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DERIVATIONS WHOSE ITERATES ARE ZERO
OR INVERTIBLE ON A LEFT IDEAL

BEN TILLY

ABSTRACT.  Letn € Z* and R be a ring which possesses a unit element, a left ideal
J, and a derivation d such that d"(J) # 0 and d"(r) is O or invertible, for all r € J. We
prove that either R is primitive, in which case R is D; with 1 < < n+1, where D; is the
ring of i X i matrices over a division ring D, or else there exist positive integers i, { and
p with p prime and 2 < ip’ < n+ 1, such that R is D;[x|,x2,...,x; ]/(.xJ;.,xJz?. .. .,X/;).
where D is a division ring with characteristic p, and furthermore there is a derivation f
of Diand ay,as,...,ap € Zp,, the center of D;, such that a € D; then

d(a) :_/'(ll)AJ;" Isz""l . ',le’ ! R
d(x)) = l+a|,xJ; Isz) ! ---AJ" l.
and
1 p-l l 1 pl l
dxpy =X ‘-‘f L apd ST

forall2 <j < (.

Bergen, Herstein and Lanski [1] have related the structure of a ring R to the special
behavior of one of its derivations. More precisely, they proved that if R is a ring with unit
and d # 0 is a derivation of R such that for every r € R, d(r) = 0 or d(r) is invertible in
R, then R must be a divisionring D, the ring D, of 2 X 2 matrices over a division ring D,
orelse D[x]/ (x?) where D has characteristic 2, d(D) = 0, and d(x) = 1| + ax for some «a
in the centre of D.

For the entire paper we shall assume that n € Z*, R is a ring with unit, J is a left ideal
of R, and d is a derivation of R with d"(J) # 0 such that for every r € J, d"(r) = O or
d"(r) is invertible in R. The results we will obtain are similar to those of (1). In fact we
shall prove the following:

THEOREM 1. Letn € 7%, R be a ring with unit, J a left ideal of R, and d a derivation
of R such that d"(J) # 0 and d"(r) = 0 or d"(r) is invertible, for every r € J. Then there
exists a division ring D such that R is either

1) Di, the ring of i X i matrices over a division ring Dwith 1 <i <n+1, or
2) Dilxi,xo, . xe /(x5 X)) where i, (,p € 77, pis prime, 2 < ip" <n+1,
and char D = p.
Furthermore, there exists a derivation f of D; and a,,aa, ... ,a; € Zp,, the center of D;,
with d(a) :f'(a)x’f'x’; X foralla € Dy,
dix) = 1+a ]x’z'" . ~x’;_',
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and

d(xj) = x’f&ﬁ” . 'xj.’:ll +ajx’l’*1xg71 . .11271 forj=2,3,..., 1.

Let us start with an easy generalization of a lemma from [1].
LEMMA 1. If0 # a € R and d(a) = 0 then a is invertible.
PROOE.  As d*(J) # 0 dr € J with d"(r) # 0 so d"(r) is invertible. Now d"(ar) =

"o ('i')d”*"(a)d"(r) = ad"(r)as 0 = d(a) = d*(a) = ---. Now ar € J and ad"(r) # 0
because aal”(r)(d”(r)fl = a # 0s0ad"(r) = d"(ar) is invertible. As d"(R) is invertible,
a is invertible. n

Before our next lemma, note that R is a ring with unit so R has a maximal ideal / and
R/ is primitive so we may let V be a faithful irreducible left R/ I-module with commut-
ing division ring D. By the Jacobson density theorem R// is dense on V considered as a
vector space over D. But then V is an irreducible left R-module with Anng(V) = I where
Anng(V) = {r ER|rV= {O}} Note also that R and D commute and R is dense on V
considered as a vector space over D. From now on /, V and D will be fixed.

Let W be some finite dimensional D-subspace of V. If a € R define Wy(a) = W and
for 0 < i, Wi 1(a) = WN (ﬂj’;o Ker(di(a))) where d°(a) = a. It is not hard to show
that for r,s € Rand i € {0,1,2,...}, if d(nw = d(s)w VO < j < iand w € W;(r) then
Wi(r) = Wi(s).

LEMMA 2. If0 £ a € J then Wy, (a) = 0.

PROOF. Since d"(a) = 0 or is invertible it is clear from Lemma 1 that R = Ra +
Rd(a) + - - - + Rd"(a). It is trivial that 0 = d(a)W,, (a) forj = 0,1,...,n so we have
0 = RaW,y1(a) + Rd(@)W,11(a) + -+ - + Rd"(@)Wypi(a) = RWyri(a) so Wyp(a) = 0
because V is irreducible. n

LEMMA 3. Let0 £ re€ R 0F£veV, andi € {0,1,2,...}. Then Ja € Rr with
a # 0 such that d(a)Wja) C Dv forj = 0,1,...,i.

PROOF: INDUCTION ON i. If i = O then Wi(a) = Wy(a) = W. Since W is finite
dimensional so is rW. If rW = 0 then trivially let a = r. If rW # 0 then, by the density
of R, choose b € R such that brW = Dv and set a = br. Then aWy(a) = aW C Dv and
a#0.

Suppose the result holds for i and choose 0 # s € Rr such that J(s)W_,»(s) C Dy
V0 < j < i. Now if d*'(s)Wi,(s) = 0 C Dv then take a = s. Therefore without loss
of generality assume that d™*'(s)W;,;(s) # 0. As W is finite dimensional d™*'(s)W.,(s)
is also so by density 3b € R such that bd""'(s)W;;1(s) = Dv and bv = v. Now for
0<j<i+1andw € Ws) note that & (bs)w = ¥}_, (1)@~ (b)d*(s)w but if k < j then
d*(s)w = 0 so

(D d(bsyw = bd'(s)w.
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Now if j < ithen di(s)w € Dv so d'(s)w = av for some « € D. But then from (1) we get
(2) d(bs)w = bd/(s)w = bay = aby = av = d/(s)w.

From (2) and the comment before Lemma 2 we get that Wi(s) = W (bs) VO < k < i+ 1.
Now let @ = bs. Then a € Rs C Rr, by (1) we get d™*' (@)W (a) = bd™' ()W (s) =
Dv #£ 0s0a# 0and d*' (@)W, (a) C Dy, and if 0 < j < i then from (2), d(a)W;(a) =
bd (s)Wi(s) = d(s)W;(s) C Dv. Therefore the result holds for i + 1. .

LEMMA 4. R/I1= D; for some 1 <i <n+ 1 where i = dimp(V).

PROOE.  Let W be an arbitrary finite-dimensional D-subspace of V. As d"(J) # 0,
Ja nonzero r € J. Also danonzerov € V sotake i = n and a as in Lemma 3. For
0<j<n d): Wj(a) — V is a D-linear map with kernel Wj,(«a) and range contained
in Dv. Hence

dimp(W) = dimp(Wo(a))

= dim[)(W]((I)) + dim[)<aW()(a)) = dim,)(W,,+|((1))

+ > dimp (d(@Wi(a)) < dimp(W,pi(a)) +n+ 1.
j=0

By Lemma 2, W, (a) = 0so dimp(W) < n+1.Since W is an arbitrary finite dimensional
D-subspace of V and V # 0 we have | < dimp(V) < n + 1. Now take i = dimp(V) and
by the density of R/I on V with V a faithful irreducible R /I-module we get R/ =~ D;. m

In all that follows i = dimp (V). If I = 0 there is nothing left to prove in the theorem,
so we will assume from now on that / # 0. Note again that Anng(V) = I. Now define
Iy = Rand for 0 < j, I; = (Y,_,d *(I) where d *(I) = {r € R | d"(r) € I}. tis
immediate that d(/;) C I;_, and that [; is an ideal. At this point we will develop some
properties of ;.

LEMMAS. Ifj€{0.1,2,...}, r€ R anda € I, \ I} then d(RaR) N (r +1) # 0.

PROOE. Let p: R — R/Iby o(r) = r+l. Nowa € I;\ I sod(a) ¢ I so ¢(d’(a)) #
0. As [ is maximal R/ is simple so r+1 € (R/I) @(d"(a))(R/I) = @(Rd’(a)R) =
#(d/(RaR)) because d/(laR) C Id/(aR) +1 C I with a € I; and similarly d/(Ral) C I.
Sod(RaR) N (r+1) # (). .

LEMMA 6. There is a largest m such that I, NJ # 0. Furthermore 1 < m < n,
Ly = 0and for 0 <j, i d (1, NJ) = 0.

PROOF. If0 # r € I,4,;NJ then R = Rr+Rd(r)+- - -+Rd"(r) C I so since I is a proper
ideal of R, I,,1 NJ = 0. As Iy NJ = J # 0 we have that m exists and 0 < m < n. Let
I = L,NJ. Now IJ,, C L,y NJ = 0soforj = 0,11 d/(1,,NJ) = 0. 1f [ (1,NJ) = 0
then 0 = d(Liad (1) = Lind™ (Jy) as d(1;2)d(J) € L1 d'(J). Thus by induction
for 0 <j, lisd(1,,NJ) = 0. Now

In+l =1R = n+l (RJIH + Rd(-]m) R Rdn(Jm))
ChJy+hLdJ,)+- -+ 1n+1d”(-]m) =0
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If 1,41 = 1,41 = 0 then m cannot be zero because I # 0 so we would be done. Now let
J be the largest j such that I; # I;,,. If j > m then by Lemma 5 choose a € I; \ I such
that @(a) € 1 +1. As a € L.y, ad™(J,,) = 0. As for k < j, d*(a) € I we have

0=d(ad"(Un)) = d'(@)d"(J) = d"(J) (mod )

and J,, € I, 00 # J, C L,y NJ = 0. As this is impossible, j < m. Therefore

Iw+1 = 1,41 and we are done. =
From now on m and J,, will be as used in Lemma 6.

LEMMA 7. R and D have characteristic p with p prime such that p \ m + 1. Also
2<p<n+l.

PROOF. By Lemma 5 3r € RJ,R C I, such that d"(r) € 1 + 1. By Lemma 6,
d"1(r) exists and 0 = d”'(r)r. Now using the fact that Anng(V) = [ we obtain 0 =
A" (d" N r)V = s ("M d(DV = (m+ Dd"(nd"()V = (m+ 1)V. But
m+ 1 € D so D has characteristic p such that p \ m + 1, and as D is a division ring, p is
prime. But then pV = 0sop € [ whichgivesp = 0inRby Lemma 1. That 2 < p < n+1
is trivial. [

From now on p will be the characteristic of R. Now the lemmas will begin to narrow
in on the structure of R.

LEMMA 8. [f0 <j < mthen 3 a function §: R/l — R such that O(r + 1) € r + 1 and
(1’(9(r+ 1)) € I forevery r € R.

PROOF: INDUCTION ON j. If j = O then take any function §:R/I — R such that
O(r+1) € r+1forevery r € R, then d(H(r+ l)) € R = I so the result holds. Sup-
pose the result holds for some j with j < m. Then 3Y:R/I — R withY(r+1) € r+1
and d(v’(r + I)) € I; for every r € R. Now dm=1(J,,) is nonempty and d" ) 0
(41 \ Is2) # O sofora € R 3b € I such that #*'(b) € a+1by Lemma 5. .. Ja
function ¥: R — I}, such that &*! (v’;(a)) € a+1 forevery a € R. Now take 0(r + ) =

Wr+D—w(d (2r+D) ). Thenfor r € R 0-+1) € r+1+1.y = r+land d(0(r+1)) =
d(w(ru)—w(di“(w(r+/)))) € f—d) = I Butd (d(0(r+D)) = d* (Y(r+1))
! (w(df“(v(m)))) € a (10+D) = (& (YD) +1) = 1. . d(80+D) € L. m

LEMMA 9. R has a subring R' withd(R') C I, R=R +1, R NI =0, and R’ = D,.

PROOFE.  Apply Lemma 8 withj = m to find 0: R/ — R such that (r+1) € r+1 and
d(0(r+1)) € I,, forevery r € R.Now if € Rand rr; € r+1 such that d(ry),d(r) € I,
then ry —ry; € I,y = 0by Lemma 6 so r; = r,. .. O(r + 1) is the unique element
ry € r+Iwithd(r)) € I,,. Now define R" = 0(R/I). Then by definition of R', d(R") C I,
andas 0 € 0+/ = ITand d(0) = 0 € I,,, we have R NI = 0. Now if r,s € R then
0 +D+0(s+1) € r+s+1and d(0(r+D)+0(s+1)) € Ly 50 O(r+s+1) = O(r+1)+0(s+1)
by the uniqueness of € r+ s+ I with d(t) € 1,,. Similarly O(rs + 1) = 0(r + DO(s + I).
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.. 0isaring homomorphism from R /I — R'.Now if 0(r+1) = Othen0 € r+1 = r € |
s0  is a ring isomorphism. Using Lemma 4, R" = 6(R/I) = D;so R" = D; and R" is a
subring of R. u

For convenience R’ will be called D; from now on. Also Z; will be the center of R
and Zp, the center of D;. The function 6 in Lemma 8 will not be used again.

LEMMA 10. If1 <j <mandr € R then 3s € I such that d(s) € r+ I;.

PROOF.  Suppose that it is false and let j be the least j € {1,2,...,m} such that
dr € R for which the result fails. By Lemma 6, 0 < m — 1 so d™ '(J,n) exists and
d"'(J,)N U\ ) # 0. Therefore Lemma 5 can be applied to show thatj # 1. .. 1 <
and Ja € I such that r — d(a) € I;-y. As d"/(J,) N (I; \ Ix1) # 0, by Lemma 5
3b € Rd"(J,)R C I such that d/(b) € &' (r —d(a)) + I. Let s = a+b € I. Now
r—d(s) = (r—d@)—db) € [y and &~ (r — d(s)) = &' (r — d(a)) — d(b) € I s
r—d(s) € I;. .. jdoes notexist by contradiction so the lemma holds. =

LEMMA L1, Ifr € Zg then Ja € INZg with d(a) € r+ 1. If in addition r € [ then
” =0.

PROOF.  Apply Lemma 10 to find @ € [ such that r — d(a) € I,,. Then let K =
{ab—ba| b € R}. Then K C I and d(K) C K +1,, so it is immediate that K C [,,4; = 0
so a € Zg. If in addition r € I then #’ € I and d(r") = p'd(r) = 0 € I,, because p is
the characteristic of R, so therefore #’ € 1,,,; = 0. =

Suppose that Jx;,xy,...,x, € I N Zg such that d(x;) € 1+ 1, and d(xj) €
X 'x’z’ ! -~-xj.’_|' + 1, forevery j € {2,3,...,(}. Recall from number theory that if
k€ {0,1,...,p"—1} then k has a unique representation as nyn_; - - -ny = ny+nap+-- -+
np' withny,na, ... ,n, € {0,1,...,p — 1}. Now define 0: {0, 1,...,p" — 1} — Rby
O(k) = O(neng_y -+ -ny) = x]'x52 - - - X}" where 1V is defined to be 1. Note that 6(p/ ') = x;.
Now Lemma 12 is a technical result that is crucial in finding the structure of R.

LEMMA 12. If x1,x2,...,x¢ exist and 0 # xj,x2,...,x; then V0 < k < pl =1,
0k) € I, N\ Zg and d* <H(k)> is invertible.

PROOF: INDUCTION ON k. If k = 0 then 0(k) = xx - - x = 1 € [y Zg and is also
invertible. Suppose the result holds for k and k < p’ — 1. Note that (k + 1) is the product
of elements from Z so 8(k + 1) € Z(R). To finish, divide into cases.

CaSEL. k+1=p/ ! forsomeje {1,2,...,(}.

Then 6(k + 1) = x;. As the result holds for k, (k) € I and d*(6(k)) is invertible
500 # k) € I, = k < m. Now d(0(k + 1)) = d(x) € »] ' "1, =
O((p— DA +p+--4p D))+ Ly = 0" — 1)+ 1, = 0k) + 1, so d(0(k + 1)) € Iy As
Ok+1) =x; € LOKk+1) € Ly  AsO # Ok + 1) € gy k+1 < mso d (§(k + 1)) €
d (00 +1,) C d(0(k)+1yy ) C d*(0k))+1. . d*™*'(0k+1)) = d*(0(k)) —a for some
a € 1. As 0(k) € Zg, d“(0(k)) € Zg and a € I 50 a"*' € I,y = 0. Since (d*0(k)) — a)

divides (4(800)) " — a1 and (60 is invertible, so is 1 (8 + 1).
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CASEIL. k+1#p'VI<j<Ut.

Letk+1 = n +mp+---+np' ™" withny,n,...,n, € {0, l,...,p — 1}. Let
{ijar--int = {j € {1.2,....€} | nj # 0} withji < j, < --- < jy. Note that
Olk+1) = X' x5 -0y = ”" ;” . '” .Now O(k+1) € 1, 0(k) € I, k # 050 n;j, exists
and n;, is invertible as an e]ement of D (and therefore of R), and a’"(@(k)) is invertible

so the lemma would follow lfd(H(k + ])) = n;,0(k).
Now suppose that 2 < M < N. Then

A A X € g d(x, )R

Juo2 jM 1 Jme1
using xi, X2, ..., X¢ € Zg. Butx;, d(x;,,)R € X R+x;,I,, = 0 by Lemmas 6 and 11 and the

fact that j; < ju and the definition of d(x;,,). Therefore
dk+1) = d@}'ﬁ'x}l’: )

—_ 1), J12 M- MM+ M2 |, N
- Z x/“ lel X;M 1 d(x" )ij 1 ij x/"\
u/l ol n,, njy . ny

I7 i ')C.I'N

N

_ d( n,I )xnn . .X::N € nj|()‘1|’_l-xlz) 1 xp II +1m)

However because k+ I # p/~! V1 <j < { we have trivially 2 f nj, +nj, +- -+ +n;, and

m 1 - 0 SO
A0+ 1) = o7 DT
- n./'ng((P— 1)(1 +p+-~-+pfl’2)_pl" -1 +’l_/lpj|7I
+nj_,[7j""] 4. .+’1.I'NP/‘N7I)
Therefore the lemma holds. .

LEMMA 13. There exists a largest { € 7% such-that x|,x,,...,x; all exist and are
nonzero. Furthermore m = p' — 1.

PROOF. 1 € Zgsoby Lemma 11, x; exists. By Lemma 6,1 <msod(x;) € 1 +1,, C
1+7and! # Rsod(x)) ¢ I = x; # 0. Now if there is no last £ such that x|, x2, ..., x; all
exist and are nonzero then take £ = m and then by Lemma 12, 0 # Ic C Iy contrary
to Lemma 6 so a last such £ exists. But now take ¢ to be maximal and by Lemma 12,
d”'~}(6(p'—1)) isinvertibleand 0(p' —1) € I/, butd' - 'g()(pf— 1) ¢ Isom>p'—1.
However by Lemma 11 3x,,, € I N Zg with d(xsy) € 0(p* — 1) + 1, but £ is maximal
s0xr4 = 0and 8(p' — 1) € I, from which m < p’ — 1. Therefore m = p* — 1. »

LEMMA 14. Let 0 <j < p' — 1. Then I; = L1y + D;0()).

PROOF. By Lemma 12, 0(j) € I; so as I;;; C I; and [; is an ideal, I;;; + D;0(j) C I;.
Now by Lemma 12, d’(()(j)) is invertible so 0(j) € I; \ I;.1. Therefore if r € I; then by
Lemma 5 ds € RO(j)R = RO()j) (because 0(j) € Zg) such that &(s) € d(r) + I. However
s = (a+ b)8(j) for some a € D; and b € I by Lemma 9. But then df(bt‘)(j)) elsod(r) e
df(aﬂ(j))+l. As r—af(j) € I this gives r—ab(j) € Ii1. .. r € ab()+1i C Di0G)+1j4.
" 1_/' QD;H(j)+I,+| SO [jZ D,-9(j)+1j+|. n

Now it is a matter of putting together the pieces.
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LEMMA 15. There exists a derivation f of D; and ay,ax,...,a; € Zp, such that
Va € D, d(a) = fl@)¥," 47" d) = L+ ad W and d(xy) =
AT T orj =23,

PROOFE.  Note that &~ 'xy ™" -x~" = 0(p' — 1),and by Lemma 13,m = p' — 1 so by
Lemmas 6 and 14, I, = D8(p' — 1). Now suppose that a,b € D; and
(@ — b)0(p' — 1) = 0. Then by Lemma 9, 0 = & '((a — b)o(p' — 1)) €
(a—b)dr' ! (9(/7“ — l)) +1s0(a—byd' ! (9([)‘ — l)) € IsobyLemma 12,a—b €I
But then by Lemma 9, ¢ — b € IND; = 050 a = b. Therefore if af(p’ — 1) = 0 then
a = 0. Thus there exists a unique function f: D; — D; such that if @ € D; then d(a) =
f(@)0(p" — 1). Now if a,b € D; then f(a + b)0(p' — 1) = d(a +b) = d(a) + d(b) =
(f(a) + f(b))e(p" — D sof(a+b) = fla)y+f(b). Also f(ab) 8(p' — 1) = d(ab) = d(a)b +
ad(b) = (f(a)b+af(b))B(p' —1) so f(ab) = f(a)b+af(b)sof isaderivation. Now as [, =
D,«O(p"‘; 1) by Lemma 14, from the definitionof x; da; € D; withd(x;) = 1+a,0(p' —1).
But then by the definition of x1, x; € Zg so | +a8(p" — 1) = d(x)) € Zg s0 Ya € D;,
0= a(] +a,0(p" — l)) — (l +a,0(p" — l))a = (aa; —a1a)0(p' — 1) soaa; —a,a = 0.

" ay € Zp,. Similarly if j = 2,3,..., { thend(x)) = & '7" -7+ aif(p’ — 1) with

aj (S Z[)'. |
LEMMA 16. R = Dilyi,y2, ...,y 1/, 55, /).
PROOF. ByLemma 11,0 =4 = x5 = --- = &/ so there is a unique ring homomor-

phism ¢: Di[y1, y2,....ve 1/ OF ... ¥) — R with (a) = a Va € D; and U(y;) = x;
forj=1,2,...,f. Now 1 is an epimorphism because by Lemmas 14 and 13,

R = l() = D,’ +[|
=Di+Db()+1 = =D+ D)+ DO2)+---+ DO — 1)
CU(Ddyr v,y G yas . ov0)).

Now to finish it suffices to show that 1 is one-to-one. Now suppose that a €
Dilyi,y2, ..oy 1/ O V5. ... »)) and that Y(a) = 0. Formally, v(a) = ap+a,0(1)+- - -+
a[,(,,]()(p{ — D withag,ar,...,a, | € D;. If some a; # 0 then let j be the least j such
that a; # 0 and note that (lf(d)(a)) ¢ I contrary to v(a) = 0. Clearly if aq, Ay dy )
are all O then ¢ = 0 0 v is one-to-one. n
Let us review what part of Theorem | we now know. For the case where I = 0,
Lemma 4 does the job. If I # 0 then Lemmas 15 and 16 give us most of Theorem 1 and
together with Lemma 7 all that we do not know is 2 < ip’ < n + I. However we have
1 <i<n+lfromLemma4,2 <p <n+IfromLemma?7and ] < ¢ from Lemmas 6
and 13. Thus we know that 2 < ip’. The rest of the paper will show that ip” < n+ 1.
From Lemmas 6 and 14 3b € D, such that 0 # bO(m) € I,, N J. By similar reasoning

to Lemma 3, 30 # a € D;b such that dim[)(fj((l)(m::) Kcr(f"(zl)))) = 0Oor 1 for
j=1,2,...,nand dimp(aV) = 0 or 1 also. Now define Ly = O and forj € 7Z*, L, =

J

Dia + Dif (@) + - -+ Dif '(a). Therefore Ly € Ly C ---and f(Ly) € Ly, f(Ly) C Lo,

https://doi.org/10.4153/CMB-1994-018-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1994-018-7

DERIVATIONS 131

f(Ly) C Ls,.... Nowif N = jp' + k withj € {0,1,2,...,}and k € {0,1,...,p" — 1}
then define LIN] = L(j,k) = RL;j+1,__,L;+;. Note that0 # a € J and Lemma 1 imply
that R = Ra + Rd(a) + - - - + Rd"(a).

THEOREM 1. Letn € 77, R be a ring with unit, J a left ideal of R, and d a derivation
of R such that d"(J) # 0 and d"(r) = 0 or d"(r) is invertible, for every r € J. Then there
exists a division ring D such that R is either.

1) D, the ring of i X i matrices over a division ring Dwith 1 <i<n+1, or
2) Dilxy,xa,....x() /(4. x5, X)) where i, {,p € 7%, p is prime, 2 < ipt <n+1,
and char D = p.
Furthermore, there exists a derivation f of Dy and a,, a», ... ,a¢ € Zp,, the center of D;,
withd(a) = f(a) "'~ X" foralla € D, d(x)) = 1 + '3 a07" and

d(g) =2 gl
Jorj=23,..., L

PROOF.  As has been noted, all that is left is to show that ip" < n + 1. This will be
proved under the assumption d(L[N]) C L[N + 1] YN > 0, and then that assumption
will be proved.

PART 1. Assume d(L[N]) C LIN+1]VN >0.

Note that L[0] € L[1] C --- C L[n] and for N € {0,1,2,...}, d¥(L[0]) C L[N].
Now choose j, k with0 < k < p' — 1 withn + 1 = jp’ + k. It is easy to verify that
LIn) C L; +1. Butad(p' — 1) € L[0]so R C RL[O]+RL[1]+---+RL[n] = RL[n] C
(Di+D(Li+D) CLi+I CRsoR = Lj+I1. Notethatif ¢, € D;thenc| € Li+Iso3c; € L;
withey—c; € D;NI = 0by Lemma 9and L; C D;so D; = L; = Dia+Df (a)+- - +f~'(a)
so by the same reasoning as in Lemmas 2 and 4, j > dimp(V) = ibutn+ 1 = jp' +k
andOSksojS”p%'soipfgn+l.

PART 2. Prove that d(L[N]) C LIN+ 1] VN > 0.

INDUCTION ON N. If N = Othen L[N] = L(0,0) = RLy +1, Ly =1, L so
d(LIN]) € I, oLy +1d(Ly) = RLo + I, _,_,L; = L[1] using the fact that d(L,) C I,,.

Now suppose that d(L[N]) C L[N + 1] and divide into cases.

CASEL. N+1=jp +kwithl <k <p'—1.
Then by Lemma 14, LIN + 1] = L(j,k) = RL; + Ly oL = RLj+ 1y 4 Ljn +

DiO(p" —k— 1)L C L[N] +Ly g Ljsr. o d(LIN+1]) C d(LIND +d(y )L +
Ip’vkvld(LjH) (_: L[N+ ]] +1p’~k72Lj+l Q RLI +1p’——k—2Lj+| = Lu,k"' ’) = L[N+2]

CASEIl. N+1=jp' +kwithk=p' —1.
Then LN+ 1) = RL; +IoL;;y = RLj, because Iy = R. .. d(LIN+1]) C d(R)Ljs +

RH(pF — 1)f(Ljs1) € RLj +1p’—le+2 =LG+1,00= LIN+2].

CASEIIl. N+1=jp' +kwithj € Z* and k = 0.
Then L[N+ 1] = RLJ' +]I,«_|Lj+| = RLJ;| +l()Lj +II,«_|LJ‘+| = L[N] + 1,;’—1Lj+l-

Therefore d(LIN+11) € LIN+ 1]+, Ly = RLi+1, Ly = L(j.1) = LIN+2]. m

P
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