of varieties of completely regular unary
semigroups. Thus we see that Cev(CR) S ^[(CR)'1}.

However, the identities determining a (CR)*1 variety W are not always appro-
priate to determine the CR e-variety W.F: for example the identity n " 1 = x~*x,

true in any (C"R)~ semigroup, when translated to xx' = x'x, weakly determines the
e-variety of all semilattices of groups (since now, by 5 satisfies xx' = x'x, we mean
that xx' = x'x for every inverse x' of x in S).

We find an identity that determines CR. and we show how to translate identities
for (CR)~ varieties to identities for CR e-varieties.

LEMMA 4.1.1. For any element x in any (CR) semigroup (5, •, - 1 ) ,

X — X [X J X ,

for any positive integers TO, n and for any inverse [* m + n + 1 ] ' of x
m+n+1.

PROOF: We have

Xm[xm+n+1}'Xn = x-*-lxm+n+l^xm+n+lYxm+n+lx-m-l

THEOREM 4.1.2. The e-variety CR is strongly determined witliin US by the
identity

(2) xx~1x = x,

where x~x — x(x3) x.

PROOF: From Lemma 4.1.1, any CR semigroup satisfies xx~1x = x. Conversely,
take any regular semigroup (5, •) such that for some inverse unary operation ' on (S, •),
(5, •, ') satisfies xx~xx = x, that is, satisfies x = x2(x3} x2. Then, for all .T 6 S,
Hx < HX2 ^ Hx (that is, Rx < Rxi sj Rx and Lx ^ Lxt ^ Lx), whence HX2 = Hx

and Hx is a group, so (5, •) is a union of groups. This proves the theorem. D

For any (CTVj~ semigroup word u = tt(.Ti, X2, • • •, xn) we define the translation

uT of u inductively, as follows: for each variable x, xT — x and {x'1) = x(x3) x;

for each word w, (w"1) = xvT[(wT) ]'wT; for any words v, w, (vw) = vTwT. An

identity u = v for a (C7Z.)~ variety then translates to t iT — vT for a CR e-variety.

It is clear that if a set of identities (u, = Vj)iej determines a (CTZ.)"1 variety W then

(uf — vf)ieJ, together with xx~xx = x, strongly determine the e-variety WT. Since
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uT will often be much longer than u, in practice one would not translate (u{ = vt)ieI

to (uf = vf){ t but would retain the identities (ui = Vi)ieI, regarding each w~1 as

meaning wT[(wT) }'wT. One would thus still regard (ui = V{)i€I as strongly deter-
mining WJ7 within the e-variety CTl.

We note that each variety V of bands is determined (within the variety of all
bands) by some single (semigroup) identity u = v, as in [1, 3 or 5]. Clearly x2 = x,

u = v determine V as an e-variety of regular semigroups (and as a variety of (CTVj~

semigroups, once the unary operation - 1 has been adjoined).

4.2. INVERSE SEMIGROUPS

Since a unary semigroup (5, •, - 1 ) is an inverse semigroup [12, Theorem XII.1.1] if

and only it satisfies the identities x(yz) = (xy)z, xx~*x — x, (x~*) = x, (xy)~ =

y~1x~1, (xx~1)(x~1x) = (x"1 x) ( M " 1 ) , we see that the existence variety I of inverse

semigroups is strongly determined within US by x" = x, (xy)' = y'x' and (xx')(x'x) =

(x'x)(xx'). Note that by Remark 4.3.4 below, I is strongly determined within US by

the single identity

[x(x2)'x][y(y2)'y] = [y(y2)'y][x(x2)'x].

If we merely regard x~l as an alternative notation to x' when dealing with e-
varieties of inverse semigroups, then any e-variety V of inverse semigroups is strongly
determined within I by each set of identities that determines V withing I', and
of course V' is an inverse semigroup variety in the earlier sense (see, for example,
[12, Chapter XII]). Clearly Cev(T), the lattice of e-varieties of inverse semigroups, is
isomorphic to CV{I'), the lattice of varieties of inverse unary semigroups.

LEMMA 4.2.1.

(a) The identity (xy) —y'x' weakly determines X within 71S.

(b) The identity xx'x'x = x'xxx' weakly determines 1 within US.

PROOF: (a) Take any regular semigroup (5, •) such that (5, •, ') satisfies (xy) =
y'x' for every inverse unary operation ' on (5, •). Take any TC-related idempotents e, /
in S and define e' = e, / ' = / , and choose x' £ V(x) arbitrarily for x £ S \ {e, / } .
Then (e/) ' = f'e' gives / = e, so each 7^-class, and similarly each £-class, of (5, •)
contains exactly one idempotent, whence (5, •) is an inverse semigroup [9, Theorem
V.I.2]. Conversely if (S, •) is an inverse semigroup, then (5, •, ') satisfies (xy) = y'x'

for any (in fact, the unique) inverse unary operation ' on (S, •).

(b) Take any regular semigroup (5, •) such that (S, -, ') satisfies xx'x'x = x'xxx'

for every inverse unary operation ' on (5, •). Take any 7?.-related idempotents e, / in
5 , and define e1 = / , / ' = e, and choose x' 6 V(x) arbitrarily for x £ S \ {e, / } .
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Then ee'e'e = e'eee' becomes e = / . Again, each 7?.-class, and similarly each £-class,
of S contains exactly one idempotent, so (5, •) is an inverse semigroup. The converse
implication is again trivial. U

Remark 4.2.2. The lattices CV(T') and Cv I {C"R,)~ J (of varieties of inverse and com-

pletely regular semigroups, respectively) are of course also sublattices of CV{TZUS), In

[13], Petrich and Reilly determined the joins in CV(TZUS) of the varieties of rectangu-

lar bands and the varieties of strict inverse semigroups (that is, subdirect products of

Brandt semigroups and groups). In Cev(HS), the corresponding (quite different) joins

can be simply described, as we shall see in a further paper. For example TIB V X, the

join of the e-varieties of rectangular bands and inverse semigroups is the e-variety of

generalised inverse semigroups, and more generally, the join TIB V V, for each e-variety

V of inverse semigroups, is just the class of generalised inverse semigroups S such that

S/f 6 V, where 7 is the least inverse semigroup congruence on 5 .

Remark 4.2.3. In [7], the author, jointly with T. Imaoka, showed that the e-variety
of generalised inverse semigroups has the amalgamation property. In the further paper
mentioned in Remark 4.2.2, we will show that this is the largest e-variety in £ev(TZS)

with the amalgamation property.

4.3. REGULAR SEMIGROUPS WITH CORES IN AN e-VARIETY V

By the core of a semigroup S, we mean the subsemigroup Core (S) = (E(S))
generated by the set E = E(S) of all idempotents of 5 .

For each class C of regular semigroups define

Cig ={S eilS :Core{S)eC},

the class of those regular semigroups whose core is in C.

LEMMA 4.3.1. For each existence variety V, the class Vlg is also an existence
variety.

PROOF: For any set {Si: i £ /} of semigroups, we have Core[fJ Si] C \\ Core (5;).

(For / finite, equality holds, and for J infinite, examples show that equality does not
always hold.) For any semigroup S and any subsemigroup T. we have Core(T) C
Core (5). And for any regular semigroups 5 and T and any morphism <f>: S —> T

of 5 onto T, we have, from Lallement's Lemma [9, Lemma II.4.6], that Core(T) =
Core (S)<£. The lemma now follows. U

Remark 4.3.2. By [6, Theorem 3], a regidar semigroup 5 is S-solid if and only

if Core (5) is a union of groups. Thus the class of all i?-solid regular semigroups is

precisely CIV9, and is an e-variety.

Given a set of identities for V, a set for V*9 can be obtained as follows.
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THEOREM 4.3.3. Let [ui(xi, ..., xk.) = Vi(xi, . . . , xki)}i€I be a set of THIS
identities that weakly [strongly] determine an e-variety V. Then V19 is weakly [strongly]
determined witliin 71S by the identities

for alii € I, for all n ( l ) , . . . ,n(ki) £ Z+,

where, for j = 1, 2, . . . (or for j = 1, 2, . . . , max fcj if max fc^ exists j ,

WjMj) = [2/>.l[(2/j,l)2]'j/i,l]---bi,n(i)[(yi,n(i)) ]'j/i,n(i)]

(a product of n(j) idempotents).

PROOF: The theorem can be proved routinely from the observations, for any

(5, •, ') G 7UAS, that (i) x(x2) x is an idempotent, for any x £ 5 , (ii) if e is any

idempotent in S, then e = e(e2) e, and (iii) Core (5) is closed under ' , by FitzGer-

ald's Lemma ([4], or [0, Exercise 11.15]). D

Remark 4.3.4. In particular, since I = (SC)tg, where SC is the e-variety of semilat-

tices, we have that the e-variety I of inverse semigroups is strongly determined within

US by the identity

since SC is strongly determined by x2 = x, xy = yx. Hence the variety of inverse
(unary) semigroups is determined by the identities

(xy)z = x(yz), xx~lx = x, x~*xx~* — x~*,

4.4. ORTHODOX SEMIGROUPS

For any TUiS word tt, by u € E we mean the identity u2 = u (as in [12] for

inverse semigroups).

THEOREM 4.4.1. The e-variety O of all orthodox semigroups is strongly deter-

mined within 1Z.S by the three identities

(3) {xx'){x'x), (x'x)(xx'), {xx'x'x){yy'y'y) € E;

and also by the identity

(3') x(x2)'xy(y
2)'y£E.
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And O is weaJdy determined within TZS by each one of the following four identities:

(4) xx'yy £ E, xx'x'x £ E, (x(x2)'x^j £ E, xyy'x'xy = xy.

PROOF: (i) Take any orthodox semigroup (5, •) and any regular unary operation
' on (5, •). Clearly (5, -, ') satisfies the identities (3) and (3') (since x{x2)'x is an
idempotent, for each x £ 5 ) , and the first two identities in (4). From [9, Theorem
VI.1.1], we see that (5, •, ') satisfies the last two identities in (4).

(ii) Conversely, take any regular semigroup (5, •) such that for some inverse unary
operation ' on (5, •), the identities (3) are satisfied by (5, •, ' ) . We show that (S, •)
is orthodox. Take any idempotents e, / £ 5 . By (3), e' = e'ee' = (e'e)(ee') £ E and
hence e = ee'e = (ee')(e'e). Likewise / = ( / / ' ) ( / ' / ) au<i then from (3) again ef is
idempoteut, whence (5, •) is orthodox.

For (3 ' ) , there is a similar, though simpler, proof (since e = e(e2) e for any

idempotent e £ 5 ) .

(iii) Take any regular semigroup (S, •).

If (5, •) satisfies the first of the identities (4), then clearly (S, •) is orthodox.

Suppose (5, •) satisfies xx'x'x £ E, and take any two idempotents e, / £ 5 . By
[6, Lemma 1], there exist idempotents g, h such that gh = efVgT>h. Since gVh
there exist x £ 5 and y £ V(x) such that xy = g and yx = h. Define x' = y
and choose s' £ V(s) arbitrarily for s £ 5 \ {x}. Then ef = gh — xx'x'x £ E, so
(5, •) is orthodox. (The result here is equivalent to the result that a regular semigroup
is orthodox if and only if the product of each pair of 2?-related idempotents is also
idempotent, which follows from [6, Lemma 1].)

Suppose (5, •) satisfies (a;(a;2) x) £ E and take any idempotent e £ 5 and any

y £ V(e). Define e' = y and choose s' £ V(s) arbitrarily for s £ S \ {e}. Then

y = e' = (ee'e)' = (e(e2)'e) £ E, so by [9, Theorem VI.1.1], (5, •) is orthodox.

Suppose (5, •) satisfies xyy'x'xy = xy, and take any idempotents e, / £ S. De-
fine e' = e, / ' = / , and choose s' £ V(s) arbitrarily for s € S \ {e, / } . Then
(ef)2 = efef = e(ff')(e'e)f = (e / ) ( / ' e ' ) (e / ) = ef, so ef is idempotent and (5 , •) is
orthodox. U

Remark 4.4.2. For any TUAS words u and u, by u £ V(v) we mean the pair of
identities uvu = u and vuv = v. From the theorem, O is (weakly) determined by
y'x'eV(xy).

Recall again that each (semigroup) variety of bands is determined by a single
semigroup identity ([1, 3 and 5]).

THEOREM 4.4.3. If a band variety V is determined by a semigroup identity
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u(%i, X2, •••i xn) = v(xj, X2, • • . , xn) then the existence variety V*9, of all orthodox

semigroups S such that E(S) 6 V, is strongly determined within 'TIS by the identities
(3) or (3') together with

uixix'ix'iXi,..., xnx'nx'nxn) = v{xix\x'1x1,... ,Xnx'nx'nxn);

and also by (3) or (3') together with

uyxi (s i ) '*! ' • • •»xn(xl)'xnj - v(x! (x])'xi,..., a;n (a;* )'a;nJ.

Also V'9 is weakly determined by each one of the identities (4) and the identity

u(xix'j, x2x'2, ..., xnx'n) = v{x\x\, x2x'2, ..., xnx'n).

PROOF: For any idempotents x-\, X2, ..., xn in an orthodox semigroup ( 5 , • ) , we

have

Xi = Xix\x\xi and xt — x^xf) xt, i = 1, 2, . . . , n,

for any inverse unary operation ' on (S, •). The theorem follows easily from this and
Theorem 4.4.1. D

4.5. E-SOhW REGULAR SEMIGROUPS

For any elements a, b in a regular semigroup 5, Ra J? Rt if and only if aa*b = b

for each [some] a* £ V(a). Let us write a ^TJ 6 (and 6 <JTJ. a) to mean Ra ^ R\, and
likewise a ~^c b (and b <£ o) to mean La~^ Lb-

For any two "R2AS words it, v, the notation u SJK V (or v ~^-R U) means the
identity vv'u = u. By uTLv we mean the conjunction of u ^n v and u ^n v. Of
course u <£ v, u ^£ v and uCv are defined dually, while uHv means the conjunction
of uCv and uTZv. Finally, u £ G means uT-Cu2, namely that u is in a subgroup (as
in [12] for inverse semigroups).

We recall that the class of all .E-solid regular semigroups is the existence variety
CUi9 (Remark 4.3.2).

THEOREM 4.5.1. The existence variety CIZ'9 of all E-soh'd regular semigroups is

strongly determined within TZS by the twelve identities

(5) (x'x)(xx'), (xx')(x'x), (xx'x'x)(yy'y'y) £ G;

and also by the four identities

(5') x{x2)'xy{y2)'yeG.
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And CR,'3 is weakly determined within US by each of the following sets of four

identities:

(6) xx'yy' G G;

(6') xx'x'x G G;

and

(7)

PROOF: (i) Let (5, •) be any 2?-solid regular semigroup and let ' be any inverse
unary operation on (5, •). Since the core (E(S)) of S is a union of groups, the identities
(5) and (5') are satisfied by (5, -, ' ) .

(ii) Conversely, suppose (5, •) is a regular semigroup such that (5, •, ') satisfies
the identities (5), for some inverse unary operation ' on (5, •). Take any idempotents
e, / , g in S such that eCfTZg. Then e' = e'ee' = (e'e)(ee') is in a subgroup, by
(5), and since eTlee' Ce'Ke'e Ce we have by [2, Theorem 2.17] that (ee')(c'e) G He

(since Reie D Lee< = Hci (a group) contains an idempotent).
Likewise {gg')(g'g) G Hg, and since eCfTZg we have by [2, Theorem 2.17] again

that (ee'e'e)(gg'g'lg) £ ReC\Lg, and so Re Pi Lg is a group from (5); that is, there is an
idempotent h such that eTlh £</, whence 5 is .E-solid, as required.

Now take any regular semigroup (5, •) such that (5, •, ') satisfies (5') for some
inverse unary operation ' on (5, •). Then clearly the product of any two idempotents
in (5, •) is in a subgroup, which is equivalent to (S, •) being i?-solid.

(iii) The identities (6) [(C')j are equivalent to the product of any two [P-related]
idempotents being in a subgroup, which is equivalent to being i?-solid. The identities
(7) are equivalent to each inverse of an idempotent being in a subgroup, which is also
equivalent to being £-solid. 0

4.6. LOCALLY INVERSE, ORTHODOX,...

Let V be any class of regular semigroups and define Vloc to be the class of all
regular semigroups all of whose local subsemigroups are in V; that is

Vtoc - {(S, •) G TIS: (eSe, •) G V for each idempotent e G 5}.

The operator V —> Vloc was introduced for (C1Z)~ varieties by the author and P.R.
Jones [8, Section 4], and was denoted by P.
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LEMMA 4.6.1. If V is an existence variety then Vloc is also an existence variety.

PROOF: It is dear that Vloc is closed under taking regular subsemigroups and

direct products.

Take any regular semigroups S, T and any morphism <f>: S —* T of 5 onto T.

Take any idempotent / <E T. By Lallement's Lemma [9, Lemma II.4.6] there is an

idempotent e € 5 such that e<f> = f. It is easily checked that (eSe)<j> = fTf, so each

local subseinigroup of T is a morphic image of a local subsemigroup of S. Thus Vloc

is closed under morphic images, and hence is an e-variety. D

We call V'oc the existence variety of regular locally-V semigroups. As in [8, Propo-

sition 4.1] for (C7Z.) varieties, the operator V —• V is a closure operator on the

lattice Cev(TZS), and in particular on the lattice of [existence] varieties of inverse semi-

groups.

We now show how to obtain identities for VIoc from identities for V. For any

idempotent e in any regular semigroup S, and for any element x £ eSe, and for any

inverse x' of x in 5 , checking shows that ex'e is an inverse of x in eSe (in particular

eSe is a regular subsemigroup of 5 ) . Also if e and / are V-related idempotents in

any semigroup 5 , then, as is well-known, eSe is isomorphic to fSf (and so eSe € V

would imply fSf G V).

For any 7UAS word w — w(x\, X2, • • •, in) in variables xj, x?, . . . , xn, we define

a word wloc in variables Xi, X2, . . . , xn, y, inductively, as follows: xl°c — yy'xiyy',

i = 1, 2, . . . , n; {u')loc = yy'{uloc)'yy'; and {uv)loc = ulocvloc (for any words u, v in

xi, . . . , xn).

Remark 4.6.2. A slight simplification of the definition of wloc occurs by denning
a;[oc = yxiy' (instead of yy'xiyy') for each variable Xj. The theorem below is still
valid, with yxiy' replacing yy'xiyy'.

THEOREM 4.6.3. If a. set of WAS identities

(8) tii(x1,x2, •-., xki) =vi(x1, x2, ..., Xk{), f o r t e / ,

weakly [strongly] determines an e-variety V of regular semigroups, then Vloc is weakly

[strongly] determined by the identities

((8)'oc) ulr(x1, *2,...,xki, y)=vl°c(x1} x2,...,xki, y), for i € I .

PROOF: Case (a): the identities (8) weakly detemine V.

(i) Take any regular semigroup (5, •) that satisfies the identities (8)'oc; we show

that (5, •)€ Vloc.
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Take any idempotent e £ 5 and take any inverse unary operation ' on (eSe, •),
and extend ' arbitrarily to an inverse unary operation, also denoted by ' , on (S, •). In
eSe we have V(e) = e, and so e' = e. Take any xx, x2, . • •, xn G eSe, and put y = e,
whence y' = e = J/J/'. Now ' is closed on eSe = yy'Syy', and yy'uyy' = u for any
u G eSe,so

• w t o c ( x i , x 2 , . . . , x n , y ) = w ( s e i , a ; 2 , • • • , ^ n )

for any word w i n n variables. Thus, since (S, •, ') satisfies (8) ' o c , we see that (eSe, •, ')
satisfies (8). Since ' was arbitrary on eSe, we have that (eSe, •) satisfies (8), and so
(eSe, •) € V, giving us that (5, •) G Vloc.

(ii) Take any semigroup (5,- ) G Vloc. We show that (5,-) satisfies (8) ' o c .
So we take any inverse unary operation ' on (5, •), any i G / , and any elements
xltX2, ..., Xkt, y € S.

Define a unary operation * on (yy'Syy', •) by x* = yy'x'yy' for each x E yy'Syy';
then * is an inverse unary operation.

The elements yy'x1yy', ..., yy'x^yy' are in yy'Syy', and (yy'Syy',-) e V,
whence (yy'Syy', •, *) G V , so

Uiiyy'xiyy', ..., yy'xkiyy') - Vi(yy'xiyy', ..., yy'xkiyy'),

where each side of the equation is calculated in the regular unary semigroup

(yy'Syy',;*). Hence

Thus (5, -, ') satisfies (8) ' o c , and so (5, •) satisfies (8) ' o c .

Case (b): the identities (8) strongly determine V.

(i) Take any regular semigroup (S, •) such that for some inverse unary operation
' on (5, •), the regular unary semigroup (5, •, ') satisfies (8) ' o c : we show that (S, •) G
Vloc.

Take any idempotent y G S. Since y"R.yy', we have that (ySy, •) = (yy'Syy', •)

(the map x —» xyy' is an isomorphism). Again define an inverse unary operation *
on (yy'Syy', •) by x* = yy'x'yy' (for all x G yy'Syy'). Since (5, •, ') satisfies the
identities (8) ' o c , we see that (yy'Syy', •, *) satisfies the identities (8) (with * replacing
' ) , that is, belongs to V . Hence (yy'Syy', •) G V and so (ySy, •) G V (since (ySy, •) S
(yy'Syy', •)), which gives us that (5 , •) G Vtoc.

(ii) We showed already in part (a)(ii) of the proof that any semigroup (S, •) G
Vloc satisfies the identities (8)'oc if each semigroup in V satisfies (8). The proof is
complete. D
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As for inverse semigroups [12, Definition II.4.7], let us call a regular semigroup
strict if it is a subdirect product of completely 0-simple and completely simple semi-
groups. From Lallement [11, Theorem 4.1], a regular semigroup S is strict if and only
if for any elements a, b € S with ./<, > Jt,, for each idernpotent e 6 Ja there exists a
unique idernpotent / € </& such that e > / . It is now easy to see also that a regular
semigroup S is strict if and only if it is locally a semilattice of groups (that is, for
each idernpotent e £ S, the local subsemigroup eSe is a semilattice of groups). Like-
wise, combinatorial, strict, regular semigroups are easily seen to be precisely regular
local semilattices (that is, regular semigroups such that each local subsemigroup is a
semilattice).

For any THIS words u, v, the notation u CW v means the identity uv = vu (that
is, that u commutes with v).

COROLLARY 4.6.4. (i) The e-variety (SC)loc of regular local semilattices (that
is, combinatorial strict regular semigroups) is strongly determined within TZS by the
identities

zxz' G E, zxz' CW zyz .

(ii) The e-variety (SCQ) oc of regular semigroups that locally are semilattices of
groups (that is, strict regular semigroups) is weakly determined within TZS (and is
strongly determined within Tloc ) by the identity

yxy'CWyy'(yxy')'yy'.

(Hi) The e-variety Bloc of regular local bands is strongly determined within US
by the identity yxy' £ E.

(iv) The e-variety Oloc of regular, locally orthodox semigroups is strongly deter-
mined within US by

z'f^zxz^ (zyz1 ((zyz')2)'zyz') G E

and is weakly determined within TZS by

, 2 \ '

yx(y'(yxy')'y) xy'J £E.

(v) The e-variety Xloc of regular, locally inverse semigroups is strongly determined
within TIS by the identity

zxz (izxz'f)'zxz' CW zyz' ((zyz'f)'zyz',
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and is weakly determined within TtS by the identity

yy'(yxy')yxy' CW yxy'{yxy')'yy .

PROOF: (iv) The second term is a simplification of the term

yxy'(yy'(yxy') yy') yxy') , which is an inverse of an arbitrary idempotent in yy'Syy'

if x% y are taken as arbitrary elements in an THIS semigroup (5, •, ' ) .
(v) The first identity is obtained from Remark 4.3.4. The second identity is ob-

tained from x'x CW xx', which weakly determines I within US. U
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