J. Austral. Math. Soc. 21 (Series A) (1976), 118-119.

Π' -CLOSURE OF FINITE Π -SOLVABLE GROUPS

ZVI ARAD

(Received 10 February 1975)

Abstract

The purpose of this paper is to present a proof of the following theorem: Suppose Π is a set of odd primes, G is a finite Π -solvable group, and A is a nilpotent Π -subgroup of maximal order of G. Then G has a normal Π -complement, if and only if $N_G(ZJ(A))$ has a normal Π -complement. (J(A) is the Thompson subgroup of A.)

Glauberman-Thompson's theorem 8.3.1 (see Gorenstein (1968)) in the study of finite groups, states that if P is a Sylow p-subgroup of the finite group G,p odd, and if $N_G(ZJ(P))$ has a normal p-complement, then so also does G. In this note we will extend this result to allow P to be any nilpotent Π -subgroup of maximal order if G is Π -solvable. More precisely,

THEOREM. Suppose Π is a set of odd primes, G is a finite Π -solvable group, and A is a nilpotent Π -subgroup of maximal order of G. Then G has a normal Π -complement, if and only if $N_G(ZJ(A))$ has a normal Π -complement.

Our notation is standard and is taken mainly from Gorenstein (1968). In particular, J(G) is the *Thompson subgroup* of G.

PROOF. If G has a normal Π -complement it is well known that $N_G(ZJ(A))$ has a normal Π -complement. Assume now that G is of minimal order where $N_G(ZJ(A))$ has a normal Π -complement but G has none. Let K be a maximal Π -subgroup of G which contains A. Clearly, K is an S_{Π} -subgroup of G. Bialostocki's theorem, implies that AF(K) is nilpotent. Hence $F(K) \subseteq A$. It is well known that $C_{\kappa}(F(K)) \subseteq F(K)$, since K is solvable by the method of Feit and Thompson (1963). Therefore $ZJ(A) \lhd K$ by Mann's theorem (1971) Theorem 1(c) and Theorem 4. Theorem 1 of Mann implies that the set of all nilpotent subgroups of maximal order of K is a conjugate class. Let A^* be an Abelian subgroup of maximal order of K. Proposition 1 of [1], implies that $A^*F(K)$ is nilpotent. According to Mann (1971), Theorem 1, implies that there exists $x \in K$ such that $A^* \subseteq A^*$. Hence $J(K) = \langle J(A^*)/x \in K \rangle$. So ZJ(K) = П-solvable groups

ZJ(A) as $ZJ(A) \lhd K$. By induction $0_{\Pi'}(G) = 1$. It is easy to verify that $1 \subset 0_{\Pi}(G) \subset K$. Now set $\overline{G} = G/0_{\Pi}(G)$ and let \overline{K} be the image of K in \overline{G} . Since G is Π -solvable, $0_{\Pi'}(\overline{G}) \neq 1$. By Gorenstein (1968), Theorem 6.2.2, \overline{K} normalizes an S_q -subgroup $\overline{Q} \neq 1$ of $0_{\Pi'}(\overline{G}$ for some prime q and so normalizes $Z(\overline{Q})$. Let G_1 be the inverse image of $\overline{K}Z(\overline{Q})$ in G, so that $G_1 = KQ_1$, where Q_1 is an Abelian q-group isomorphic to $Z(\overline{Q})$. If $G_1 \subset G$, then by induction G_1 has a normal Π -complement which in this case must be Q_1 itself. But then $[0_{\Pi}(G), Q_1] \subseteq 0_{\Pi}(G) \cap Q_1 = 1$ and so Q_1 centralizes $0_{\Pi}(G)$. However, since $0_{\Pi'}(G) = 1, [4]$. Theorem 6.3.2. yields $C_G(0_{\Pi}(G) \subseteq 0_{\Pi}(G)$. This contradiction shows that $G = G_1 = KQ_1$. Thus S_2 -subgroups of G are Abelian and according to Arad and Glauberman (to appear), Theorem 2(c), $ZJ(K) \lhd G$. Therefore $G = N_G(ZJ(A))$ has a normal Π -complement by our hypothesis, and we have completed the proof.

References

- Z. Arad and G. Glauberman (to appear), 'A characteristic subgroup of a group of odd order', Pacific J. Math.
- B. Bialostocki (to appear) 'On products of two nilpotent subgroups of a finite group', Israel J. Math.
- W. Feit and J. G. Thompson (1963), 'Solvability of groups of odd order', Pacific J. Math. 13, 775-1029.
- D. Gorenstein (1968), Finite Groups (Harper and Row, New York, 1968).
- A. Mann (1971), 'Injectors and normal subgroups of finite groups', Israel J. Math. 9, 554-558.

Department of Mathematics Bar-Ilan University Ramat-Gan, Israel.