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DERIVATIONS WHOSE ITERATES ARE ZERO 
OR INVERTIBLE ON A LEFT IDEAL 

BEN TILLY 

ABSTRACT. Let n G Z+ and R be a ring which possesses a unit element, a left ideal 
J, and a derivation d such that d"(J) ^ 0 and d"(r) is 0 or invertible, for all r G J. We 
prove that either R is primitive, in which case R is Dj with 1 < / < n+ 1, where D, is the 
ring of / x / matrices over a division ring D, or else there exist positive integers /, ( and 
p with/? prime and 2 < ip( < n + 1, such that R is Dj[x\,X2,. • • ,X( J /C^,x^, . . . , J^) , 
where D is a division ring with characteristic/;, and furthermore there is a derivation/ 
of D, and a\, ai,.. -,a( G Z/j., the center of D,, such that a G D, then 

and 

for all 2 < ; ' < L 

d(xj] 

d{a)=f(a)xp-l4-]---xp-1, 

d(x\ ) = 1 + a j y,7 JĈJ • • • -^ 

) = y p 4 • • • •*/'-!+ «/̂ r -̂ r 

Bergen, Herstein and Lanski [1] have related the structure of a ring R to the special 

behavior of one of its derivations. More precisely, they proved that if R is a ring with unit 

and d ^ 0 is a derivation of R such that for every r G R, d(r) — 0 or d(r) is invertible in 

R, then /? must be a division ring D, the ring £>2 of 2 x 2 matrices over a division ring £>, 

or else D[x]/(x2) where D has characteristic 2, J(D) = 0, and d(x) — 1 + ax for some « 

in the centre of D. 

For the entire paper we shall assume that n G Z+, R is a ring with unit, 7 is a left ideal 

of/?, and J is a derivation of R with dn(J) ^ 0 such that for every r G 7, <i"(r) = 0 or 

dn(r) is invertible in R. The results we will obtain are similar to those of (1). In fact we 

shall prove the following: 

THEOREM 1. Let n G Z+, R be a ring with unit, J a left ideal ofR, and d a derivation 

ofR such that dn(J) ^ 0 and dn(r) — 0 or dn(r) is invertible, for every r G J. Then there 

exists a division ring D such that R is either 

1) Di, the ring ofi x / matrices over a division ring D with 1 <i <n+\, or 

2) Di[x\,X2, • . . ,Xf]/(xl?
vx

!^ . . . ,A^) where /, l,p G Z+, p is prime, 2 < ip( < n+ \, 
and char D — p. 

Furthermore, there exists a derivation f ofDj and a\, 0 2 , . . . , af G ZDi, the center ofDj, 

with d(a) = f(a)xp
{~ x^~ • • • /^ for all a G Diy 

d(x\) = 1 + a^l x^~ • - -A^~ , 
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DERIVATIONS 125 

and 
d(xj) = jf'Vf1 • • -ap1 + a/x-

ljÇx • • .^"1 forj = 2,3,.. . , L 

Let us start with an easy generalization of a lemma from [1]. 

LEMMA 1. IfO ^ a G R andd(a) = 0 then a is invertible. 

PROOF. AS dn(J) ^ 0 3r G J with dn(r) ^ 0 so <f(r) is invertible. Now dn(ar) = 
EJLo i^dn-\d)d\f) = adn(r) as 0 = J(a) - d2(a) = • • •. Now ar e J and <3<f(r) ^ 0 

because adn{r)(dn(r)) — a ^ 0 so aûP(r) = J"(«r) is invertible. As dn{R) is invertible, 
a is invertible. • 

Before our next lemma, note that R is a ring with unit so R has a maximal ideal / and 
R/I is primitive so we may let V be a faithful irreducible left /^//-module with commut­
ing division ring D. By the Jacobson density theorem R/I is dense on V considered as a 
vector space over D. But then V is an irreducible left /^-module with Ann#( V) = I where 
Ann^(V) = {r G R \ rV = {0}}. Note also that /? and D commute and R is dense on V 
considered as a vector space over D. From now on /, V and D will be fixed. 

Let W be some finite dimensional £>-subspace of V. If a G R define Wo(a) = W and 

for 0 < /, Wi+i(a) = W(l (n=0Ker[dj(a))) where d°(a) = a. It is not hard to show 

that for r, s G R and / G {0, 1,2,...}, if ^(r)w = dj(s)w V0 < y < / and w G W/O) then 

W/(r) = Wi(s). 

LEMMA 2. IfO ^ a eJ then Wn+\(a) = 0. 

PROOF. Since d'1(<2) = 0 or is invertible it is clear from Lemma 1 that R — Ra+ 
Rd(a) + • • • + Rdn(a). It is trivial that 0 = dj(a)Wn+i(a) for y = 0 , 1 , . . . , n so we have 
0 = RaWn+](a) + Rd(a)Wn+l(a) + • • • + Rdn(a)Wn+l(a) = RWn+l(a) so Wn+l(a) = 0 
because V is irreducible. • 

LEMMA 3. Let 0 ^ r e R, 0 ^ v e V, and i G {0,1,2,...}. 77iéw 3a G flr wiYA 
a ^ 0 such that dj(a)Wj(a) Ç Dv/or/ = 0 , 1 , . . . , /. 

PROOF: INDUCTION ON /. If / = 0 then Wj(a) = Wo(a) = W. Since W is finite 
dimensional so is rW. If rW — 0 then trivially let a = r. If rW ^ 0 then, by the density 
of R, choose b G R such that brW = Dv and set a = Z?r. Then aWo(a) = #W Ç Dv and 
a^0. 

Suppose the result holds for / and choose 0 ^ s G Rr such that d*(s)Wj(s) Ç Dv 
V0 < j < i. Now if di+\s)Wi+\(s) = 0 Ç Dv then take a = s. Therefore without loss 
of generality assume that di+l(s)Wi+l(s) ^ 0. As W is finite dimensional di+l(s)Wi+{(s) 
is also so by density 3b G R such that bdl+{(s)Wi+\(s) = Dv and Z?v = v. Now for 
0 <j < i + 1 and w G W/O) note that ^'(fa)vv = E { = 0 ( j ) ^ ^ ) ^ ( * but if k < j then 
d*Cs)w = 0 so 

(1) dJ{bs)w = bdJ(s)w. 
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Now if j < i then dJ(s)w G Dv so dJ(s)w = av for some a G D. But then from ( 1 ) we get 

(2) d'(bs)w = bd'(s)\v = bav = a&v =crv = d'(s)w. 

From (2) and the comment before Lemma 2 we get that Wk(s) — Wk(bs) VO < k < i+ 1. 

Now let a = fa. Then a e Rs Ç Rr, by (1) we get di+](a)Wi+l(a) = bdi+l(s)Wi+\(s) = 

Dv^Osoa^O and di+\a)Wi+\(a) C Dv, and if 0 <j < i then from (2), d>(a)Wj(a) = 

M'(5)W,-(5) = tf'CvJW/s) Ç Dv. Therefore the result holds for / + 1. • 

LEMMA 4. R/I = D, for some 1 < / < n + 1 w/iere / = dimD(V). 

PROOF. Let W be an arbitrary finite-dimensional D-subspace of V. As cf (J) ^ 0, 

3 a nonzero r e J. Also 3 a nonzero v G V so take / = n and a as in Lemma 3. For 

0 <j < n, d}{a)\ Wj(a) —> V is a D-linear map with kernel Wj+\ (a) and range contained 

in Dv. Hence 

dimD(W) = dimD(W0(fl)) 

= dimD(Wi(a))+d\mD(aW0(a)) = • • • = dimD(W,I+i(fl)) 

+ £ d i m D ( ^ ( û ) W y ( a ) ) < dimD(lVn+1(fl)) + n + 1. 

By Lemma 2, Wn+\(a) = Osodim/^W) < n+1. Since W is an arbitrary finite dimensional 

D-subspace of V and V ^ O w e have 1 < dim/^V) < n + 1. Now take / = dimo(V) and 

by the density of R/I on V with V a faithful irreducible 7?/7-module we get R/I = D,. • 

In all that follows / = dim/)(V). If / = 0 there is nothing left to prove in the theorem, 

so we will assume from now on that 7 ^ 0 . Note again that Ann#(V) = 7. Now define 

/o = R and for 0 < f /,- = Hk=0d
 kU) where d~k(I) = {r e R \ dk(r) G / } . It is 

immediate that d(Ij) Ç 7/__i and that 77 is an ideal. At this point we will develop some 

properties of 77. 

LEMMA 5. Ifj G {0, 1,2, . . .}, r G R, and aelj\ Ij+\ then dJ(RaR) n(r + I)^V). 

PROOF. Letip:R-*R/Ibyip(r) = r+7. Nowa G 7,\7/+i sod 'O) ^ 7so tp{dj(a)) ^ 

0. As 7 is maximal / ? / / is simple so r + 7 G (R/I) ^(d'(a))(R/l) = ^{Rd/{d)R) = 

^(dj{RaR)) because ^'(/a/?) Ç 7^(«/?) + 7 Ç 7 with a G 7, and similarly dJ(RaI) Ç 7. 

.'.di(RaR)n(r + I)^Q. • 

LEMMA 6. 77zere is a largest m such that Im H 7 / 0. Furthermore 1 < m < n, 

//w+i = 0 and for 0 <j, Ij+ld
J(IfnnJ) = 0. 

PROOF. If 0 ^ r G 7„+ifUthen7? = Rr+Rd(r)+- • -+Rdn(r) Ç 7 so since 7 is a proper 

ideal of 7?, /M+1 D J = 0. As 7() Pi 7 = J ^ 0 we have that m exists and 0 < m < n. Let 

Jm = /mn;.Now/y,„ ç /m+1 r v = o sofor./ = o,iJ+{d
j(imnj) = o. ifij+xd

j{imr\J) = o 
then 0 = d(lj+2d

j{Jm)) = Ij+2d
i+l(Jm) as d(IJ+2)d

j(Jm) Ç Ij+\dJ(Jin). Thus by induction 

for 0 < 7, 7/+1 ^(7W D 7) = 0. Now 

7„+1 = 7„+17? = /ll+1 (RJ,„ + Rd(Jm) + • • • + / ? J ' V , j ) 

Ç lxJm + I2d(Jm) + • • • + In+\dn(Jm) = 0 
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If Im+\ = In+\ — 0 then m cannot be zero because / ^ 0 so we would be done. Now let 

j be the largest y such that Ij ^ IJ+\. If y > m then by Lemma 5 choose a E Ij\ Ij+\ such 

that d?(a) G l + / . A s f l E / m + i , adm(Jm) = 0. As for k < j , dk(a) G / we have 

0 = d>(adm(Jm)) = dj(a)dm(Jm) = dm(J,„) (mod /) 

and Jm Ç lm so 0 ^ Jm Ç /w+1 n 7 = 0. As this is impossible, j < m. Therefore 

Im+\ = In+\ and we are done. • 

From now on m and Jm will be as used in Lemma 6. 

LEMMA 7. R and D have characteristic p with p prime such that p \ m + 1. Also 

2<p<n+ 1. 

PROOF. By Lemma 5 3r G ft/w# Ç Im such that dm(r) G 1 + /. By Lemma 6, 

dm~l(r) exists and 0 = dm~l(r)r. Now using the fact that Ann/?(V) = / w e obtain 0 = 

rf"+i(^-i(r)r)y = £ p | ( ' " ^ j ^ - ^ ^ W V = (m+ l)<im(r)dm(r)V = (m + \)V. But 

m + 1 G D s o D has characteristic /? such that p\m+ 1, and as £> is a division ring, /? is 

prime. But then p V = Osop G /which gives p = 0 in/? by Lemma 1. That 2 <p < n+\ 

is trivial. • 

From now on/? will be the characteristic of R. Now the lemmas will begin to narrow 
in on the structure of R. 

LEMMA 8. I/O <j<m then 3 a function 9: R/I —> R such that 9(r +1) E r +1 and 

d(d{r + lj) G Ij for every r G R. 

PROOF: INDUCTION O N ; . If y = 0 then take any function 9: R/I —> R such that 

9(r + I) G r + I for every r G R, then d(0(r + I)) G /? = IQ SO the result holds. Sup­

pose the result holds for some j with j < m. Then 37: R/I —* R with 7(r + /) G r + / 

and d(l(r + /)) G Ij for every r G R. Now dm~j~l(Jm) is nonempty and dm~j~x(Jm) n 

(/y+i \ /y+2) ^ 0 so for (2 G /? 3Z? G /y+i such that <i/+l(Z?) G « + / by Lemma 5. .'. 3 a 

function 1/;: /? —» /7+i such that dy+I (^(a)) E a + I for every a E R. Now take 0(r + /) = 

7 ( r + / ) - ^ ( ^ ' + l ( 7 ( r + / ) ) V Then for r ERJ(r+I) E r+I+IJ+] = r + / a n d d(0(r+I)) = 

dil(r+I)-i){dJ+\l{r+I))^\ E Ij-d(IJ+{) = I j . But d^d (9 (r+I))^j = d^x (7(r+/)) -

flP+l^(^"+l(7(r+/)))l GJ / + , (7 ( r4 - / ) ) - ( ^ ' + 1 (7 ( r+ / ) )+ / ) = / . / . d(0(r+I)) G/,+ l . • 

LEMMA 9. /? /ww A s ^ r m g /?' w/tfi d(fl') Ç /w, R = Rf +1, R' n / = 0, an J /?' ^ A . 

PROOF. Apply Lemma 8 withy = m to find 0: R/I —> /? such that 0(r + /) G r + / and 

d(Q(r + t)) E Im for every r E R. Now if r E Z?andrir2 G r + / such that d{r\),d(r2) E Im 

then r\ — r2 E Im+\ = 0 by Lemma 6 so n = r2. .'. 9(r + I) is the unique element 

n G r + Imthd(n) E Im. Now define/?' = 0(/?//). Then by definition of R\ d{R') Ç /w 

and as 0 G 0 + / = / and d(0) = 0 G /m, we have tf' H / - 0. Now if r,s E R then 

9(r + I) + 9(s + I) Er + s + Itmdd(9(r+I) + 9(s + I)) E /m so 9(r+s + I) = 9(r+I) + 9(s + I) 

by the uniqueness of t E r + s + I with d(t) E Im. Similarly 9(rs + I) = 9(r + I)9(s + / ) . 
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.'. 0isaringhomomorphismfrom/?//^7? /.Nowif 9(r+I) = OthenO G r+I => r G / 
so 6 is a ring isomorphism. Using Lemma 4, /?' = 0(R/l) = D, so /?' = Dx and /?' is a 
subringofT?. • 

For convenience R! will be called D, from now on. Also ZR will be the center of R 
and ZD. the center of D/. The function 0 in Lemma 8 will not be used again. 

LEMMA 10. If\<j<m and r G R then 3s G 7 swc/z that d(s) G r + 7;. 

PROOF. Suppose that it is false and let j be the least j G {1,2, . . . , m} such that 
3r G R for which the result fails. By Lemma 6, 0 < m — 1 so dm~x(Jm) exists and 
dm~ ' (Jm) n (7i \ /2) 7̂  0. Therefore Lemma 5 can be applied to show that 7 ^ 1. .'. 1 < j 
and 3<3 G / such that r - d(a) G 7/_i. As dm~~J(Jm) n (/,- \ 7/+i) ^ 0, by Lemma 5 
3/7 G Rdmj(Jm)R Ç /,- such that dj(b) G ^'~1 (r - d{aj) + LUX s = a + b £ I. Now 
r - d(s) = (r - d(a)) - d(b) G 7 M and dJ~x (r - d(sj) = d^x (r - J(«)) - '̂(fe) G 7 so 
r — d(s) G Ij. .'. j does not exist by contradiction so the lemma holds. • 

LEMMA 11. IfreZR then 3a G 7 n ZR with d(a) e r + lm. If in addition r G 7 then 
rP = 0. 

PROOF. Apply Lemma 10 to find a G 7 such that r — <7(<z) G Im. Then let AT = 
{ab-ba\beR}. Then ^ Ç 7 and d(K) ÇK + Im so it is immediate that K Ç //w+1 = 0 
so « G Z/?. If in addition r G 7 then r? G 7 and d(V;) = prp~xd(r) — 0 G 7,w because /? is 
the characteristic of/?, so therefore r17 G 7m+i = 0 . • 

Suppose that 3x\9X2,...,x? G 7 n ZR such that d(xi) G 1 + 7 , and J(x;) G 
xp~xxp

1~
x • • • JK̂ TJ1 + Im for every y G {2 ,3 , . . . , £}. Recall from number theory that if 

k G { 0 , 1 , . . . , / / — 1} then/: has a unique representation as n? n( __j • • -n\ = n\+n2p+- • •+ 
nfp

e~l v/ithn\,n2,...,ne G {0, 1,... ,/? - 1}. Now define 9: { 0 , 1 , . . . , / / - 1} -» /? by 
0(fc) = Q(ntni-\ • • -ni) = J t ^ 2 • • - ^ where r° is defined to be 1. Note that 0(/7/"~1) = jcy. 
Now Lemma 12 is a technical result that is crucial in finding the structure of R. 

LEMMA 12. Ifx\,X2,... ,x? exist and 0 ^ X\,X2,... ,xç then^O < k < pf — 1, 
0(fc) eIknZR anddk(6(k)) is invertible. 

PROOF: INDUCTION ON k. If k = 0 then 0(fc) = J C ^ • • • tf = 1 G 70 n Z/? and is also 
invertible. Suppose the result holds for k and k < p[' — 1. Note that 0(fc+ 1 ) is the product 
of elements from ZR so 0(k + 1) G Z(/?). To finish, divide into cases. 

CASE I. Jfc+1 =/y'~1 for some; G {1,2, . . . , £}. 
Then 0(fc + 1) = Xj. As the result holds for /c, 0(fc) G Ik and dk{0(k)) is invertible 

so 0 ^ 0(fc) e Ik => k < m. Now rf(0(A; + 1)) = </(*;) G xl\~xxF2 ' • • - ^ + /,W = 

0((p - 1)(1 + /?+••• +/y'"2)) +7m = fl^'"1 - l) + /m - 0(£) + 7w so d(6(k+\)) G 7,. As 

0(fc + l) = jcy el,6{k+ 1) £/*+,. As O^0(fc+1) G7*+1,£+l < m so ^ + 1 (fl(A: + 1)) G 

dk(0(k)+Im) Ç dk(6(k)+Ik+l) Ç dk(0(k))+L .'. ^+ 1(#(£+l)) = rf*(0(fc))-aforsome 

ael.As 6(k) G Zfl, dk(6(kj) e ZR md a e I so (3m+1 G 7m+j = 0. Since (tf*0(*)) - a) 

divides (^(0(it)))m+ - am+x and ^ ( 0 W ) is invertible, so is dk+x (6(k + 1)). 
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CASE IL k+\ ^ pj~] VI <j< L 

Let k + 1 = n\ + ri2P + • • • + ri(pl~x with n\,ri2,... ,ri£ G {0,1,...,/?— 1}. Let 
{J\J2,.--JN} = (/ G {1,2 €} | fij ̂  0} with71 <j2 < ••• < j N . Note that 
6(k+ 1) = x ^ 2 •. -xT/ = x^x^ • • • JC>. Now0(£ + l) G /, 0(ifc) e /*, ifc ̂  0 sonh exists 
and ny, is invertible as an element of A (and therefore of/?), and d* (#(&))• is invertible 
so the lemma would follow if d{d(k + 1)) = rijx9{k). 

Now suppose that 2 < M < N. Then 

^xni.. .xy-id(xy)xn.JM^ • • -x> e Xj.d(xiM)R 
7i Ji JM-\ V JM ' JM+\ JN •/1 V JMJ 

using x\,X2,...,xz GZ/j. But jty, d(xjM)R G^ /? + JCj,/m = 0 by Lemmas 6 and 11 and the 
fact that71 < JM and the definition of d(xjM). Therefore 

d(k+l) = d(xnJlxnj2---xniN) 
v ' v 7i 72 7w 

= V x"'/'2 • • •£» ' d(x"M)x"M+<x""+2 • • •*"" 
z — ' 7i 7i JM-\ JM 7 JM+I JM+2 JN 

= d(x"")x^ • • -x'" E nhW%-' • • •<- ' , + Im)x"J<-'x"*x"« • • -x"J». 
x 7i / J2 JN

 n v 1 ^ J] — l 7 J\ Ji 73 JN 

However because k + 1 ̂  \j~x VI < j < t we have trivially 2 < n7l + nJ2 + • • • + nJN and 
7m • 7 = 0 so 

rf(0(fc+l)) = nj-'x9-" • • .^-[x^x^x"» • • - ^ 
V v V J] » ^ 7 i _ 1 7i 72 73 7w 

= nho((p - i)(i +/? + •• •+/y''"2) -/y'1"1
 +^ 1 P / ' 1 " 1 

+ /v2/y',-1 + . . . + / i /y
w- 1) 

= n / l f l ( - l+ i t+ l ) = n/lfl(it). 
Therefore the lemma holds. • 

LEMMA 13. There exists a largest l G Z+ such • that x\,X2,... ,Jty a// em? 0m/«re 
nonzero. Furthermore m = / / — 1. 

PROOF. 1 G Z# so by Lemma 11, JCJ exists. By Lemma 6, 1 < m so d(*i) G 1 +/m Ç 
1+7 and/ ^ Rsod(x\) ^ I => x\ ^ 0. Now if there is no last £ such that JCI , x2,... ,jty all 
exist and are nonzero then take t = m and then by Lemma 12, 0 ^ It Ç 7m+/ contrary 
to Lemma 6 so a last such I exists. But now take I to be maximal and by Lemma 12, 
dPf- x(0(pl-\j) is invertible and 0(pl-\) G Ipf _ ̂  but dp(^l(6(pl-1)) £lsom>pl-\. 
However by Lemma 11 3x?+\ G IHZR with d(xi+\ ) G 0(p — 1) + Im but t is maximal 
so x^+i = 0 and 0(^/ — 1) G 7m, from which m<pl — 1. Therefore m = p[ — 1. m 

LEMMA 14. Let0<j <p[ - l . Then Ij = Ij+] + Dfiij). 

PROOF. By Lemma 12, 0(j) G Ij so as 77+i Ç Ij and 77 is an ideal, Ij+\ + A^O') ^ //• 
Now by Lemma 12, dH6(j)\ is invertible so #(/) G /7 \ /i+i • Therefore if r G /, then by 
Lemma 5 i G tf#(/)^ = ^(/ ') (because 0(j) G Z^) such that dj(s) G âfJ(r) + 7. However 
s = (a + fc)0(/) f° r some « G Dt and /? G / by Lemma 9. But then dJ(bQ{jj) G / so d7(r) G 
dj(a6(j)) +/. As r-aO(j) G /y this gives r-aO(j) G //+i. .'. r £ a6(j)+Ij+] Ç DiO(j)+Ij+\. 
.'. // ^ AW) + /;+i so 7, = Dfiij) + 7y+1. • 

Now it is a matter of putting together the pieces. 
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LEMMA 15. There exists a derivation f of A and a\,ci2,...,«/ G Z^. such that 

\/a G A , d(a) = f(a)xJ7~lxp
l~

] •••xp
f~\ d(x{) = 1 + a\jê\ V f ' • • - J ^ - 1 , awrf </(*,-) = 

ji[ 'x°-' • • -jcp,' + flX"1^-' • • -*!j-{forj = 2 , 3 , . . . , £ 

PROOF. Note that J ^ - 1 ^ - 1 • • • ^ _ I = 0(/ / — 1 ), and by Lemma 13, m = p( — 1 so by 

Lemmas 6 and 14, /,„ = D-fi(pl — 1). Now suppose that a,b G A and 

(a - b)0(pl - 1) = 0. Then by Lemma 9, 0 = dp'-l((a - b)0(p( - 1)) G 

(a - b)dp'-x(0{p( - 1)) + / so (a - b)dP'~X (0{p( - 1)) G / so by Lemma 12, a - /? G /. 

But then by Lemma 9, a — b G / H D, = 0 so o = b. Therefore if aO(p' — 1 ) = 0 then 

« = 0. Thus there exists a unique function/: A —> A such that if « G A then J(a) = 

f(a)6(p( - 1). Now ifa,b G A then / (a + b)6(pf - 1) = </(a + fc) = d(fl) + </(/?) = 

(f(a) +f(b))6(p( - 1 ) so f(a + b) = f(a) +f(b). Also f(ab) 9(pf - 1 ) = d(a&) = ûf(a)fc + 

ad(b) = (f(a)b+af(b)^8(p( — 1 ) so f(ab) = f(a)b+af(b) s o / is a derivation. Now as /,„ = 

Dj6(p( — 1) by Lemma 14, from the définition of x\ 3a \ G D, withJ(xi) = \+a\9(p( — 1). 

But then by the definition of x\, x\ G Z# so 1 + a\6(p( — 1) = d(jc0 G Z# so \/a G A , 

0 = a{\ +a\0(p( — 1)) — (l +a\6(pl — l))a = (aa{ —a\à)Q(pf — 1) so aa\ — ci\a = 0. 

.'. ax G ZD/. Similarly if7 = 2 , 3 , . . . , I then </(*,•) = ji\~xxÇ1 • • • J^J,1 +ajQ(pl - 1 ) with 

cij G ZD/. • 

LEMMA 16. R ^ ALv,, v 2 , . . . , > v ] / ( / ; , y 2 \ . . . ,y/). 

PROOF. By Lemma 11, 0 = x!\ = x!}
2 = • • • = Vf

7 so there is a unique ring homomor-

phism 'ip: Dj[y\,y2,... , Jrl/Cy^,}^, • • • ^f) ~^ R with V;(^) = aWa G A and i/;(>y) = x7 

for 7 = 1,2, . . . , L Now 1/' is an epimorphism because by Lemmas 14 and 13, 

/? = /o = A + / i 

= D,- + D/0(l) + /2 = ••• = A + A#(l) + A6>(2) + --- + A6>(// - 1) 

Ç V ; ( A [ V 1 , >'2, • . • ,>V ' ] / ( .Vl , >'2, • • . , >7 •))• 

Now to finish it suffices to show that i/> is one-to-one. Now suppose that a G 

A L y N ^ ^ - . ^ f l / C y ? , ^ , . . . , ^ ) and that ijj(a) = 0. Formally, i[j(a) = <30 + a i#( l ) + - • • + 

apt__l6(pf — 1) with ao,a\,... ,a/?/_1 G A . If some <:/, ^ 0 then let y be the least y such 

that a-j 7̂  0 and note that d7(^(tf)) £ ^ contrary to i[)(a) = 0. Clearly if ao,a\,..., api ] 

are all 0 then a = 0 so \() is one-to-one. • 

Let us review what part of Theorem 1 we now know. For the case where / = 0, 

Lemma 4 does the job. If / ^ 0 then Lemmas 15 and 16 give us most of Theorem 1 and 

together with Lemma 7 all that we do not know is 2 < ip{ < n + 1. However we have 

1 <i<n+\ from Lemma 4, 2 < p < n + 1 from Lemma 7 and 1 < I from Lemmas 6 

and 13. Thus we know that 2 < ip(. The rest of the paper will show that ip( <n+\. 

From Lemmas 6 and 14 3b G A such that 0 ^ b6(m) G I,„ H 7. By similar reasoning 

to Lemma 3, 30 ^ a G D/fc such that d i m D f / ^ ) ( n ^ ~ o Ker(/A'(«))) J = 0 or 1 for 

7 = 1,2, . . . , n and dim/)(«V) = 0 or 1 also. Now define LQ = 0 and for7 G Z+, Ly = 

D/fl + Df(a) + • • • + DfJ-l(a). Therefore L(] Ç L, Ç • • • and/(L 0) Ç L, , / (L i ) Ç L2, 
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f(L2) Ç L 3 , . . . . Now if N = jpf + k with y G { 0 , 1 , 2 , . . . , } and k G { 0 , 1 , . . . , / / - 1} 

then define L[N] = L(j, k) = RLj+Ipt_k_xLJ+\. Note that 0 ^ a G J and Lemma 1 imply 

that R = Ra + Rd(a) + ••• + Rdn(a). 

THEOREM 1. Let n G Z+, R be a ring with unit, J a left ideal ofR, and d a derivation 

ofR such that dn(J) ^ 0 and dn(r) — 0 or dn(r) is invertible, for every r G J. Then there 

exists a division ring D such that R is either. 

1 ) Di, the ring ofi x / matrices over a division ring D with 1 < i < n + \, or 

2) D([x\,X2,... jXfJ/CxpJi^, • • • , ^ ) where /, l,p G Z+, p is prime, 2 < ip( < n + 1, 

and char D = p. 

Furthermore, there exists a derivation f ofD{ and a\, a2,..., a( G ZDj, the center ofDj, 

with d(a) = f(a)xp
]~ xÇ~ • • -xff for all a G D{, d{x\) = 1 + a\d\~ xÇ~ • • -x/1^ , and 

d(Xj)=^-,^-1 • • -xp,1 + v r ' - x r 1 • • -JC?"1 

/ o r / = 2 , 3 , . . . , £ . 

PROOF. AS has been noted, all that is left is to show that ip( <n+\. This will be 

proved under the assumption d{L[N]) Ç L[N + 1] \/N > 0, and then that assumption 

will be proved. 

PART 1. Assume d(L[N]) Ç L[N + 1 ] VN > 0. 

Note that L[0] Ç L[\] Ç ••• Ç L[n] and for N G { 0 , 1 , 2 , . . . } , dN(L[0]) Ç L[N\. 

Now choosey, k with 0 < k < p( — 1 with n + 1 = y/ / + /:. It is easy to verify that 

L[n] Ç Lj + /. But a #(/ / - 1 ) G L[0] so R Ç RL[0] + RL[ 1 ] + • • • + /?£[«] = RL[n] Ç 

(Di+I)(Lj + I) CLj+I CRsoR = L7-+/. Note that if ci G A then ci G Lj +1 so 3c2 G L7 

withc*i-c2 G D/Pl/ = 0 by Lemma 9 and L7 Ç D/soDf- = Ly = Dja+Df(a)+- • •+//'~,(fl) 

so by the same reasoning as in Lemmas 2 and 4, y > dimD(V) = / but n + 1 = y/ / + A: 

and 0 <ksoj < fJy- so ipf <n+\. 

PART 2. Prove that d(L[N\) Ç £ [ # + 1 ] VN > 0. 

INDUCTION ONiV. If N = 0 then £[N] = £(0 ,0) = /?L0 + 7^_,Li = /^_,Li so 

</(£[#]) Ç /y_2Li + W(Li) = RL0 + Ip(_x_xL\ = L[\] using the fact that rf(Li) Ç 7m. 

Now suppose that d{L[N]) Ç £|7V + 1] and divide into cases. 

CASE I. N+\ =jp( + it with 1 <k<p( - 1. 

Then by Lemma 14, L[N + 1] = £(/'»*) = ^A/ + V-*-i^'+1 = ^ + V-*A/+i + 

Dfi{p* - k - \)LM Ç X[7V]+V-*-i^+ i - •'• <*(£[# + 1]) Ç rf(£[An) + rf(V-ifc-i)^+i + 
Ip,_k_xd(Lj+x) Ç L[N+ \] + Ip<_k 2LJ+l Ç RLj + Ipl_k_2Lj+l = £ ( / , * + 1) = £ [ # + 2]. 

CASE IL 7V+ 1 = y// + & with/: = /? ( - 1. 

Then £ ( N + 1) = RLj + I0Lj+l = RLJ+l because 70 = tf. .'. d(L[N+ 1]) Ç d(R)LM + 

/?#(// - 1)/(L7+1) Ç /?L7+1 +7„,_,L;+2 = X(/"+ 1,0) = £[A^+2]. 

CASE III. TV + 1 = jpl + k withy G Z+ and A: = 0. 

Then L[N + 1] = /ÏL,- + 7^_,L7-+1 = RLj-X + 70Ly + 7,,_,L,-+, - £[A^ + 7/y_,L7+1. 

Therefore J(£[A^+1]) Ç X[iV+l]+7^_2Ly+, = RLj +1 <_2Lj+l = L(j, 1) = L[N + 2\. m 
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