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Abstract. Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the
convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures
in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-
generated magnetic field, which rises even without magnetic buoyancy. A two layer system is
used as computational domain where the upper part represents the solar atmosphere. Here, the
evolution of the magnetic field is solved with the stress–and–relax method. Below this region
a magnetic field is produced by a helical forcing function in the momentum equation, which
leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer,
forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking
at space–time diagrams of the magnetic field. Recent simulations in spherical coordinates show
similar results.
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1. Introduction
The solar magnetic field is broadly believed to be in the form of concentrated flux ropes

in the bulk of the convection zone. At the solar surface they emerge to form bipolar regions
and sunspots in the photosphere that appear as twisted loop-like structures in the higher
atmosphere. However, there is no clear evidence that magnetic fields are generated in flux
tubes that emerge from the tachocline all the way to the surface of the Sun. Numerical
simulations have successfully shown that magnetic buoyancy, which has been thought to
be the main driver of flux tube emergence, can be efficiently suppressed by downward
pumping due to the stratification with concentrated downdraft in the solar convection
zone (Nordlund et al. 1992; Tobias et al. 1998). Large-scale dynamo simulations suggest
that flux tubes are primarily a feature of the kinematic dynamo regime, but tend to be
less pronounced in the nonlinear stage (Käpylä et al. 2008). An alternative mechanism
might simply be the relaxation of strongly twisted magnetic fields reaching the surface
of the Sun. Twisted magnetic fields are produced by a large-scale dynamo mechanism
which is generally believed to be the source of solar magnetic activity (Parker 1979). In
order to study the emergence of helical magnetic fields from a dynamo, we consider a
model that combines a direct simulation of a turbulent large-scale dynamo with a simple
treatment for the evolution of nearly force-free magnetic fields above the surface of the
dynamo. In the context of force-free magnetic field extrapolations this method is also
known as the stress–and–relax method (Valori et al. 2005). Including a nearly force-
free field in the upper part of the domain has the additional benefit of allowing a more
realistic modeling of the dynamo itself. This is important, because it is known that the
properties of the large-scale magnetic field depend strongly on the boundary conditions.
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In the upper atmosphere, direct numerical simulation of the solar corona show force-free
magnetic fields (Gudiksen & Nordlund 2005).

Above the solar surface, we expect helical magnetic fields to drive flares and coronal
mass ejections through the Lorentz force. In the present paper we highlight some of the
main results of our earlier work (Warnecke & Brandenburg 2010) and present recent
applications and results using spherical coordinates.

2. The Model
A two layer system is used, where the upper part is modelled as a nearly force-free

magnetic field by using the stress–and–relax method (Valori et al. 2005) and in the lower
part a dynamo field is generated through helically forced turbulence. We combine these
two layers by simply turning off terms that should not be included in the upper part of
the domain. We do this with error function profiles of the form

θw (z) = 1
2

(
1 − erf

z

w

)
, (2.1)

where w is the width of the transition.

2.1. Stress–and–relax method
The equation for the velocity in the stress–and–relax method is similar to the usual
momentum equation, except that there is neither pressure, nor gravity, nor other driving
forces on the right-hand side, so we just have

dU

dt
= J × B/ρ + F visc , (2.2)

where J × B is the Lorentz force, J = ∇ × B/µ0 is the current density, µ0 is the
vacuum permeability, F visc is the viscous force, and ρ is here treated as a constant that
determines the strength of the velocity correction. Equation (2.2) is solved together with
the uncurled induction equation,

∂A

∂t
= U × B + η∇2A, (2.3)

with η being the magnetic diffusivity.

2.2. Forced dynamo region
In the lower part the velocity is driven by a forcing function and the density is evolved
using the continuity equation,

dU

dt
= −∇h + f + J × B/ρ + F visc ,

dh

dt
= −c2

s∇ · U , (2.4)

where F visc is the viscous force, h = c2
s ln ρ is the specific pseudo-enthalpy, cs = const

is the isothermal sound speed, and f is a forcing function that drives turbulence in the
interior and consists of random plane helical transverse waves with an average forcing
wavenumber kf . The pseudo-enthalpy h is given by ρ−1∇p = c2

s ∇ ln ρ = ∇h. Equa-
tions (2.4) are solved together with the induction Eqs. (2.3).

The simulation box is horizontally periodic. For the magnetic field we adopt vertical-
field and perfect-conductor conditions at the top and bottom boundaries, respectively.
For the velocity we employ stress-free conditions at both boundaries. In this paper we
present direct numerical simulations using the Pencil Code†, a modular high-order

† http://pencil-code.googlecode.com

https://doi.org/10.1017/S174392131101533X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131101533X


258 J. Warnecke & A. Brandenburg

Figure 1. Upper part: Time series of arcade formation and decay. Field lines are colored by
their local field strength which increases from purple to green. The inclined plane in the box
shows Bz increasing from red (positive) to purple (negative). The normalized time τ is giving in
each panel. Lower part: Time series of the formation of a plasmoid ejection. Contours of 〈Ax 〉x
are shown together with a color-scale representation of 〈Bx 〉x ; dark/blue stands for negative and
light/yellow for positive values. The contours of 〈Ax 〉x correspond to field lines of 〈B〉x in the
yz plane. The dotted horizontal lines show the location of the surface at z = 0. Adapted from
Warnecke & Brandenburg (2010).

code (sixth order in space and third-order in time) for solving a large range of partial
differential equations.

3. Results
After a period of exponential growth, the magnetic field saturates at 78% of the

equipartition field strength, Beq in the turbulent layer. This behavior is typical for forced
dynamo action. The structure of the magnetic field is a large-scale field in the turbulent
zone. It always shows a systematic variation in one of the two horizontal directions. It
is a matter of chance whether this variation is in the x or in the y direction. After the
saturation phase the magnetic field extends well into the upper layer where it tends to
produce an arcade-like structure, as seen in the upper panel of Fig. 1. The arcade opens
up in the middle above the line where the vertical field component vanishes at the surface.
This leads to the formation of anti-aligned field lines with a current sheet in the middle.
The dynamical evolution is clearly seem in a sequence of field line images in the upper
panel of Fig. 1, where anti-aligned vertical field lines reconnect above the neutral line
and form a closed arch with plasmoid ejection. This arch then changes its connectivity at
the foot points in one of the two horizontal directions (here the y direction), making the
field lines bulge upward to produce a new reconnection site with anti-aligned field lines
some distance above the surface. Field line reconnection is best seen for two-dimensional
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Figure 2. Left panel: Dependence of 〈J · B〉H /〈B2 〉H versus time τ and height z for Lz = 6.4
with ReM = 3.4. Right panel: Similar to the left panel, but for Lz = 8π and ReM = 6.7 .
Adapted from Warnecke & Brandenburg (2010).

Figure 3. Time series of flux emergence in spherical coordinates. Contours of r sin θ〈Aφ 〉φ are
shown together with a color-scale representation of 〈Bφ 〉φ ; dark/blue stands for negative and
light/yellow for positive values. The contours of r sin θ〈Aφ 〉φ correspond to field lines of 〈B〉φ in
the rθ plane. The dotted horizontal lines show the location of the surface at r = 1 solar radii.

magnetic fields, because it is then possible to compute a flux function whose contours
correspond to field lines in the corresponding plane. In the present case the large-scale
component of the magnetic field varies little in the x direction, so it makes sense to
visualize the field averaged over x (see lower panel of Fig. 1).

In order to demonstrate that plasmoid ejection is a recurrent phenomenon, it is con-
venient to look at the evolution of the ratio 〈J ·B〉H/〈B2〉H versus t and z. This is done
in right panel of Fig. 2 for Lz = 6.4 and ReM = 3.4 and in the left panel of Fig. 2 for
Lz = 8π and ReM = 6.7. It turns out that in both cases the typical speed of plasmoid
ejecta is about half the rms velocity of the turbulence in the interior region.

As an example of further work in this direction, we also present in this paper magnetic
flux emergence in spherical coordinates. The dynamical evolution can be seen in Fig. 3,
where a modulated slice covers the convection zone from 0.7 solar radii through the
upper atmosphere to two solar radii. This meridional slice of a sphere consists, like the
simulation box above, of two layers which contain the same physical properties. We solve
the same equations as described in Section 2. Again, there is flux emerge through the
surface above the turbulence zone. This can be seen as a recurrent event. Unfortunately,
reconnection, current sheets and plasmoid ejections have not been seen in the present
setup, although there are indications that they do occur in even more recent spherical
models where gravity and density stratification are included (Warnecke et al. 2011).

Our first results are promising in that the dynamics of the magnetic field in the ex-
terior is indeed found to mimic open boundary conditions at the interface between the
turbulence zone and the exterior at z = 0. In particular, it turns out that a twisted
magnetic field generated by the helical dynamo beneath the surface is able to produce
flux emergence in ways that are reminiscent of that found in the Sun. The first results in
spherical coordinates show recurrent flux emergence, but plasmoid ejections in a curved
environment may only be possible if gravity and density stratification are included.
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