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ABSTRACT. A consideration of possible expressions for the number and size of bonds inte rsected by a 
potential failure surface leads to the following expression for the strength of snow, ur, which is age-hardening 
at a constant porosity n: 

ur = Ui exp (- 2n/ 1 - n) tanh "wt r, 

where Ut is the strength of ice, Ir is the time at failure , a is a parameter specifically related to the m echanism 
of bonding, and w is a temperature-dependen t parameter. Allowing Ir 10 become infll1i te provides the 
envelope of maximum strength for fully age-hardened snow at any porosity n. 

RESUME. Considerations thCoriques sur la durete de la neige. Consirlerant les express ions possibles du nombre 
et de la taille des contours des grains coupes par une potentie lle surface de rupture, on arr ive a l'expression 
suivante pour la durete de la neige ur , qui est la consolidation avec l'age pour une porosite constante n: 

ur = Ui exp (- 211/ 1 - n) tanh"wtr, 

OU Ui est la dure te de la glace, Ir le temps a la rupture, a es t un parametre lie specifiquement au m ecanisme 
de cimentation des grains , et w est un parametre dep endant de la temperature. En faisant tend re Ir vel's 
l'infini , on obtient I'enveloppe de la durete maximum pour une neige completement consolide par l'age 
pour chaq ue porosi te n. 

ZUSAMMENFASSUNG. BetrachtulIgen zur Festigkeil des Schnees. Eine Betrachtung del' moglichen Ansatze fLll' 
di e Zahl und G rosse del' Bindeglieder, die von einer moglich en Bruchflache gekreuzt werden, fuhrt auf den 
folgenden Ausdruck fur di e Fes ligke it ur von Schnee, d e l' be i konstanter Porositat n a ltersgeharte t ist: 

ur = Ut exp (- 2n/ I - n) tanh "wtr, 
wobei Ui die Festigkeit von Eis, ti die Zeit des Bruches, a e in mit del' Bindung spcz ifisch vcrknupftcr Para
meter und w ein temperaturabhangiger Parameter ist. Lasst man tr gegen unendlich gehen, so erhalt man 
den Grenzwert d er maximalen Festigkeit flir vollkommen a lte rsgeharteten Schnee bei beliebige r Po rositat n. 

INTRODUCTION 

Constrictions in the solid framework of a porous material are in general points of relative 
weakness. Because the bonds between snow particles represent the majority of the constrictions 
in a snow mass, it is reasonable that the strength of snow is determined very largely by the 
number and size of the intergranular bonds. 

Ballard and McGaw (1965) assume that the external stress a on a snow mass produces a 
uniform stress condition in the constrictions and that failure occurs when these internal con
strictions are stressed to the ultimate strength of ice, ai. The failure surface thus generated 
has an effective porosity nr and the general equation for the failure strength ar IS 

af = ai ( r -nr) . ( I) 

Considering nr to be a linear function of porosity n provided a theoretical strength envelope 
which agrees well with experimental data for porosities less than 50 per cent. However, a 
more general formulation is needed which expresses the effective porosity as a function of 
bulk porosity and time over the entire porosity range. It should be possible to develop such a 
general expression by considering the number and cross-sectional area of the intersected 
constrictions. 

The total cross-sectional area of the constrictions intersected by a failure surface of unit 
area is r - nr. The number of constrictions intersected by this unit area, designated as q, is a 
function of porosity, n; the cross-sectional area of each constriction, designated as Ai, is a 
function of time t. Expressed mathematically, 

l = I 
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The functions q(n) and Ai (t) which appear in equation (2) must indeed be very complex ; 
but the construction of hypothetical models that approximate actual conditions allows one 
to d erive approximations to these functions, and to write a general strength equation which 
can be compared with experimental data. 

EVALUATION OF THE POROSITY DEPENDENCE 

Snow is conceived to consist of a mass of particles connected by bonds at every interparticle 
contact. For simplicity all constrictions are considered to originate from bonding even though 
a small fraction of the constrictions of a natural snow mass are intraparticulate; also, for the 
purpose of this discussion, it is assumed that the same general particle size distribution and 
shape are maintained throughout the history of the snow. 

Consider a unit volume of this snow in which there is a very large number, N, of particles . 
Associated with these N particles is a total number of bonds, Q., and each of the Q bonds is 
shared by two particles. There is then a mean number of bonds, Q /N, associated with each 
particle. If each particle has p particles bonded to it, then the number of bonds per particle 
equals one half p: 

Since the volume of the solid material , I - n, in the unit volume is directly proportional to N , 
the d ependence of Q on n may be investigated by considering the change in Q. as N is varied. 
One should arrive at the same fun ction of N regardless of whether N is con tinuously increased 
or d ecreased, but it is perhaps easier to visualize a hypothetical process in which N decreases. 
Therefore, imagine the removal of dN particles such that the number dN is small with respect 
to N but still represents a large number of nonadjacent particles which are uniformly distri
buted throughout the unit volume. If each of the dN particles has (Q /N) R bonds associated 
with it, then, since a bond is a junction of two particles, the removal of the dN particles 
removes dQ. bonds, where 

dQ. = 2(Q./Nh dN. 

In an actual process where N is increasing due to consolidation the force of consolidation 
produces higher st.rain-rates in zones of relatively few constrictions; hence there is a tendency 
for the particles with the least number of bonds to acquire more bonds first, effecting a more 
uniform stress condition throughout the mass. In order to simula te this tendency to a uniform 
distribution of constrictions in the model it is necessary that (Q./N) R be the maximum number 
of bonds per particle that exist for a particular N . 

The functional relationship d efining (Q.IN )rn ax cannot be readily deduced ; however, 
assuming this tendency to a uniform distribution of (Q./N) persists throughout the entire 
consolidation process then as n approaches zero, (Q./N) rnax approaches (Q./N ). If N rn represents 
the maximum number of particles that can be contained in a unit volume, it then appears 
reasonable to assume that in the neighborhood of N rn , (Q./N) R in equation (4) may be 
replaced by the m ean value Q./N, i .e . 

dQ. dN 
Q. = 2 N" (5) 

Integration of equation (5) from Nrn to N and from the corresponding Q.rn to Qproduces 
Q. as a function of N, 

n = Q.rn N 2 

><.. Nrn 2 " 
(6) 

From equation (6) one has the expression relating (Q./N ) rnax to (Q /N) and N for N close 
to N rn , viz. 
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(~)max = ;: = (~) (~). (7) 

Inasmuch as (Q)N) (NmIN) deviates increasingly from (QjN) as N decreases and satisfies 
equation (7) at the boundary N = N m , equation (7) will be used as an estimate of (QjN) max 
for the larger range of N. 

Replacing (Q IN ) R in equation (4) by QNm /N' yields 

do... dN 
0... = 2Nm NZ · 

Integration of equation (8) from Q* to Q and from N * to N yields 

Q = Q*exp [2Nm (;* - ~) l 
(8) 

(9) 

where ]{* represents the minimum number of particles necessary to produce a naturally 
occurring structure, and 0...* is the corresponding number of bonds. 

Since the particle size distribution has been specified to be invariant with n then Noc (I - n), 

0... = Q*exp [ 2 ( I - n m ) (~ _ _ I )] 
I - n I - n 

( 10 ) 

and 

Q 0...* (I - n*) [ (I I )] 
)I,- r = N * -- exp 2 ( I - n m ) --* - -- . 

r - n I - /Z I - n 
(II ) 

Figure I shows the value of (Q /N ), (Q /.N ) max,and [(Q /N maxi - (Q /N) l in units of (Q*/N *) 
as a function of n according to equation ( I I ) and (7) for nm = 0 and n* = 0·6. 
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Fig . 1. Mean and maximum number of bonds per particLe in terms of the mean number of bonds IJer particle at n* = 0·6 
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Defining No as the number of particles in a unit volume at time to with porosity no, then 

(
I n) N=No --. 
I - no 

From equation (10) the total number of bonds in a unit volume at time to is 

Qo = Q*exp [2 ( I -nm) (~ --I )] 
1 - n 1 - no 

and the number of bonds per particle at time to is 

Q o = Q* exp [2 ( I - nm)(_1 * __ I )]. 
No JVo I -- n I - no 

At some time t greater than to with porosity n less than no two groups of bonds wi ll exist 
in the unit volume of snow and are designated as Q' and et , such that 

Q= O-': + Q". (15) 
The first group, 0.; , will b e composed of all initial bonds in the unit volume (i. e. bonds which 
were formed at time to), a nd will include bonds which originated in the unit volume at time 
to plus the net increase of initial bonds in the unit volume due to consolidation of the snow 
mass. Since Q: is equal to the number of bonds per particle at time to (equation (14)) multiplied 
by the number of particles in the unit volume at some subsequent time t (equation 12)) , then 

Q: = Q* (: =:J exp [ 2(1 - nm ) C ~n* - 1 ~nJ J. (16) 

The second group of bonds, Q:', consists of those bonds in a unit volume at porosity n which 
are formed subsequent to the initial bonds at times greater than to as consolidation brings 
the discrete particles into more intimate contact. From equations (I I), ( IS) and (16). 

0.;' = Q- Q: 

2( I - nm) [ ( 2( I - nm ) ) I - n (2 (I - nm))] 
= Q*exp * exp - --- exp - . 

1 - n 1 - n 1 - no I - no 

Now with respect to the failure surface of unit area which intersects a total of q bonds, let 
q' and q" represen t the total number of initia l bonds and the total number of bonds developed 
after to respectively which are intersected by such a failure surface. The variables q, q' and 
q" are related to Q , Q: and 0.;' respectively by a proportionality constant k, i.e. 

q = kQ, q' = kQ: , q" = kQ:' . (18) 
(The factor k is related to the geometry of the system of particles and will be discussed later. ) 

2( I - nm) 
Designating the product of the parameters k and Q* exp * as B , the equations for 

I - n 
q, q', and q" are 

( 
2 ( I - nm )) 

q = Bexp - , 
I - n 

, (I - n) [ 2(I - nm)] q = B -- exp - , 
1 - no I - no 

[ ( 
1 - nm) r - n (r - nm) ] q" = B exp - -- - -- exp - -- . 

I - n r - no 1 -no 

Equations (21 ) through (23) or equations (10), (16) and (17) can be used to calculate the 
percentages of initial bonds and subsequent bonds that exist at porosity n for a snow mass 
which originated at porosity no. Figure 2 shows the results of these calculations for different 
values of no, assuming that nm = o. 
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Although the number of subsequent bonds may be very large they may not contribute 
significantly to the strength unless the time and temperature are such that the subsequent 
bonds are rela tively well developed . 

EVALUATION OF THE TIME DEPEN DENCE 

The function Ai (t ) which appears in equation (2) will now be considered. Specifically, 
A i is some unknown function , .pi, of tf - t i, where tf is the time at failure and t i is the time at 
which the bond originated, i. e. 
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Fig . 2. Relative number of initial and subsequent bonds at porosity nfor a snow mass originating at porosity no 

A considerable knowledge of this fun ction has been gained by the work of Kingery (1960), 
Kuroiwa (196 1), and Hobbs and M ason (1964). The results of their experiments show that if 
small ice spheres are brought into contact a t time zero, the ratio of the bond neck radius X 
and the sphere radius R at any time t m ay be expressed as follows : 

X j ( T )t' /c 
R Rd (25) 

where j ( T ) is some function of tempera ture, T, and the value of the pa rameter c lies in the 
range 4 < c < 7. This indicates tha t the cross-sectional area of the bond neck should vary 
as t2/c • Equation (25), based upon experiments where t is small , does not explicitly show X /R 
approaching a limiting value for la rge t ; however, there is some indication that X /R does 
actua lly approach a quasi limit in sintered powder compacts. According to Coble (1961 ) the 
initial stage of the sintering process for crystalline solids is characterized by an increase in 
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the bond cross-sectional area from zero to approximately 0· 2 of the particle cross-sectional 
area, at which point grain growth begins. Since the rate of bond growth is very slow after 
the incipience of grain growth the bond cross-sectional area which exists at the incipience of 
grain growth may be considered to represent a limit. In the case of snow, the end of this 
initial stage of sintering will be defined as the condition for complete age-hardening. The 
studies by Jellinek ( r957 ), Gow and Ramseier (1963) and Ramseier and Sander (unpublished) 
on the strength of age-hardened snow show that when snow is sintered at a lmost constant 
porosity, the strength approaches a limiting value for large t, which is further indication that 
the interparticle contact area approaches a limit. 

In order to deduce a satisfactory expression for .pi( tr- ti) in equation (24), the right side 
of equation (25) will be replaced by a function which has a limit as t becomes very large. 
The following function is somewhat arbitrarily chosen from a family of possible functions : 

x X' 
- = - tanh' /C [w {T )t] 
R R' " 

where X' /R' is the limi ting value for X /R at the completion of age hardening. X' /R' is depen
d ent on particle size and w( T ) is a temperature-dependent parameter. For small values of t 
equation (26) becomes 

which is of the sam e form as equation (25) . The function .pi(tf - ti ) may now be written as 

.pi (tr - ti ) = ALi ta nh " W(tr-ti ), (28) 

where A Li represents the limiting bond cross-sectional a rea at the termination of the initial 
stage of sintering and et is approximately 2/C. 

THE GENERAL FORM OF ( I - nr) 

Now that expressions for the porosity and time function have been derived , one may 
write the equation for ( I - nl) from equation (2) . 

q q " 

I - nr = L .pi (tr - to) + L .pi (tr - ti ). 
i = I I = I 

By defining a mean limiting cross-sectional area A, equation (29) can be written, using 
equations (22 ) and (28), 

(

I - n ) [ 2(1 - nm)] 
1 - nr = AB -- exp - tanh" w (tr - to) + ], 

1 - no 1 - no 
where 

q" 

] = A )' tanh " W(t r- ti ) . 
. "--' 
I = I 

Partitioning the interval (to, tf ) into sub-intervals and considering n (and hence q) as a 
function of t allows one to develop the integral expression for ] , 

/ , 

] = A f tanh " w (tr-t )dq"(t ). 
I . 

When dn/dt is continuous, equation (3 I) may be rewritten as 
If 

f dq" dn 
] = A tanh " w(tr - t ) - - dt. 

dn dt 
I. 
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Calculating dq"fdn from equation (23) and replacing] in equation (30) according to equation 
(32) produces the general expression for I - ne 

I - ne = AB((I - n ) exp [ _ 2 ( I -n
m

) ] tanh etw(tr-to)+ 
1 - no I - no 

Ir [[ 2(1 - nm)] 

+ J ta nh a w(lr - l) exp ~ _~:no -

[ 
2 (1 - nm ) ]] ) 2 ( 1 - nm ) exp - dn 

- I - n - & . 
( 2) d t I - n 

The integral in equation (33) can be evaluated numerically for any fixed te if the parameters 
wand (X are accurately known and if one has a satisfactory expression for n(t ) . 

Certain situations arise in engineering for which dn fdt in equation (33) is zero, causing 
the integral to vanish leaving a more easily manageable form of (I - nr ). 

AGE HARDENING AT CONSTANT P OROSITY 

The time-dependent strength of reworked or processed snow is often considered to be a 
constant-porosity phenomenon . Specifically, dn /dt in equation (33) is zero, n = no, and 
to = o. The strength relationship from equation ( I) becom es 

[ 
2(1 - nm ) ] 

ar = aiAB exp - tanh a wlr. 
I - no 

Choosing the value of ai to be that of fine -grained polycrystalline bubble-free ice requires that 
nm = o. It should be noted that ai can correspond to any fine-gra ined polycrystalline ice 
with uniformly distributed voids if nm is chosen accordingly. The boundary condition 
ae = ai at I -+ 00 and n -+ 0 requires that 

AB = e' (35) 
and 

( 
2no) ae = ai exp - -- tanh et wtr. 

I - no 

Equation (36) was compared with data of Jellinek (1959) (Fig. 3), and Butkovich (1962 ) 
(Fig. 4), by using the linearized form 

where 
r = (XX+ ai, 

r = Ina e+ 2n f l -n 

X = In[tanh (wt)J. 

A leas t squares analysis of J ellinek's data for a series of values of w produced a maximum 
coefficient of correlation for w = o· 00 I , a nd predicted the values of (X = O · 22 and ai = 55 
kg.fcrn.'. Using these values of the parameters, equation (36) predicts the ultimate strength 
of this snow to be 14' 5 kg. fern. Z, and 95 per cent of this strength should b e reached after 45 
days of age hardening at - 10 ° C. 

A similar analysis of Butkovich 's data required w = o' 0002 and predicted values of 
(X = o· 26 a nd ai = 88 kg. fern. '. The predicted ul timate strength of this snow is 16 · 4 kg. fern. 2 

and 95 per cent of this value should be reached after 8 months of age hard ening at -20° C . 
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THE STRENGTH ENVELOPE 

Since the conditions for fully age-hardened snow are t ---+00 and dn fdt = 0, then from 
equation (36) the maximum strength at any porosity is 

ur = Ui exp (- ~). 
I - n 

The theoretical relative strength envelope 

Ur ('2n ) - = exp - --
Ui I - n 

is shown in Figure 5. For comparison the relative strength envelope of Mellor and Smith 
(un pu blished) 

Ur [bn 2 

] 
- = exp - -(--)-2 , 
Ui I - n 

for b = '2 , 

and the linear relative strength envelope of Ballard and McGaw (1965) 

are also shown. 
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The linearized form of equation (40) 

where 

x= exp(-~) I-n 

was compared with the compressive strength data of Butkovich * (1956) (Fig. 6), by regressing 
ur on X. The analysis predicted a value of Ui of 58.8 kg./cm. 2 for ice at - 10° C . 
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Fig. 6. Comparison of the theoretical strength envelope ur = Ui exp ( - ~) with compressiue strength data of Butkovich 
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(1956) 

DISCUSSION OF CONSTANTS 

It is of interest to examine the reasonableness of equation (35) by considering the magni
tude of the various constants contained in the equation. Since by definition 

2 
B = k(Q*/N *)N*exp--

I-n* 
then equation (35) requires that 

2n* 
Ak(Q*/N *)N* exp -- = I. 

I - n* 

The mean limiting cross-sectional area, A, of the bonds is associated with some mean particle 
radius r, and according to Coble (196r ), A ,...."" o· 2m 2

• k introduced in equation (18), may be 
considered to represent the fract ion of the total bonds in a cube of unit volume intersected by 
a failure surface which is parallel to the face of the cube. If the fai lure surface does not deviate 
from a plane by more than r/2 then the size of the volume containing the intersected bonds 

• Mean values corrected to - 100 C. 
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is a pproximately r/2; hence, k "-' r/2. The porosity n* is the maximum which can be naturally 
obtained with granular particles such as those produced in processed snow. A reasonable 
value of n* is in the neighborhood of 0·6. The mean number of bonds per particle (0..* IN *) 
which exists at n* should be very close to 2. This would allow each particle to be touched by 
an average of four particles. Since N * is the number of particles that exists in a unit volume 
at a porosity of n* "-' 0·6, then 

3(1-0·6) 0'3 
N * "-' = -. 

47Tr3 7Tr3 

Using these estimated values in calcula ting the left side of equation (45) one has 

( r) (0 . 3) I . 2 
(0'2 m 2) 2' (2) 7Tf3 eXPI _o.6= I·2, 

which is approximately equal to I as required by equation (45) . 

CONCLUSION 

The m ethod used to incorporate the porosity-dependent strength of snow into the theory 
has resulted in a limiting strength relationship, Figure 5, which in general represents the 
observed strength of age-hardened snow; however, it appears from Figure 6 that this limiting 
curve still does not satisfactorily agree with the strength data at higher porosities. Since 
Butkovich used samples from a naturally consolidating snow mass, the higher porosity samples 
selected from sha llow depths where dn/dt is relatively large m ay not represent a n age-hardened 
snow because of the presence of a significant number of incomplete bonds. On the other hand, 
it is quite possible that the assumed distribution of the m aximum number of bonds per particle 
made in equation (7) is not valid for this higher porosity range. 

Analysis of strength data for age-hardening at constant porosity pred ic ted values of the 
parameter et which result in values of c > 7 in the ice sphere sintering equation. This may be 
a n indication that the phenom enon of bond growth for an aggregation of irregularly shaped 
ice particles, such as is visualized for snow, cannot be satisfactorily ideali zed by the sintering 
equation for a pair of perfect spheres . 

The assumption of uniform stress distribu tion in the constricted a reas of an externally 
stressed snow mass may be a fallacious one. Indeed, if significant stress concentration can 
develop just prior to failure, then the magnitudes of these concentrated stresses will be greatly 
affected by the geometry of the particles a nd bonds, i. e. they will be a function of porosity 
and time. 

Comparison of the theory with experimenta l data has predicted values for the strength 
of ice which are considerably larger than the published values for ice (Butkovich , 1954). 
At - IO°e. both the porosity-dependen t data of Butkovich a nd the time-dependent data of 
J ellinek predict consistent values for the strength of ice, 58 a nd 55 kg. /cm .2 respectively. That 
snow should predict a strength of ice that is greater than what direct experimentation on ice 
indicates is not surprising when one considers that at temperatures near the melting point 
the surface activity should anneal and repair to such an extent that more of the true molecular 
strength should be realized . The great number of individua l bonds that must be broken in 
order for the mass to fail precludes the possibility of one surface flaw precipitating failure. 

MS. received 13 July 1965 
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